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Abstract—We discuss unbiased estimation equations in a class
of objective function using a monotonically increasing function
f and Bregman divergence. The choice of the function f gives
desirable properties such as robustness against outliers. In order
to obtain unbiased estimation equations, analytically intractable
integrals are generally required as bias correction terms. In
this study, we clarify the combination of Bregman divergence,
statistical model, and function f in which the bias correction term
vanishes. Focusing on Mahalanobis and Itakura-Saito distances,
we provide a generalization of fundamental existing results and
characterize a class of distributions of positive reals with a scale
parameter, which includes the gamma distribution as a special
case. We discuss the possibility of latent bias minimization when
the proportion of outliers is large, which is induced by the
extinction of the bias correction term.

I. INTRODUCTION

The maximum likelihood estimation (MLE) for the statisti-
cal model p(x|θ) estimates the parameter θ by minimizing the
negative log-likelihood. It is equivalent to empirical inference
under the Kullback-Leibler (KL)-divergence. However, MLE
is susceptible to outliers or mismatch of the assumed model.
In robust statistics, estimation methods weakening adverse
effect of outliers have been studied [1], [2]. One of the
most popular methods is M-estimation which changes KL-
divergence corresponding to MLE to robust divergences appli-
cable to empirical inference. These divergences are constructed
through estimation equations by weighted (negative) score
function s(x,θ) = ∂l(x,θ)

∂θ , where l(x,θ) = − log p(x|θ). The
following two types of estimation equations are well known:

1

n

n∑
i=1

ξ(l(xi,θ))s(xi,θ) = Ep(x|θ) [ξ(l(x,θ))s(x,θ)] , (1)∑n
i=1 ξ(l(xi,θ))s(xi,θ)∑n

j=1 ξ(l(xj ,θ))
=

Ep(x|θ) [ξ(l(x,θ))s(x,θ)]

Ep(x|θ) [ξ(l(x,θ))]
, (2)

where ξ : R → R works as the weight function. Equation
(1) is called the unnormalized estimation equation because
the summation of weights of score functions is not one. This
estimation equation is obtained from minimizing β-divergence
(density power divergence), U -divergence, Ψ-divergence and
so on [3]–[6]. Equation (2) is called the normalized estimation
equation because the summation of weights of score functions
is one. Windham proposed the estimator using density power
weight in (2) [7]. Then Jones et al. constructed corresponding
divergence [8]. It was proved that this divergence, named
γ-divergence, has the property that the latent bias can be

minimized even when the proportion of outliers is large, and
that the divergence with such a property is unique under some
assumptions [9]. This property of γ-divergence was extended
to the normalized estimation equation (2) with general weight
ξ [10]. However, these approaches require bias correction
terms, that is, the right hand sides of (1) and (2), which in
general result in analytically intractable integrals.

In this paper, we consider the M-estimation under f -
separable distortion measures, which were proposed to extend
linear distortion such as the average distortion to non-linear
distortion, and for which the rate-distortion function was
studied [11]. It was also applied to the estimation problem
with Bregman divergence as the base distortion measure
and a simple clustering or vector quantization algorithm was
constructed [12]. In this paper, we call this class of objective
functions the f -separable Bregman distortion measure. As
will be discussed in Section III, the M-estimation under this
distortion measure can be viewed as deviance-based estimation
of the regular exponential family model. On one hand, unbi-
asedness of the estimation equation of deviance-based methods
has been studied and some sufficient conditions for it have
been obtained [13], [14]. However, these results only apply to
the case where the data-generating distribution is included in
the assumed model. On the other hand, the M-estimation of
the location family is proved to have an unbiased estimation
equation for general symmetric distributions [2]. It is unknown
in what cases of f -separable Bregman distortion measures the
estimation equation is unbiased for such a general class of
distributions. If an estimation equation is unbiased, it can be
regarded as normalized and the estimator has the potential to
minimize the latent bias even if the proportion of outliers is
large.

In this paper, we study the conditions for bias correction
terms of f -separable Bregman distortion measures to vanish
and characterize the combination of Bregman divergence, the
statistical model, and the function f . Focusing on Mahalanobis
and Itakura-Saito (IS) distances, we specify the conditions
for the general model classes and the function f to achieve
unbiased estimation equations. Furthermore, we discuss if the
latent bias can be minimized when the proportion of outlier is
large. We compare the M-estimation under the f -separable IS
distortion measure with the estimation methods minimizing β
and γ divergences in terms of asymptotic efficiency.
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II. f -SEPARABLE BREGMAN DISTORTION MEASURES

In this section, we introduce the estimation method based on
f -separable Bregman distortion measures [12]. We consider
estimating the parameter θ ∈ Θ ⊆ Rd of a statistical
model p(x|θ) when given the data xn = {x1, · · · ,xn},
xi = (x

(1)
i , · · · , x(d)

i )T ∈ Rd. We assume that p(x|θ∗)
is the data-generating distribution and the parameter θ is
the expected value of x under the model, that is, θ =
E[X] =

∫
xp(x|θ)dx if it exists. The objective function (3)

is defined by a differentiable and continuous monotonically
increasing function f : R+ → R and Bregman divergence
dφ(x,θ) : Rd × Rd → R+, where R+ is the set of non-
negative real numbers.

Lf (θ) =
1

n

n∑
i=1

f (dφ (xi,θ)) (3)

Bregman divergence is defined by a differentiable strictly
convex function φ : Rd → R as

dφ(x,θ) , φ(x)− φ(θ)− 〈x− θ,∇φ(θ)〉,

where ∇φ is its gradient vector and 〈·, ·〉 is the inner product.
The estimator θ̂ of the parameter θ∗ is given by the minimum
solution of (3) as

θ̂ = arg min
θ

Lf (θ).

The corresponding estimation equation is given by

1

n

n∑
i=1

f ′(dφ(xi,θ))
∂

∂θ
dφ(xi,θ) = 0, (4)

where f ′ is the derivative of f . This is not generally unbiased.
The property of the estimator depends on the function f . For
example, if the function f is concave, the estimator is robust
against outliers.

The original f -separable distortion measures are defined by
f -mean with respect to some base distortion d [11]. From the
view point of f -mean, representative examples are the log-
sum-exp function and power mean, which are given by the
following functions:

f(z) =
1− exp(−αz)

α
, f ′(z) = exp(−αz) (5)

f(z) =
(z + a)β − 1

β
, f ′(z) = (z + a)β−1 (a ≥ 0), (6)

respectively, where if tuning parameters satisfy α > 0 or β <
1, the estimators become robust. When α = 0 and β = 1, (5)
and (6) become linear functions.

III. RELATION TO ROBUST DIVERGENCES

First, we show that the minimization of Lf (θ) is derived
from deviance-based M-estimation of the expectation param-
eter under the regular exponential family,

p(x|θ) = rφ(x) exp(−dφ(x,θ)), (7)

where rφ(x) is uniquely determined by the strictly convex
function φ [15]. In fact, the deviance function [13] of this
model is

l(x,θ)− inf
θ
l(x,θ) = dφ(x,θ)−min

θ
dφ(x,θ) = dφ(x,θ).

Next, we turn to empirical inference based on robust diver-
gences under the regular exponential family (7). The negative
score function is given by s(x,θ) = ∂

∂θdφ(x,θ). Suppose for
a moment that the bias correction term can be ignored. In this
case, the unnormalized estimation equation (1) is given by

1

n

n∑
i=1

ξ (l(xi,θ))
∂

∂θ
dφ(xi,θ) = 0. (8)

Compared with this estimation equation, the estimation equa-
tion (4) of f -separable Bregman distortion measures can be
interpreted as a weighted score function. We focus on the
arguments of the weight functions of (4) and (8). The only
difference is the term infθ l(x,θ) = − log rφ(x). Specifically,
if the domain of the function f ′ is extended to (−∞,∞),
the function f ′ works identically to the weight function ξ.
In view of this relation, the function (5) associated with
the log-sum-exp function yields the estimation methods that
minimize β and γ divergences with the unnormalized and
normalized estimation equations, (1) and (2), respectively. In
other words, when we assume the regular exponential family
and the function (5), then it is related to the estimation based
on power of the statistical model.

While, in this section, we have assumed the bias correction
term is exactly 0, it does not hold in general. With the
combination of the model and Bregman divergence discussed
in the next section, the estimation equation (4) becomes
unbiased without any bias correction term for any function
f satisfying the condition given in the main theorems.

IV. CONDITIONS FOR UNBIASED ESTIMATION EQUATION

In general, the estimator based on f -separable Bregman
distortion measures introduced in Section II does not satisfy
consistency because its estimation equation is not necessarily
unbiased. In order to satisfy an unbiased estimation equation,
we must subtract the bias correction term bf (θ) from the
objective function (3) as follows:

Lf (θ) =
1

n

n∑
i=1

f (dφ (xi,θ))− bf (θ),

bf (θ) = −
∫

∇∇φ(θ)Ep(x|θ) [f ′ (dφ (x,θ)) (x− θ)] dθ,

where
∫
·dθ denotes the indefinite integral with respect to θ.

Then, the unnormalized estimation equation is given by

1

n

n∑
i=1

f ′ (dφ (xi,θ)) (xi − θ) = Ep(x|θ)[f
′ (dφ (x,θ)) (x− θ)].

On the other hand, we can consider the normalized estimation
equation as follows:∑n

i=1 f
′ (dφ (xi,θ)

)
(xi − θ)∑n

j=1 f
′
(
dφ (xj ,θ)

) =
Ep(x|θ)[f ′ (dφ (x,θ)

)
(x− θ)]

Ep(x|θ)[f ′
(
dφ (x,θ)

)
]

.



Fujisawa has elucidated that this estimation equation can
possibly minimize the latent bias even when the proportion
of outliers is large [10]. In both cases, it is necessary to
calculate the integral for bias correction for each combination
of statistical model, Bregman divergence, and the function f .
However, in many cases, the integral may not exist or be
analytically intractable. In this paper, we discuss the following
estimation equation:

1

n

n∑
i=1

f ′ (dφ (xi,θ)) (xi − θ) = 0.

That is, the bias correction term does not depend on the pa-
rameter θ. In other words, the following equation is satisfied,

Ep(x|θ) [f ′ (dφ (x,θ)) (x− θ)] = 0. (9)

Then, this estimation equation is automatically normalized.
Therefore, the estimator has the possibility to minimize the
latent bias even when the proportion of outliers is large. In
the rest of this section, we characterize the combination of the
statistical model p(x|θ), Bregman divergence dφ(x,θ) and
the function f where the bias correction term vanishes. Note
that the statistical model considered hereafter is generally not
the regular exponential family.

In particular, we focus on Mahalanobis and IS distances.
In the case of estimating the location parameter of elliptical
distribution, it is known that the bias correction term vanishes
and the estimator is consistent under certain conditions on the
function f [2]. In the case of log-gamma regression model,
it is known that the bias correction term vanishes. This is
equivalent to the case where IS distance is used and the model
is the gamma distribution [14]. In this paper, we derive a
simple condition of the function f which induces unbiased
estimation equation. In particular, in the case of IS distance,
the class of the model is extended to a more general class.

A. Mahalanobis distance

When the strictly convex function is given by φ(x) =
xTAx, where A is a positive definite matrix. Then the
corresponding Bregman divergence is given by

dMah.(x,θ) , (x− θ)TA(x− θ).

If the positive definite matrix A is identity, Mahalanobis
distance reduces to squared distance,

‖x− θ‖2 =

d∑
j=1

(x(j) − θ(j))2.

We assume that the statistical model is the elliptical distribu-
tion.

Definition 1 (Elliptical distribution [16]): For x ∈ Rd and
the parameter θ ∈ Θ = Rd and the function g : R+ → R+, let
C <∞ be the normalization constant, and the positive definite
matrix A be the inverse of a fixed covariance matrix. Then the
elliptical distribution is defined by the following probability
density function,

p(x|θ) =
1

C
g((x− θ)TA(x− θ)). (10)

This distribution includes Gaussian, Laplace, t distributions
and so on.

Theorem 1: If the following condition holds against the
combination of the function f and the statistical model (10),
the estimation equation holds without a bias correction term:∫ ∞

0

g(t)f ′(t)t
d−1
2 dt <∞.

Although the unbiased estimation equation in this case is
intuitively trivial because of the symmetry around θ and has
been pointed out in the literature [2], the explicit condition for
the unbiasedness has never been discussed.

B. IS distance

When the strictly convex function is given by φ(x) =
− log x, then the corresponding Bregman divergence is given
by

dIS(x, θ) ,
x

θ
− log

x

θ
− 1. (11)

Definition 2 (IS distribution): For x ∈ R+ and the scale
parameter θ ∈ Θ = R+ \{0}, and the function g : R+ → R+,
we define the following probability density function with the
normalization constant C <∞,

p(x|θ) =
1

C

1

x
g(dIS(x, θ)). (12)

When the expectation exists, the scale parameter also coincides
with the expectation. In particular, if g(z) = exp(−kz), the
IS distribution reduces to the gamma distribution p(x|θ) =(
k
θ

)k 1
Γ(k)x

k−1 exp
(
−kθx

)
with the known shape parameter

k > 0. Details of the IS distribution are described in Appendix
D.

Theorem 2: If the following condition holds against the
combination of the function f and statistical model (12), the
estimation equation holds without a bias correction term:∫ ∞

0

g(t)f ′(t)dt <∞ (13)

1) Example: Gamma distribution: In the case of the func-
tion (5) and gamma distribution with the known shape param-
eter k > 0, that is, g(z) = exp(−kz), then the integral in (13)
becomes as follows:∫ ∞

0

exp(−kz) exp(−αz)dz =

∫ ∞
0

exp(−(k + α)z)dz.

Therefore, the condition α > −k must be satisfied for the
integral to be bounded. In other words, the lower limit of α
that satisfies the unbiased estimation equation differs for each
shape parameter k. Since k > 0, we can see that the condition
of Theorem 2 is satisfied if α > 0, for which the estimator is
robust against outliers.

In the case of the function (6) and the gamma distribution
with the known shape parameter k > 0, then the integral in
(13) becomes as follows:∫ ∞

0

exp(−kz)(z + a)β−1dz.



When a > 0, the condition of Theorem (13) holds for β <∞.
When a = 0, the condition of Theorem (13) holds for 0 <
β <∞. However, it does not hold for β ≤ 0.

C. Discussion: other Bregman divergence

When the dimension is one, the conditions of Theorems 1
and 2 are the same. A common point is that the statistical
model is expressed by Bregman divergence used for estima-
tion. Hence, the results of Theorems 1 and 2 can be generalized
to a wider class of continuous distributions written by Bregman
divergence. We refer for the details of the continuous Bregman
distribution and its theorem to Appendix E.The elliptical and
IS distributions are rare examples which have unbiased esti-
mation equations for the corresponding f -separable Bregman
distortion measures and include the corresponding regular
exponential family models.

V. LATENT BIAS

In this section, we discuss the possibility of the latent bias
minimization when the proportion of outliers is large. It is
induced by the vanishing bias correction term. From the view
point of the normalized estimation equation, the condition
of latent bias minimization was shown as a theorem [10],
whereas generally its condition is difficult to be examined.
However, it can be easily discussed as γ-divergence when the
bias correction term vanishes. The definitions of outliers are
different for f -separable distortion measures and γ-divergence.
We obtain, as a by-product, a solution to a drawback of γ-
divergence.

A. Contaminated distribution

We assume that the data-generating distribution is given as
follows:

p̃(x) = (1− ε)p(x|θ∗) + εc(x),

where p(x|θ∗) is the target distribution and c(x) is the
contamination distribution which generates outliers and ε is
the proportion of outliers. Suppose the parameter θ̂ estimated
from the data generated from this distribution is expressed
asymptotically as θ̃. That is, θ̂ P−→ θ̃. Here, θ̃ − θ∗ is
called the latent bias, which expresses the bias caused by the
contamination distribution [10].

B. γ-divergence

In the estimation based on γ-divergence, it is assumed
that the following quantity can be made arbitrarily small by
adjusting γ0 > 0 as an assumption regarding outliers,

νp =
[
Ec(x) [p(x|θ∗)γ0 ]

] 1
γ0 . (14)

This assumption means that outliers are distributed over the
region where the likelihood is small in the target distribution
p(x|θ∗). Since nothing about the outlier proportion is as-
sumed, it is also possible to deal with the case where the outlier
proportion is large. Kuchibhotla et al. reported γ-divergence
is adversely affected by data at the edge of the support of
the target model [17]. For example, in the estimation of the

scale parameter of the exponential distribution, a wrong global
solution is generated when very small inlier around x = 0 such
as x = 10−4 is mixed. Recently, a solution to this problem
has been invented, whereas it is not fully resolved [17].

C. f -separable Bregman distortion measures

In the estimation based on f -separable Bregman distortion
measures, we assume that the following quantity can be made
arbitrarily small by adjusting the function f as an assumption
regarding outliers,

νdφ = Ec(x) [f (dφ (x,θ∗))] , (15)

under Assumption 1 described later. This assumption is cor-
responding to the assumption (14) of γ-divergence and means
that when the random variable follows the contamination
distribution, that is, X ∼ c(X), an outlier is in the region
where dφ(X,θ∗)→∞ is satisfied. When estimating the loca-
tion parameter of the elliptical distribution using Mahalanobis
distance, the definition of outlier is same as (14). That is, x
with ‖x‖ → ∞ is regarded as the outlier. However, when
estimating the scale parameter of the IS distribution using IS
distance, the definition of outlier is not same as (14). In this
case, from

lim
x→0

dIS(x, θ) = lim
x→∞

dIS(x, θ) =∞,

the data near 0 or ∞ are regarded as outliers. In other words,
the estimator based on f -separable IS distortion measures is
robust against large outliers and very small inliers to which
γ-divergence is vulnerable.

D. Condition of function f

In the following, we identify the function f(z) with f(z)+
constant, because the estimator depends only on the derivative
of the function f .

Assumption 1: ∀z ∈ R+, |f(z)| <∞ and lim
z→∞

f(z) = 0

Assumption 2: Under Assumption 1, (15) can be made
arbitrarily small by adjusting the function f .

Assumption 3: When ε = 0, the estimator θ̃ is a consistent
estimator, that is, θ̃ = θ∗.

Theorem 3: Under Assumptions 1-3, the latent bias can be
made arbitrarily small by adjusting the function f .

1) Example: We consider the function (5), which is iden-
tified with exp(−αz). Then Assumption 1 holds immedi-
ately. Assumption 2 follows from Lyapunov’s inequality with
sufficiently large α. Assumption 3 depends on the target
distribution. In the case of the gamma distribution, we can
prove the consistency of the estimator [13].

VI. ASYMPTOTIC PROPERTY

The estimation based on f -separable Bregman distortion
measures, which satisfies the unbiasedness of estimation equa-
tion, can be interpreted as an M-estimation. Therefore, un-
der appropriate assumptions, the following consistency and



asymptotic normality of the estimator follow from the asymp-
totic theory of M-estimation [1], [2], [18],

θ̂
P−→ θ∗,

√
n
(
θ̂ − θ∗

)
d−→ N(0,Σ(θ∗)),

where Σ(θ∗) = J−1(θ∗)I(θ∗)J−1(θ∗),

I(θ) = Ep(x|θ)

[
[f ′ (dφ (x,θ))]2 (x− θ) (x− θ)

T
]
,

J(θ) = Ep(x|θ)

[
∂f ′ (dφ (x,θ)) (x− θ)

∂θ

]
.

If the proportion of outliers is large, the asymptotic variance
is given by the technique in [9], [10].

A. Gamma distribution

We assume that the statistical model is the gamma distri-
bution p(x|θ) =

(
k
θ

)k 1
Γ(k)x

k−1 exp
(
−kθx

)
, the function f

is (5) and Bregman divergence is IS distance (11), then the
asymptotic variance of the estimator is given by

V [θ̂] = Σ(θ∗) =
Γ(2α+ k)Γ(k)

[Γ(α+ k)]2
(α+ k)2(α+1+k)

(2α+ k)2α+1+k

1

k2+k
θ∗2,

where Γ(·) is the gamma function and the tuning parameter
satisfies α > −0.5k. In the case of the exponential distribution
(k = 1), we can compare the asymptotic relative efficiencies
(AREs) of the estimators based on minimizing f -separable
IS distortion measures and β and γ divergences. The ARE is
given by V [θ̂MLE]

V [θ̂]
, where V [θ̂MLE] is the asymptotic variance

of the maximum likelihood estimator (α = 0). In the case
of the exponential distribution, the asymptotic variance of
the estimators based on β and γ divergence were derived
respectively [3], [8]. Figure 1 shows their AREs, when the
tuning parameter α = β = γ. We notice that the range of
tuning parameter α = β = γ > 0 induces the robustness
against outliers. From Figure 1, for the function (5) and
IS distance, the ARE is generally greater than that of β-
divergence in the range of tuning parameter α < 2. The ARE
is also greater than that of γ-divergence in the entire range
of the tuning parameter. However, in general, the ARE and
robustness have trade-off relationship. Hence, it is important to
choose the tuning parameter appropriately taking into account
both of them.

VII. CONCLUSION

In this paper, we discussed the condition for the unbiased
estimation equation in the class of parameter estimation by
minimizing f -separable Bregman distortion measures. Its con-
dition consists of the statistical model, Bregman divergence
and the function f . We clarified in the cases of Mahalanobis
and IS distances that the condition the function f and the
statistical model should satisfy is characterized by a simple
integral. In the parameter estimation of the scale parameter of
the gamma distribution, divergence-based estimation generally
requires bias correction terms. Furthermore, we proved that
the vanishing bias correction term implies the possibility of
minimizing latent bias caused by the large proportion of
outliers.
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APPENDIX

A. Proof of Theorem 1

We assume that eigenvalue decomposition with respect to
positive definite matrix A. That is, A = V ΛV T, where
V −1 = V T and Λ is the diagonal matrix with eigenvalues.
Then, Mahalanobis distance is rewritten by

(x− θ)
T
A (x− θ)

= (x− θ)
T
V ΛV T (x− θ)

= yTΛy =

d∑
j=1

λjy
2
j ,

where y = V T (x− θ) and λj is the j-th element of the diag-
onal matrix Λ. Further, we assume that rank factorization with
respect to positive definite matrix Λ. That is, Λ =

√
Λ

T√
Λ.

If the random vector Y follow Y ∼ 1
C g(Y TAY ), then it

can be decomposed as Y = RU
√

Λ, where random variable
R satisfies R ≥ 0 and d-dimensional random vector U is
uniformly distributed on the unit sphere surface [16]. Then,
E[U ] = 0 holds. From (9), ignoring the normalization constant
C, we have∫

Rd
g (dMah.(x,θ)) f ′ (dMah.(x,θ)) (x− θ)dx

=

∫
Rd
g

 d∑
j=1

λjy
2
j

 f ′

 d∑
j=1

λjy
2
j

V y|V |dy
= |V |V

 d∏
j=1

1√
λj

E[U ]︸ ︷︷ ︸
0

∫ ∞
0

g(r2)f ′(r2)rddr

= 0.

Therefore, if the following integral exists, then the unbiased
estimation equation holds without any bias correction term∫ ∞

0

g(r2)f ′(r2)rddr

=

∫ ∞
0

g(t)f ′(t)t
d−1
2 dt,

where we used integration by substitution as t = r2. �

B. Proof of Theorem 2

From (9), ignoring the normalization constant C, we have∫ ∞
0

1

x
g(dIS(x, θ))f ′(dIS(x, θ))(x− θ)dx

=

∫ θ

0

1

x
g(dIS(x, θ))f ′(dIS(x, θ))(x− θ)dx

+

∫ ∞
θ

1

x
g(dIS(x, θ))f ′(dIS(x, θ))(x− θ)dx

= θ

∫ 0

∞
g(t)f ′(t)dt+ θ

∫ ∞
0

g(t)f ′(t)dt = 0.

We used integration by substitution as t = dIS(x, θ). There-
fore, if the following integral exists, then the unbiased estima-
tion equation holds without any bias correction term∫ ∞

0

g(t)f ′(t)dt <∞.

�

C. Proof of Theorem 3

We take the expectation of the objective function (3) by
p̃(x) = (1 − ε)p(x|θ∗) + εc(x) as

∫
p̃(x)f (dφ (x,θ)) dx.

We have∫
p̃(x)f (dφ (x,θ)) dx

= (1− ε)
∫
p(x|θ∗)f (dφ (x,θ)) dx+ ε

∫
c(x)f (dφ (x,θ)) dx

= (1− ε)
∫
p(x|θ∗)f (dφ (x,θ)) dx+O(ενdφ).

Here, we consider ενdφ =
∫
c(x)f (dφ (x,θ)) dx as θ ≈ θ∗.

From Assumptions 1, 2, we can ignore O(ενdφ),

θ̃ = arg min
θ

∫
p̃(x)f (dφ (x,θ)) dx

= arg min
θ

∫
p(x|θ∗)f (dφ (x,θ)) dx = θ∗,

where we have used Assumption 3. Therefore, the latent bias
can be made sufficiently small, that is, θ̃−θ∗ ≈ 0 by adjusting
the function f . �

D. Detail of IS distribution

In Section IV-B, we defined a new distribution and named
the IS distribution because it is characterized by the IS
distance. In this appendix, we explain properties of IS dis-
tribution. IS distribution is defined by

p(x|θ) =
1

C

1

x
g(dIS(x, θ)),

where C is the normalization constant. The normalization
constant C is expressed as follows without depending on θ,

C =

∫ ∞
0

1

x
g(dIS(x, θ))dx =

∫ ∞
0

1

t
g(dIS(t, 1))dt.

We used integration by substitution t = x/θ. Specifically, if
the expected value exists, E[X] < ∞, E[X] = θ holds from
the estimation equation (9) with f(z) = z. The condition
for the unbiased estimation equation is given by (13). This
condition with f(z) = z reduces to

∫∞
0
g(t)dt < ∞, that is,

g ∈ L1(R+). Thus, the following relation holds with respect
to the expectation and the function g,

g ∈ L1(R+)⇔ E[X] = θ. (16)

In other words, the existence of the expectation depends
only on the function g. This property holds in the general



continuous Bregman distribution described later. Then, the
normalization constant is expressed as

C =

∫ ∞
0

g(dIS(x, 1))dx. (17)

Because we have

θ = E[X] =

∫ ∞
0

1

C

1

x
g(dIS(x, θ))xdx

=
1

C

∫ ∞
0

g(dIS(x, θ))dx = θ
1

C

∫ ∞
0

g(dIS(x, 1))dx,

the normalization constant C must satisfy (17).
1) Example: Gamma distribution: When we choose the

function g(z) = exp(−kz), IS distribution becomes the
gamma distribution with the known shape parameter k > 0.
Then, 1

xg(dIS(x, θ)) is expressed as

1

x
g(dIS(x, θ)) =

1

x
exp (−kdIS(x, θ))

=
1

x
exp(−k

θ
x)
(e
θ

)k
xk =

(e
θ

)k
xk−1 exp

(
−k
θ
x

)
.

The normalization constant C is given by

C =

∫ ∞
0

1

x
exp (−kdIS(x, θ)) dx

=
(e
θ

)k ∫ ∞
0

xk−1 exp

(
−k
θ
x

)
dx

=
(e
θ

)k ( θ
k

)k
Γ(k)

=
( e
k

)
Γ(k),

where Γ(·) is the gamma function. Therefore, the gamma
distribution is obtained

p(x|θ) =
1

C

1

x
exp(−kdIS(x, θ))

=

(
k

e

)k
1

Γ(k)

(e
θ

)k
xk−1 exp

(
−k
θ
x

)
=

(
k

θ

)k
1

Γ(k)
xk−1 exp

(
−k
θ
x

)
.

(18)

The gamma distribution is also expressed as

p(x|β, k) =
xk−1

Γ(k)βk
exp

(
−x
β

)
.

The parameters β and k are called scale and shape parameters,
respectively. This model is corresponding to (18) by the
transformation θ = kβ. Notice that the parameter θ is also
the scale parameter and the expectation parameter.

E. Detail of Continuous Bregman distribution

Definition 3 (Continuous Bregman distribution): For x ∈
(a, b) ⊆ R, the parameter θ ∈ Θ ⊆ R, and the function
g : R+ → R+, we define the following probability density
function with the normalization constant satisfying C(θ) <∞,

p(x|θ) =
1

C(θ)

φ′(x)− φ′(θ)
x− θ

g(dφ(x, θ)). (19)

Specifically, if (20) holds and the expected value exists,
E[X] <∞, E[X] = θ holds from the estimation equation (9)
with f(z) = z and the condition for it is given by (21). For the
same reason, the relationship (16) holds for the expectation and
the function g as in the case of the IS distribution. Note that
the existence of the expectation depends only on the function
g regardless of the choice of Bregman divergence as long as
the normalization constant C(θ) exists and (20) holds. Note
that in general, the normalization constant C(θ) depends on
the parameter θ.

Assumption 4:
1) Bregman divergence satisfies the following for any θ and

a positive constant ζ (including ∞):

lim
x→a

dφ(x, θ) = lim
x→b

dφ(x, θ) = ζ. (20)

2) Bregman divergence used for estimation is correspond-
ing to that of the model (19).

Under these assumptions, the unbiased estimation equation (9)
holds.

Theorem 4: If the following condition holds against the
combination of the function f and statistical model (19), the
estimation equation holds without a bias correction term:∫ ∞

0

g(t)f ′(t)dt <∞. (21)

Proof 1: From (9), ignoring the normalization constant
C(θ), we have∫

R

φ′(x)− φ′(θ)
x− θ

g(dφ(x, θ))f ′(dφ(x, θ))(x− θ)dx

=

∫ θ

a

(φ′(x)− φ′(θ))g(dφ(x, θ))f ′(dφ(x, θ))dx

+

∫ b

θ

(φ′(x)− φ′(θ))g(dφ(x, θ))f ′(dφ(x, θ))dx

=

∫ 0

ζ

g(t)f ′(t)dt+

∫ ζ

0

g(t)f ′(t)dt = 0.

We used integration by substitution as t = dφ(x, θ) and (20).
Therefore, if integral (21) exists, then the unbiased estimation
equation holds without any bias correction term. �
The following models are the examples of the continuous
Bregman distribution.

1) symmetric (one dimensional elliptical) distribution: We
set φ(x) = x2. Then, (19) becomes the symmetric (one
dimensional elliptical) distribution as follows:

p(x|θ) =
1

C
g((x− θ)2).

2) IS distribution: We set φ(x) = − log x. Then, (19)
becomes the IS distribution as follows:

p(x|θ) =
1

C

1

x
g(dIS(x, θ)).

Finally, we consider the relation between the continuous
Bregman distribution (19) and the regular exponential family
(7). Let g(z) = exp(−z). If the factor

1

C(θ)

φ′(x)− φ′(θ)
x− θ



does not depend on the parameter θ, (19) becomes one
dimensional regular exponential family as follows:

p(x|θ) = rφ(x) exp(−dφ(x, θ)),

where rφ(x) is uniquely determined by the strictly convex
function φ [15]. The Gaussian and gamma distributions pro-
vide rare examples included in both the class of continuous
Bregman distributions and the regular exponential family.
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