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Abstract—In the present paper, we investigate the fundamental
trade-off of identification, secrecy, storage, and privacy-leakage
rates in biometric identification systems for hidden or remote
Gaussian sources. We introduce a technique for deriving the
capacity region of these rates by converting the system to
one where the data flow is in one-way direction. Also, we
provide numerical calculations of three different examples for the
generated-secret model. The numerical results imply that it seems
hard to achieve both high secrecy and small privacy-leakage rates
simultaneously. In addition, as special cases, the characterization
coincides with several known results in previous studies.

I. INTRODUCTION

The identification capacity of biometric identification sys-
tems (BIS) was clarified in [1] for both discrete memoryless
and Gaussian sources. For the discrete memoyless source
(DMS), the fundamental performances of the BIS are exten-
sively analyzed in [2], [3] for a visible source model (VSM)
and in [4], [5] for a remote source model (RSM). However,
the studies under Gaussian settings are still few. For example,
the optimal trade-off between secrecy and privacy-leakage was
clarified in [6] and in order to speed up search complexity,
hierarchical identification was taken into account in [7]. A
common stand in [6], [7] is that the VSM was assumed.

In this study, we extend the BIS assuming the RSM in [5]
to Gaussian sources. This is motivated by the fact that the
signal of biometric data (bio-data) is basically represented by
vectors with continuous elements in real application and most
communication links can be modeled as Gaussian channels.
What is more, when the model is switched from the VSM
to the RSM, the evaluation becomes more challenging [4],
[5] and many existing techniques for deriving the results of
the VSM are not directly applicable. Thus, the extension is
of both theoretical and practical interest. Our goal is to find
the optimal trade-off of identification and secrecy rates in
the BIS under privacy and storage constraints. We demon-
strate that an idea of converting the system to another one
where the data flow of each user is in the same direction,
which enables us to characterize the capacity region. More
specifically, in establishing the outer bound of the region, the
converted system allows us to use the well-known entropy
power inequality (EPI) [8] twice in two opposite directions,
and also its property facilitates the derivation of the inner
bound. In [4], Mrs. Gerber’s lemma was applied twice, too, to
simplify the rate region of the RSM for binary sources without
converting the BIS. That was possible due to the uniformity

of the source, and the backward channel of the enrollment
channel is also the binary symmetric channel with the same
crossover probability. However, this claim is no longer true in
the Gaussian case, so it is necessary to formulate the general
behavior of the backward channel. We also provide numerical
calculations of three different examples. As a consequence,
we may conclude that it is difficult to achieve high secrecy
and small privacy-leakage rates at the same time. To achieve
a small privacy-leakage rate, the secrecy rate is scarified
somehow. Furthermore, as a by-product of our result, the
capacity regions of the BIS analyzed in [4] (the BIS with a
single user) is obtained, and as special cases, it can be checked
that this characterization reduces to the results given in [1], [6].

II. SYSTEM MODEL AND CONVERTED SYSTEM

A. Notation and System Model

Upper-case A and lower-case a ∈ A denote random variable
(RV) and its realization, respectively. An = (A1, · · · , An)
represents a string of RVs and subscripts represent the position
of a RV in the string. fA denotes the probability density
function (pdf) of RV A. For integers k and t such that k < t,
[k : t] denotes the set {k, k + 1, · · · , t}. log x stands for the
natural logarithm of x > 0. A(n)

ε (·) denotes the weakly ε-
typical set [9], and B(n)ε (·) is a modified ε-typical set, defined
as follows.

Definition 1. (Modified ε-typical set [2, Appendix A-A])
Consider that (X,Y, U) forms a Markov chain X−Y −U ,

i.e., fXY U (x, y, u) = fXY (x, y)fU |Y (u|y). The modified ε-
typical set B(n)ε (Y U) is defined as

B(n)ε (Y U) =
{

(yn, un) :

Pr{Xn ∈ A(n)
ε (X|yn, un)|(Y n, Un) = (yn, un)} ≥ 1− ε

}
,

(1)

where ε is small enough positive, and Xn is drawn i.i.d.
from the transition probability

∏n
k=1 fX|Y (xk|yk). In addi-

tion, define B(n)ε (U |yn) = {un : (un, yn) ∈ B(n)ε (Y U)} for
all yn, and B(n)ε (U |yn)c denotes the complementary set of
B(n)ε (U |yn).

The generated-secret BIS model and chosen-secret BIS
model considered in this study are depicted in Fig. 1. Arrows
(g) and (c) indicate the directions of the secret key of the
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Fig. 1. The generated- and chosen-secret BIS models

former and latter models. In the former model, the secret
key is extracted from the bio-data sequence, while in the
latter one, it is chosen independently. Let I = [1 : MI ],
S = [1 : MS ], and J = [1 : MJ ] be the sets of user’s
indexes, secret keys, and helper data, respectively. These sets
are assumed to be finite. Xn

i ,Y ni , and Zn denote the bio-data
sequence of user i generated from source PX , the output of
Xn
i via the enrollment channel PY |X , and the output of Xn

i

via the identification channel PZ|X , respectively. For i ∈ I and
k ∈ [1 : n], we assume Xik ∼ N (0, 1). Note that RV with
unit variance can be obtained by applying a scaling technique.
PY |X and PZ|X are modeled as follows:

Yik = ρ1Xik +N1, Zk = ρ2Xik +N2, (2)

where |ρ1| < 1, |ρ2| < 1 are the Pearson’s correlation
coefficients, and N1 ∼ N (0, 1− ρ21) and N2 ∼ N (0, 1− ρ22)
are Gaussian RVs, independent of each other and bio-data
sequences. From (2), Y and Z are Gaussian with zero mean
and unit variance, and the Markov chain Y − X − Z holds.
Then, the pdf corresponding to the tuple (Xn

i , Y
n
i , Z

n) is
given by

fXni Y ni Zn(xni , y
n
i , z

n) =
∏n
k=1

fXY Z(xik, yik, zk), (3)

where for x, y, z ∈ R,

fXY Z(x, y, z) = fX(x) · fY |X(y|x) · fZ|X(z|x), (4)

=
1√

(2π)3(1− ρ21)(1− ρ22)

· exp

(
−
(
x2

2
+

(y − ρ1x)2

2(1− ρ21)
+

(z − ρ2x)2

2(1− ρ22)

))
. (5)

In the generated-secret BIS model, upon observing Y ni , the
encoder e generates secret key S(i) ∈ S and helper data
J(i) ∈ J as (S(i), J(i)) = e(Y ni ). J(i) is stored at position
i in public database (helper DB) and S(i) is saved in key DB,
which is installed in a secure location. Seeing Zn, the decoder
d estimates (Ŵ , Ŝ(W )) from Zn and all helper data in DB
J ≡ {J(1), · · · , J(MI)}, i.e., (Ŵ , Ŝ(W )) = d(Zn,J). In
the chosen-secret BIS model, S(i) is chosen uniformly from
S and independent of other RVs. The encoder forms the helper
data by J(i) = e(Y ni , S(i)) for every individual. The decoder
d owns the same functionality as the generated-secret model.

Fig. 2. The original (top) and converted (bottom) systems

B. Converted System

The original system, having X as input source and Y,Z
as outputs, is in the top figure in Fig. 2. There are two main
obstacles toward characterizing the capacity regions directly
from this system. (I) In establishing the converse proof, an
upper bound regarding RV Y for a fixed condition of RV X
is needed, but it is laborious to pursue the desired bound since
applying EPI to the first relation in (2) only produces a lower
bound. (II) It seems difficult to prove the achievability part
based on generating auxiliary sequences from edge X , e.g.,
the rate settings. To overcome these bottlenecks, we introduce
an idea of converting the original system to a new one in
which the data flow of each user is one-way from Y to Z
without losing its general properties. The image of this idea is
shown in the bottom figure of Fig. 2, where Y becomes input
virtually. To achieve this objective, knowing the property of
the backward channel PX|Y , namely, how X correlates to the
virtual input Y , is crucial and we explore that in the rest of
this section.

Due to the Markov chian Y − X − Z, (4) can also be
expanded in the following form.

fXY Z(x, y, z) = fY (y) · fX|Y (x|y) · fZ|X(z|x). (6)

Observe that

x2

2
+

(y − ρ1x)2

2(1− ρ21)
=
x2

2
+

y2

2(1− ρ21)
− ρ1xy

1− ρ21
+

(ρ1x)2

2(1− ρ21)

=
y2

2
+

(x− ρ1y)2

2(1− ρ21)
. (7)

Without loss of generality, the exponential part in (5) can
be rearranged as

−
(
y2

2
+

(x− ρ1y)2

2(1− ρ21)
+

(z − ρ2x)2

2(1− ρ22)

)
. (8)

From (6) and (8), we may conclude that the following equa-
tions hold.

Xik = ρ1Yik +N ′1, (9)
Zk = ρ2Xik +N2 = ρ1ρ2Yik + ρ2N

′
1 +N2 (10)

with some RV N ′1 ∼ N (0, 1 − ρ21). Equation (9) describes
the output of the backward channel with having Y as input.
The above relations play key roles for solving the problem
of the RSM, and indeed we use them in many steps during
the analysis in this study. In [6] and [7], the concept of this



transformation is not seen because the enrollment channel does
not exist due to the assumption of VSM as mentioned before.

Remark 1. In case there is no operation of scaling, equations
(9) and (10) are settled as follows. Suppose that Xik ∼
N (0, σ2

x), Yik = Xik + D1, and Zk = Xik + D2, where
D1 ∼ N (0, σ2

1) and D2 ∼ N (0, σ2
2) are Gaussian RVs, and

independent of other RVs. By applying the arguments around
(6)–(8), we obtain that

Xik =
σ2
x

σ2
x + σ2

1

Yik +D′1 (11)

Zk = Xik +N ′2 =
σ2
x

σ2
x + σ2

1

Yik +D′1 +D2, (12)

where D′1 ∼ N (0,
σ2
xσ

2
1

σ2
x+σ

2
1
) is Gaussian and independent of

other RVs. The capacity regions of the models considered
in this study can also be characterized from (11) and (12).
However, equation developments need more space and it does
not look so neat. Herein, we pursue our results based on the
method that RVs X , Y , and Z are standardized.

Now from (9) and (10), it is not difficult to calculate that

I(X;Y ) =
1

2
log

(
1

1− ρ21

)
, (13)

I(Z;Y ) =
1

2
log

(
1

1− ρ21ρ22

)
, (14)

where (14) is attained because the variance of the noise term
ρ2N

′
1 +N2 in (10) is equal to 1− ρ21ρ22.

III. STATEMENT OF RESULTS

In this section, we provide the formal definitions of both the
generated- and chosen-secret BIS models, and state the main
results.

A. Problem Formulation and Main Results

The achievability definition for the generated-secret BIS
model is given below.

Definition 2. A tuple of identification, secrecy, storage, and
privacy-leakage rates (RI , RS , RJ , RL) is said to be achiev-
able for a Gaussian source if for any δ > 0 and large enough
n there exist pairs of encoders and decoders satisfying

maxi∈I Pr{(Ŵ , Ŝ(W )) 6= (W,S(W ))|W = i} ≤ δ, (15)
1
n logMI ≥ RI − δ, (16)

mini∈I
1
nH(S(i)) ≥ RS − δ, (17)
1
n logMJ ≤ RJ + δ, (18)

maxi∈I
1
nI(S(i); J(i)) ≤ δ. (19)

maxi∈I
1
nI(Xn

i ; J(i)) ≤ RL + δ. (20)

Moreover,RG is defined as the set of all achievable rate tuples
for the generated-secret BIS model, called the capacity region.

The achievability definition for the chosen-secret BIS model
is provided as follows:

Definition 3. A tuple (RI , RS , RJ , RL) is said to be achiev-
able for a Gaussian source if there exist pairs of encoders and
decoders that satisfy all the requirements in Definition 2 for
any δ > 0 and large enough n. In addition, RC is defined as
the capacity region of the chosen-secret BIS model.

Note that the left-hand side of (17) is expressed as 1
n logMS

because S(i) is chosen uniformly from S.

Remark 2. It is worthwhile to mention that it is not really
suitable to call the rate of helper data the storage rate. In
[5], it was called the template rate instead and the reason
behind the scene is that there exist two databases in the BIS,
namely, databases of secret keys and helper data or templates.
The storage space of the database for storing the templates
is minimized, while that for the secret keys is maximized.
Thus, only a part of the entire storage space of the BIS is
being minimized. In this paper, however, we also use this term
because it is widely used in many previous works, e.g., [3],
[4].

Now we are ready to present our main results.

Theorem 1. The capacity regions for the generated- and
chosen-secret BIS models are given by

RG = {(RI ,RS , RJ , RL) :

RI +RS ≤
1

2
log

(
1

αρ21ρ
2
2 + 1− ρ21ρ22

)
,

RJ ≥
1

2
log

(
αρ21ρ

2
2 + 1− ρ21ρ22
α

)
+RI ,

RL ≥
1

2
log

(
αρ21ρ

2
2 + 1− ρ21ρ22

αρ21 + 1− ρ21

)
+RI ,

RI ≥ 0, RS ≥ 0 for some 0 < α ≤ 1}, (21)
RC = {(RI ,RS , RJ , RL) :

RI +RS ≤
1

2
log

(
1

αρ21ρ
2
2 + 1− ρ21ρ22

)
,

RJ ≥
1

2
log

(
1

α

)
,

RL ≥
1

2
log

(
αρ21ρ

2
2 + 1− ρ21ρ22

αρ21 + 1− ρ21

)
+RI ,

RI ≥ 0, RS ≥ 0 for some 0 < α ≤ 1}. (22)

Similar to a conclusion in [5], the lower bound on RJ inRC
is greater than the one in RG. This means the chosen-secret
BIS model consumes more storage space. This is because the
information related to the secret key chosen at the encoder
must be saved together with the helper data in DB so as to
aid the estimation of the key at the decoder. Unlike RJ , the
bound on RL remains unchanged in both models, and it rises
in accordance with the increase of RI .

As a by-product of Theorem 1, the following remark is
obtained.

Remark 3. The capacity regions of the generated- and
chosen-secret BIS models with a single user (the models con-



sidered in [4]) for Gaussian sources are given by substituting
RI = 0 into RG and RC , respectively.

The proofs of Remark 3 can be done similarly to the
arguments in proving Theorem 1.

As special cases, when RS = 0, and RJ and RL are
large enough (RJ , RL → ∞), the maximum value of RI is
1
2 log( 1

1−ρ21ρ22
). This value is exactly the identification capacity

I(Y ;Z) (cf. (14)) derived in [1], and it is achieved when
α ↓ 0. Moreover, when RI = 0, RJ →∞, and the enrollment
channel is noiseless (ρ1 = 1), one can see that Theorem 1
naturally reduces to the characterizations of [6].

Remark 4. If there is no scaling as in (11) and (12) in Remark
1, the capacity regions of the generated- and chosen-secret
BIS models R′G and R′C , respectively, are characterized as
follows:

R′G = {(RI ,RS , RJ , RL) :

RI +RS ≤
1

2
log

(
(σ2
x + σ2

1)(σ2
x + σ2

2)

ασ4
x + σ2

xσ
2
1 + σ2

1σ
2
2 + σ2

2σ
2
x

)
,

RJ ≥
1

2
log

(
ασ4

x + σ2
xσ

2
1 + σ2

1σ
2
i + σ2

2σ
2
x

α(σ2
x + σ2

1)(σ2
x + σ2

2)

)
+RI ,

RL ≥
1

2
log

(
ασ4

x + σ2
xσ

2
1 + σ2

1σ
2
2 + σ2

2σ
2
x

(ασ2
x + σ2

1)(σ2
x + σ2

2)

)
+RI ,

RI ≥ 0, RS ≥ 0 for some 0 < α ≤ 1}, (23)
R′C = {(RI ,RS , RJ , RL) :

RI +RS ≤
1

2
log

(
(σ2
x + σ2

1)(σ2
x + σ2

2)

ασ4
x + σ2

xσ
2
1 + σ2

1σ
2
2 + σ2

2σ
2
x

)
,

RJ ≥
1

2
log

(
1

α

)
,

RL ≥
1

2
log

(
ασ4

x + σ2
xσ

2
1 + σ2

1σ
2
2 + σ2

2σ
2
x

(ασ2
x + σ2

1)(σ2
x + σ2

2)

)
+RI ,

RI ≥ 0, RS ≥ 0 for some 0 < α ≤ 1}. (24)

It can be verified that RG and RC are equivalent to R′G and
R′C , respectively, if we set ρ21 =

σ2
x

σ2
x+σ

2
1

and ρ22 =
σ2
x

σ2
x+σ

2
2

.

B. Examples

For the sake of succinct discussion, we only concentrate on
the generated-secret BIS model at which RI = 0. We first
look over some special points of secrecy and privacy-leakage
rates when storage rate becomes extremely low or large. We
first define two rate functions

R∗S(RJ) = max
(RS ,RJ ,RL)∈RG

RS , (25)

R∗L(RJ) = min
(RS ,RJ ,RL)∈RG

RL, (26)

where (25) and (26) are the maximum secrecy rate and
minimum privacy-leakage rate, respectively, for given RJ .
Moreover, we define RαJ = 1

2 log(
αρ21ρ

2
2+1−ρ21ρ

2
2

α ) so that we
can write

R∗S(RαJ ) =
1

2
log

(
1− ρ21ρ22/22(R

α
J )

1− ρ21ρ22

)
, (27)

R∗L(RαJ ) =
1

2
log

(
1− ρ21ρ22

1− ρ21 + ρ21(1− ρ22)/22(R
α
J )

)
. (28)

As RαJ → ∞ (α ↓ 0), the optimal asymptotic secrecy rate
and the quantity of privacy-leakage approach to

lim
RαJ→∞

R∗S(RαJ ) =
1

2
log

(
1

1− ρ21ρ22

)
= I(Y ;Z), (29)

lim
RαJ→∞

R∗L(RαJ ) =
1

2
log

(
1− ρ21ρ22
1− ρ21

)
=

1

2
log

(
1

1− ρ21

)
− 1

2
log

(
1

1− ρ21ρ22

)
= I(X;Y )− I(Z;Y ). (30)

The result (29) corresponds to the optimal asymptotic secrecy
rate [6, Sect. III-B] and in order to achieve this rate, it is
required to take the storage rate to infinity and leak the user’s
privacy up to rate I(X;Y )− I(Z;Y ).

In contrast, when RJ ↓ 0, it is evident that RS and RL
become zero as well, which does not carry much information.
However, to investigate the BIS that achieves high secrecy and
small privacy-leakage rates in the low storage rate regime, the
zero-rate slopes of secrecy and privacy-leakage rates, namely,
how fast they converge to zero, are important indicators. In
views of (27) and (28), by a few steps of calculations, the
slopes of secrecy and privacy-leakage rates at RJ ↓ 0 can be
determined as follows:

dR∗S(RαJ )

dRαJ

∣∣∣∣
RαJ=0

=
ρ21ρ

2
2

1− ρ21ρ22
, (31)

dR∗L(RαJ )

dRαJ

∣∣∣∣
RαJ=0

=
ρ21(1− ρ22)

1− ρ21ρ22
=

ρ21ρ
2
2

1− ρ21ρ22
· 1− ρ22

ρ22
, (32)

where (31) is equal to the signal-to-noise ratio of the com-
pound channel from Y to Z. This value multiplied by the
reverse of the signal-to-noise ratio of the channel PZ|X
appears in the slope of privacy-leakage rate in (32).

Next, we give numerical computations of three different
examples and take a look into behaviors of the special points.
Ex. 1: a) ρ21 = 3/4, ρ22 = 2/3, b) ρ21 = 7/8, ρ22 = 2/3,

c) ρ21 = 15/16, ρ22 = 2/3,
Ex. 2: a) ρ21 = 3/4, ρ22 = 2/3, b) ρ21 = 9/10, ρ22 = 7/8,

c) ρ21 = 15/16, ρ22 = 11/12,
Ex. 3: a) ρ21 = 3/4, ρ22 = 2/3, b) ρ21 = 3/4, ρ22 = 8/9,

c) ρ21 = 3/4, ρ22 = 14/15.
Note that as ρ21, ρ

2
2 are large, the noises added to the bio-data

sequences at encoder and decoder become small. Example 1 is
the case where the noise at encoder is gradually small from a)
to c), but the noise at the decoder stays constant for each round.
Example 2 is the case in which the noises at both encoder and
decoder are improved gradually from a) to c). Example 3 is
opposite to Example 1. The calculated results of the secrecy
and privacy-leakage rates for these cases are summarized in
Table I and II, and Fig. 3–6.

It is ideal to keep the privacy-leakage rate small, while
produce high secrecy rate, but Example 1 works out in the
opposite way (cf. the rows of Ex. 1 in Table I and II), so this



TABLE I
THE SECRECY AND PRIVACY-LEAKAGE RATES WHEN RJ →∞.

Cases
Secrecy rate Privacy-Leakage rate

a) b) c) a) b) c)
Ex. 1 0.5 0.63 0.70 0.5 0.87 1.29

Ex. 2 0.5 1.12 1.41 0.5 0.54 0.59

Ex. 3 0.5 0.79 0.87 0.5 0.20 0.13

TABLE II
THE SLOPES OF SECRECY AND PRIVACY-LEAKAGE RATES AT RJ ↓ 0.

Cases
Secrecy rate Privacy-Leakage rate

a) b) c) a) b) c)
Ex. 1 1.0 1.40 1.67 0.5 0.7 0.83

Ex. 2 1.0 3.71 6.11 0.5 0.53 0.56

Ex. 3 1.0 2.0 2.33 0.5 0.25 0.17

is not a preferable choice. Example 2 realizes a high secrecy
rate, but the amount of privacy-leakage remains high at some
level, too (cf. the rows of Ex. 2 in Table I and II, and Fig. 3
and 4). On the other hand, in Example 3, the privacy-leakage
rate declines, but the secrecy rate becomes small compared
to Example 3 (cf. the rows of Ex. 3 in Table I and II, and
Fig. 5 and 6). From these behaviors, we may conclude that
it is unmanageable to achieve both a high secrecy rate and
small privacy-leakage at the same time. If one aims to achieve
a high secrecy rate, it is important to diminish the noises at
both encoder and decoder, e.g., deploying quantizers with high
quality, but this could result in leaking more user’s privacy.
In different circumstances, to achieve a small privacy-leakage
rate, it is preferable to maintain a certain level of noise at
encoder and pay sufficient attention for processing the noise
at decoder. In this way, however, the gain of the secrecy rate
may be dropped.

Fig. 3. The projection of the rate region onto RJRS -plane for Ex. 2. Fig. 4. The projection of the rate region onto RJRL-plane for Ex. 2.

Fig. 5. The projection of the rate region onto RJRS -plane for Ex. 3. Fig. 6. The projection of the rate region into RJRL-plane for Ex. 3.



IV. PROOF OF THE REGION RG

In this section, we give the proof of the capacity region of
the generated-secret BIS model.

A. Converse Part

We consider a more relaxed case where W is uniformly
distributed on I, and (15) is replaced with the average error
criterion Pr{(Ŵ , Ŝ(W )) 6= (W,S(W ))} ≤ δ. We shall
show that the capacity region for this case, which contains
RG, is contained in (21). We assume that a rate tuple
(RI , RS , RJ , RL) is achievable.

Analysis of Secrecy Rate: We begin with considering the joint
entropy of W and S(W ) as

H(W,S(W ))

= H(W,S(W )|Zn,J) + I(W,S(W );Zn,J)

(a)
= H(W,S(W )|Ŵ , Ŝ(W ), Zn,J) + I(W,S(W );J)

+ I(W,S(W );Zn|J)

(b)

≤ H(W,S(W )|Ŵ , Ŝ(W )) + I(W,S(W ); J(W ))

+ I(W,S(W );Zn|J(W ))

(c)

≤ nδn + I(W ; J(W )) + I(S(W ); J(W )|W )

+ I(W,S(W );Zn|J(W ))

(d)

≤ n(δn + δ) + h(Zn|J(W ))− h(Zn|J(W ), S(W ))

(e)

≤ n(δn + δ) + h(Zn)− h(Zn|J(W ), S(W )), (33)

where

(a) holds since (Ŵ , Ŝ(W )) is a function of (Zn,J),
(b) follows because conditioning reduces entropy, and only

J(W ) is possibly dependent on Zn and S(W ),
(c) is due to Fano’s inequality with δn = 1

n (1+δ logMIMS),
(d) follows since W is independent of other RVs and (19) is

applied,
(e) follows because conditioning reduces entropy.

Also, since W is uniformly distributed on I, we have that

H(W,S(W )) = H(W ) +H(S(W )|W )

≥ logMI + min
w∈I

H(S(w)). (34)

From (16), (17), (33), and (34), it yields that

RI +RS ≤ h(Z)− 1

n
h(Zn|J(W ), S(W )) + 3δ + δn. (35)

Analysis of Storage Rate:

n(RJ + δ) ≥ logMJ ≥ max
w∈I

H(J(w)) ≥ H(J(W )|W )

= I(Y nW ; J(W )|W ) = I(Y nW ,W ; J(W ))

= I(Y nW ,W, S(W ); J(W ))

− I(S(W ); J(W )|Y nW ,W )

(f)
= h(Y nW ,W, S(W ))− h(Y nW ,W, S(W )|J(W ))

(g)
= h(Y nW ) +H(W )−H(W,S(W )|J(W ))

− h(Y nW |J(W ), S(W ))

(h)

≥ h(Y nW ) + logMI −H(W,S(W ))

− h(Y nW |J(W ), S(W ))

(i)

≥ h(Zn|J(W ), S(W ))− h(Y nW |J(W ), S(W ))

+ nRI − n(δn + 2δ), (36)

where
(f) hold as (S(W ), J(W )) is a function of Y nW ,
(g) follows since and W is independent of other RVs, and

S(W ) is a function of Y nW ,
(h) follows because conditioning reduces entropy and W is

uniformly distributed on I,
(i) follows because h(Y nW ) = h(Zn) = n

2 log(2πe), and (16)
and (33) are applied.

Analysis of Privacy-Leakage Rate:

n(RL + δ)

≥ max
w∈I

I(Xn
w; J(w)) ≥ I(Xn

W ; J(W )|W )

= I(Xn
W ,W ; J(W ))

= I(Xn
W ,W, S(W ); J(W ))− I(S(W ); J(W )|Xn

W ,W )

≥ h(Xn
W ,W, S(W ))− h(Xn

W ,W, S(W )|J(W ))

−H(S(W )|Xn
W )

≥ h(Xn
W ) +H(W ) +H(S(W )|Xn

W )

−H(W,S(W )|J(W ))− h(Xn
W , |J(W ), S(W ))

−H(S(W )|Xn
W )

(j)

≥ h(Xn
W ) + logMI −H(W,S(W ))

− h(Xn
W , |J(W ), S(W ))

(k)

≥ h(Zn|J(W ), S(W ))− h(Xn
W |J(W ), S(W ))

+ nRI − n(δn + 2δ), (37)

where
(j) follows as conditioning reduces entropy and W is uni-

formly distributed on I,
(k) follows because h(Xn

W ) = h(Zn), and (16) and (33) are
applied.

For further evaluations of (35)–(37), we scrutinize a lower
bound on h(Zn|J(W ), S(W )) and an upper bound on
h(Y nW |J(W ), S(W )) with fixed h(Xn

W |J(W ), S(W )) by ap-
plying the conditional EPI [10, Lemma II]. It is a key to set
1

n
h(Xn

W |J(W ), S(W )) =
1

2
log
(
2πe(αρ21 + 1− ρ21)

)
(38)



with some 0 < α ≤ 1. Indeed, this is reasonable
setting because 1

2 log(2πe) ≥ 1
nh(Xn

W |J(W ), S(W )) ≥
1
2 log(2πe(1 − ρ21)). The lower bound is obtained from
1
nh(Xn

W |J(W ), S(W )) ≥ 1
nh(Xn

W |Y nW , J(W ), S(W )) =
1
nh(Xn

W |Y nW ) due to the fact that (J(W ), S(W )) is a function
of Y nW .

In the direction from X to Z, by applying the conditional
EPI [10, Lemma II] to the first equality in (10), it follows that

e
2
nh(Z

n|J(W ),S(W ))

≥ e 2
nh(ρ2X

n|J(W ),S(W )) + e
2
nh(N

n
2 |J(W ),S(W )),

(l)
= ρ22e

2
nh(X

n|J(W ),S(W )) + e
2
nh(N

n
2 ),

= ρ22
(
2πe(αρ21 + 1− ρ21)

)
+ 2πe(1− ρ22),

= 2πe(αρ21ρ
2
2 + 1− ρ21ρ22), (39)

where (l) holds as Nn
2 is independent of (J(W ), S(W )), and

as a deduction,

1

n
h(Zn|J(W ), S(W )) ≥ 1

2
log(2πe(αρ21ρ

2
2 + 1− ρ21ρ22)). (40)

In the opposite direction (from X to Y ), by again applying
the conditional EPI [10, Lemma II] to (9), we have that

e
2
nh(X

n|J(W ),S(W )) ≥ e 2
nh(ρ1Y

n|J(W ),S(W )) + e
2
nh(N

′n
1 ),

(41)

meaning that

2πe(αρ21 + 1− ρ21) ≥ ρ21e
2
nh(Y

n|J(W ),S(W )) + 2πe(1− ρ21)
(42)

and thus

e
2
nh(Y

n|J(W ),S(W )) ≤ 2πeα. (43)

Hence, it follows that

1

n
h(Y n|J(W ), S(W )) ≤ 1

2
log(2πeα), (44)

which is not derivable from the first equation in (2) of the
original system. Now plugging (38), (40), and (44) into (35)–
(37), we obtain that

RI +RS ≤
1

2
log

(
1

αρ21ρ
2
2 + 1− ρ21ρ22

)
+ 3δ + δn, (45)

RJ ≥
1

2
log

(
αρ21ρ

2
2 + 1− ρ21ρ22
α

)
+RI − (3δ + δn), (46)

RL ≥
1

2
log

(
αρ21ρ

2
2 + 1− ρ21ρ22

αρ21 + 1− ρ21

)
+RI − (3δ + δn). (47)

Eventually, by letting n→∞ and δ ↓ 0, from (45)–(47), we
can see that the capacity region is contained in the right-hand
side of (21).

B. Achievability Part

Overviews:
The modified typical set (cf. Definition 1), giving the so-

called Markov lemma for weak typicality, and Gaussian typi-
cality [9, Section 8.2] help us show that the error probability of
the BIS vanishes for large enough n. Though a more general
version of the Markov lemma for Gaussian sources, including
lossy reconstruction, is shown in [11], we found out that the
two properties of the modified typical set are handy tools for
checking all conditions in Definition 2, and thus we provide
our proof of the achievability based on this set. For evaluating
the uniformity of secret keys (17), secrecy-leakage (19), and
privacy-leakage (20), we extend [12, Lemma 4] to include
continuous RVs so that the extended one can be used to
derive the upper bounds on conditional differential entropies
of jointly typical sequences, appearing in these evaluations.

Let 0 < α ≤ 1 and fix δ > 0 (small enough positive), the
block length n, and the joint pdf of (U, Y,X,Z) such that
the Markov chain U − Y −X − Z holds, where we let U be
Gaussian with mean zero and variance 1 − α. Now consider
that

Y = U + Φ, (48)

where Φ, independent of U , is Gaussian with mean zero and
variance α. From (9) and (10) of the converted system, it yields
that

X = ρ1U + ρ1Φ +N ′1, (49)
Z = ρ1ρ2U + ρ1ρ2Φ + ρ2N

′
1 +N2. (50)

Hence, we readily see that

I(Y ;U) =
1

2
log

1

α
, I(X;U) =

1

2
log

(
1

αρ21 + 1− ρ21

)
,

I(Z;U) =
1

2
log

(
1

αρ21ρ
2
2 + 1− ρ21ρ22

)
. (51)

Now set 0 < RI < I(Z;U), and

RS = I(Z;U)−RI − 2δ, (52)
RJ = I(Y ;U)− I(Z;U) +RI + 6δ, (53)
RL = I(X;U)− I(Z;U) +RI + 6δ, (54)

MI = 2nRI , MS = 2nRS , MJ = 2nRJ , (55)

where the values of I(Y ;U), I(X;U), and I(Z;U) are spec-
ified in (51). Also, remind that I = [1 : MI ],S = [1 :
MS ], J = [1 : MJ ].

Next we generate 2n(I(Y ;U)+δ) sequences of un(s, j), where
each symbol of these sequences is i.i.d. Gaussian with mean
zero and variance 1− α, and s ∈ S and j ∈ J .

Seeing yni (i ∈ I), the encoder finds un(s, j) such that
(yni , u

n(s, j)) ∈ B(n)δ (Y U). If there are multiple pairs of such
(s, j), the encoder picks one at random. Otherwise, it declares
error. We denote the chosen pair as (s(i), j(i)), where they are
function of the index i. Template j(i) is stored in the public
DB and secret key s(i) is saved in the key DB.



Observing zn, the noisy sequence of the identified user xnw,
the decoder looks for un(s, j(i)) such that (zn, un(s, j(i))) ∈
A(n)
δ (ZU) for some i ∈ I and s ∈ S. If a unique pair (i, s) is

found, it outputs (ŵ, ŝ(w)) = (i, s), or else it declares error.
Finally, it compares ŝ(w) with s(ŵ) in the key DB, and the
authentication is successful if they match.

Let (J(i), S(i)) denote the index pair chosen at the encoder
based on Y ni , i.e., (Y ni , U

n(S(i), J(i))) ∈ B(n)δ (Y U). Further-
more, we denote Un(S(i), J(i)) as Uni for simplicity. Next,
we check all conditions in Definition 2 hold for a random
codebook Cn = {Un(s, j), s ∈ S and j ∈ J }.

Analysis of Error Probability: For W = i, an error event
possibly happens at the encoder is:

E1 :{(Y ni , Un(s, j)) /∈ B(n)δ (Y U) for all s ∈ S and j ∈ J },
and those at the decoder are:

E2 : {(Zn, Un(J(i), S(i))) /∈ A(n)
δ (ZU)},

E3 : {(Zn, Un(J(i), s′)) ∈ A(n)
δ (ZU) for some ∃s′ 6=

S(i) (s′ ∈ S)}.
E4 : {(Zn, Un(J(i′), s′)) ∈ A(n)

δ (ZU) for some ∃i′ 6=
i (i′ ∈ I) and s′ ∈ S}.

Note that the authentication process is guaranteed to be
successful if the genuine index and secret key of the identified
user are correctly estimated at the decoder, indicating that it is
sufficient to focus on assessing the probability of incorrect es-
timation for the pair at the decoder. Then, the error probability
can be further evaluated as

Pr{(Ŵ , Ŝ(W )) 6= (W,S(W ))|W = i}
= Pr{E1 ∪ E2 ∪ E3 ∪ E4}
≤ Pr {E1}+ Pr {E2|Ec1}+ Pr {E3 ∪ E4}. (56)

By applying the similar arguments of [2, Appendix A-B],
it can be shown that the entire error probability vanishes.
Nonetheless, we provide the details for completeness of the
proof.

The first term Pr {E1} can be evaluated as

Pr {E1}

= Pr

 ⋂
s∈S,j∈J

(Y ni , U
n(s, j)) /∈ B(n)δ (Y U)


=

|S|∏
s=1

|J |∏
j=1

Pr{(Y ni , Un(s, j)) /∈ B(n)δ (Y U)}

(a)
=

∫
fY ni (yn)

|S|∏
s=1

|J |∏
j=1

Pr{Un(s, j) /∈ B(n)δ (U |yn)}dyn

=

∫
fY ni (yn)

{∫
B(n)
δ (U |yn)c

fUn(un)dun

}|S×J |
dyn

=

∫
fY ni (yn)

(
1−

∫
B(n)
δ (U |yn)

fUn(un)dun

)|S×J |
dyn

(b)

≤
∫
fY ni (yn)

(
1− 2−n(I(U ;Y )+3δ)

·
∫
B(n)
δ (U |yn)

fUn|Y ni (un|yn)dun

)|S×J |
dyn

(c)

≤
∫
fY ni (yn)

(
1−

∫
B(n)
δ (U |yn)

fUn|Y ni (un|yn)dun

+ 2−|S×J |·2
−n(I(U;Y )+3δ)

)
dyn

(d)
=

∫∫
B(n)
δ (U |yn)c

fUnY ni (un, yn)dundyn

+ 2−2
nδ

∫
fY ni (yn)dyn

(e)

≤ 2δ (57)

for large enough n, where

(a) is due to the fact that Y ni and Un(s, j) are mutually
independent,

(b) is obtained by applying Property 1 of the modified δ-
typical set [2], suggesting that if (yn, un) ∈ B(n)ε (Y U),
(yn, un) is also a member of A(n)

ε (Y U), and thus

fUn(un) = fUn|Y ni (un|yn)
fUn(un) · fY ni (yn)

fUnY ni (un, yn)

≥ fUn|Y ni (un|yn)
2−n(h(U)+δ) · 2−n(h(Y )+δ)

2−n(h(Y,U)+δ)

= fUn|Y ni (un|yn)2−n(I(Y ;U)+3δ), (58)

(c) follows because (1−αβ)m ≤ 1−α+2−mβ [9] is applied,
(d) holds since 1

2 log |S|+ 1
2 log |J | = I(Y ;U) + 4δ.

(e) follows by applying Property 2 of the modified ε-typical
set [2].

For the second term, it follows that

Pr {E2|Ec1}
= Pr{(Zn, Uni ) /∈ A(n)

δ (ZU)|(Y ni , Uni ) ∈ B(n)δ (Y U)}
≤ Pr{(Zn, Y ni , Uni ) /∈ A(n)

δ (ZY U)|(Y ni , Uni ) ∈ B(n)δ (Y U)}

=

∫∫
B(n)
δ (Y U)

fY ni Uni (yn, un)

· Pr{Zn /∈ A(n)
δ (Z|yn, un)|(Y ni , Uni ) = (yn, un)}d(yn, un)

(f)

≤ δ

∫∫
B(n)
δ (Y U)

fY ni Uni (yn, un)d(yn, un)

≤ δ, (59)

where (f) follows from the definition of the modified δ-typical
set due to the Markov chain Z − Y − U .



Finally, the last term Pr {E3 ∪ E4} can be bounded as

Pr {E3 ∪ E4}

= Pr

 ⋃
i′∈I,s′∈S

(Zn, Un(s′, J(i′))) ∈ A(n)
δ (ZU)


≤
|I|∑
i′=1

|S|∑
s′=1

Pr
{

(Zn, Un(s′, J(i′))) ∈ A(n)
δ (ZU)

}

≤
|I|∑
i′=1

|S|∑
s′=1

2−n(I(Z;U)−δ)

= |I × S| · 2−n(I(Z;U)−δ)

(g)
= 2−nδ, (60)

where (g) follows as 1
n logMI + 1

n logMS = I(Z;U)− 2δ.

Consequently,

Pr{(Ŵ , Ŝ(W )) 6= (W,S(W ))|W = i} ≤ 4δ (61)

for large enough n.

Before proceeding further, we introduce a lemma that is
often used in the sequel. Again recall that the index pair
(J(i), S(i)) determines the chosen sequence Uni directly and
thus the following lemma can be thought of an extended
version of [12, Lemma 4], incorporating continuous RVs.

Lemma 1. It holds that

1

n
h(Y ni |S(i), J(i), Cn) ≤ h(Y |U) + δn, (62)

1

n
h(Y ni |Xn

i , J(i), S(i), Cn) ≤ h(Y |X,U) + δn, (63)

where δn ↓ 0 as δ ↓ 0 and n→∞.

Proof: The tie between the modified δ-typical set B(n)δ (·)
and the weakly δ-typical set A(n)

δ (·) is helpful for proving the
above lemma. We first prove (62).

Define an RV T as follows:

T =

{
1 if (Y ni , U

n
i ) ∈ B(n)δ (Y U),

0 otherwise.
(64)

In the analysis of the error probability, we have already
demonstrated that PT (0) ≤ 2δ, or (Y ni , U

n
i ) ∈ B(n)δ (Y U)

with high probability. From the left-hand side of (62),

h(Y ni |J(i),S(i), Cn)

(h)
=h(Y ni |Uni , J(i), S(i), Cn)

(i)

≤ h(Y ni |Uni ) ≤ h(Y ni , T |Uni )

≤ H(T ) + h(Y ni |Uni , T )

= 1 + PT (0)h(Y ni |Uni , T = 0)

+ PT (1)h(Y ni |Uni , T = 1)

(j)

≤ nεn + h(Y ni |Uni , T = 1)

= nεn +

∫∫
B(n)
δ (Y U)

fY ni Uni (yn, un)

· log
Pr{(Y ni , Uni ) ∈ B(n)δ (Y U)}

fY ni |Uni (yn|un)
d(yn, un)

(k)

≤ nεn + n(h(Y |U) + 2δ))

·
∫∫
B(n)
δ (Y U)

fY ni Uni (yn, un)d(yn, un)

≤ n(h(Y |U) + 2δ + εn), (65)

where
(h) follows as (J(i), S(i)) determines Uni ,
(i) follows because conditioning reduces entropy,
(j) follows as h(Y ni |Uni , T = 0) ≤ h(Y ni ) = n

2 log(2πe),
and we define εn = 1

n + δ log(2πe),
(k) follows since Pr{(Y ni , Uni ) ∈ B(n)δ (Y U)} ≤ 1, and from

Property 1 of the modified δ-typical set [2], we have
that fY ni |Uni (yn|un) =

fY n
i
Un
i
(yn,un)

fUn
i
(un) ≥ 2−n(h(Y,U)+δ)

2−n(h(U)−δ) =

2−n(h(Y |U)+2δ).

Therefore, from (65), we obtain that

1

n
h(Y ni |J(i), S(i), Cn) ≤ h(Y |U) + δn, (66)

where δn = 2δ + εn and δn ↓ 0 as n→∞ and δ ↓ 0.
Next, we briefly summarize how to show (63). The left-hand

side of (63) can be developed as h(Y ni |Xn
i , J(i), S(i), Cn) =

h(Y ni |Xn
i , U

n
i , J(i), S(i), Cn) ≤ h(Y ni |Xn

i , U
n
i , Cn), where

the first equality and second inequality follow due to the same
reasons of (h) and (i) in (65), respectively. By the definition
of the modified δ-typical set [2], it can be concluded that
Pr{(Xn

i , Y
n
i , U

n
i ) ∈ A(n)

δ (XY U)} → 1 as n → ∞ (cf.
(59)) due to the Markov chain X − Y − U and (Y ni , U

n
i ) ∈

B(n)δ (Y U) with high probability. This implies Pr{(Xn
i , U

n
i ) ∈

A(n)
δ (XU)} → 1 and Pr{Y ni ∈ A

(n)
δ (Y |xn, un)|(Xn

i , U
n
i ) =

(xn, un)} → 1 as n→∞ as well. Based on this observation,
the rest of proof for (63) can be done similarly by the
arguments seen in [12, Appendix C], and therefore the details
are omitted.

Analysis of Identification and Storage Rates:
Equations (16) and (18) obviously hold from the parameter

settings.



Analysis of Secrecy Rate:

H(S(i)|Cn) = h(Y ni , J(i), S(i)|Cn)−H(J(i)|S(i), Cn)

− h(Y ni |J(i), S(i), Cn)

(l)

≥ h(Y ni )−H(J(i)|Cn)

− h(Y ni |J(i), S(i), Cn)

(m)

≥ nh(Y )− n(I(Y ;U)− I(Z;U) +RI + 6δ)

− n(h(Y |U) + δn)

= n(I(Z;U)−RI − 6δ − δn)

= n(RS − 4δ − δn). (67)

where

(l) follows because (J(i), S(i)) is a function of Y ni ,
(m) follows as 1

nH(J(i)|Cn) ≤ I(Y ;U)−I(Z;U)+RI +6δ
and (63) is applied.

Thus,

1

n
H(S(i)|Cn) ≥ RS − 5δ =

1

n
logMS − 5δ (68)

for large enough n.

Analysis of Secrecy-Leakage:

I(S(i); J(i)|Cn)

= H(S(i)|Cn) +H(J(i)|Cn)− h(Y ni , S(i), J(i)|Cn)

+ h(Y ni |S(i), J(i), Cn)

(n)

≤ n(I(Z;U)−RI − 2δ + I(Y ;U)− I(Z;U) +RI + 6δ)

− nh(Y ) + n(h(Y |U) + δn)

= n(4δ + δn), (69)

where (n) follows because 1
nH(S(i)|Cn) ≤ I(Z;U)−RI−2δ,

1
nH(J(i)|Cn) ≤ I(Y ;U) − I(Z;U) + RI + 6δ, and (63) is
applied. Hence,

1

n
I(S(i); J(i)|Cn) ≤ 5δ (70)

for sufficiently large n.

Analysis of Privacy-Leakage Rate: From the left-hand side of
(20), we have that

I(Xn
i ; J(i)|Cn)

= H(J(i)|Cn)−H(J(i)|Xn
i , Cn)

≤ n(I(Y ;U)− I(Z;U) +RI + 6δ)−H(J(i)|Xn
i , Cn)

= n(h(U |Z)− h(U |Y ) +RI + 6δ)−H(J(i)|Xn
i , Cn).

(71)

The last term in (71) can be further evaluated as

H(J(i)|Xn
i , Cn)

= h(Y ni , J(i)|Xn
i , Cn)− h(Y ni |Xn

i , J(i), Cn)

= h(Y ni |Xn
i , Cn)− h(Y ni |Xn

i , J(i), S(i), Cn)

−H(S(i)|J(i), Xn
i , Cn)

(o)
= nh(Y |X)− h(Y ni |Xn

i , J(i), S(i), Cn)

−H(S(i)|J(i), Xn
i , Z

n, Cn)

(p)

≥ nh(Y |X)− h(Y ni |Xn
i , J(i), S(i), Cn)

−H(S(i)|J , Zn, Cn)

(q)

≥ nh(Y |X)− h(Y ni |Xn
i , J(i), S(i), Cn)− nδ′′n

(r)

≥ nh(Y |X)− n(h(Y |X,U) + δn)− nδ′′n
= n(I(Y ;U |X)− δn − δ′′n)

= n(h(U |X)− h(U |Y )− δn − δ′′n) (72)

where

(o) follows since Y ni and Xn
i are independent of Cn and the

Markov chain S(i)− (J(i), Xn
i )− Zn holds,

(p) follows because conditioning reduces entropy and S(i)−
(J(i), Zn)− J\J(i) is applied,

(q) follows by applying Fano’s inequality, and δ′′n ↓ 0 as δ ↓ 0
and n→∞,

(r) is due to (63).

From (71) and (72), we have that

1

n
I(Xn

i ; J(i)|Cn) ≤ h(U |Z)− h(U |X) +RI + 6δ + δn + δ′′n

= I(X;U)− I(Z;U) +RI + 6δ + δn + δ′′n

≤ RL + δ (73)

for sufficiently large n.
Finally, by using the selection lemma [13, Lemma 2.2],

there exists at least a good codebook satisfying all the condi-
tions in Definition 2 for large enough n.

V. PROOF SKETCH OF THE REGION RC

In this section, we highlight the proof of the chosen-secret
BIS model. Some parts follow from the arguments in Section
IV, so we omit the similarities.

A. Converse Part

As seen in the converse proof of the generated-secret BIS
model, we also consider the case in which W is uniformly
distributed on I. Suppose that a pair (RI , RS , RJ , RL) is
achievable.

For the analyses of identification, secrecy, and privacy-
leakage rates, the reader should refer to the discussions around
(35) and (37). We argue only the bound of RJ , which is
different from the one seen in the generated-secret BIS model.



Fig. 7. Encoder and decoder of the chosen-secret BIS model

Analysis of Storage Rate:

n(RJ + δ) ≥ logMJ ≥ max
w∈I

H(w) ≥ H(J(W )|W )

(a)
= I(Y nW , S(W ); J(W )|W )

= h(Y nW , S(W ))− h(Y nW , S(W )|J(W ))

(b)
= h(Y nW ) +H(S(W ))−H(S(W )|J(W ))

− h(Y nW |J(W ), S(W ))

(c)

≥ n

2
log(2πe)− n

2
log(2πeα)

≥ n

2
log

(
1

α

)
, (74)

where
(a) follows since J(W ) is a function of (Y nW , S(W )),
(b) follows as S(W ) is chosen independently of Y nW ,
(c) follows because conditioning reduces entropy and (44) is

applied.
Then, we have that

RJ ≥
1

2
log

(
1

α

)
− δ. (75)

By letting n → ∞ and δ ↓ 0, the capacity region of the
chosen-secret BIS model is contained in the right-hand side
of (22).

B. Achievability Part
In order to avoid confusion in the subsequent arguments,

we define some new notations used only in this part. The
pairs (JC(i), SC(i)) and (JG(i), SG(i)) denote the helper data
and secret key of individual i for chosen- and generated-
secret BIS models, respectively. Moreover, MJC and MJG

denote the number of templates1, and RJG and RJC denote the
storage rates in the generated- and chosen-secret BIS models,
respectively.

1Normally, JC(i), SC(i), and MJC are denoted by J(i), S(i), and MJ

in other sections of this paper.

Overviews:
The proof is an adapted version of the achievability proof

of Section IV. The difference is that the encoder and decoder
of the generated-secret BIS model are used as components
inside the encoder and decoder of the chosen-secret BIS model
as shown in Fig. 7. For encoding Y ni for each user i ∈ I,
the component encoder uses a masking layer (one-time pad
operation) to mask sC(i) by using sG(i) ∈ S as sC(i)⊕sG(i),
where ⊕ denotes the addition modulo MS . The helper data
jC(i) is the combined information of jG(i) and the masked
data sC(i)⊕ sG(i), i.e.,

jC(i) = (jG(i), sC(i)⊕ sG(i)). (76)

For decoding the identified user w, it first uses the component
decoder to estimate (ŵ, ŝG(w)) and then the secret key is
retrieved by

ŝC(w) = sC(ŵ)⊕ sG(ŵ)	 ŝG(w), (77)

where 	 denotes the subtraction modulo MS . This technique
is also used in [2], [4], and [5].

Let 0 < α ≤ 1. Fix a block length n and the joint pdf of
(U, Y,X,Z) such that the Markov chain U−Y −X−Z holds,
where U is Gaussian with mean zero and variance 1−α. The
connection among the auxiliary RV U and (Y,X,Z) is exactly
the same as the arguments around (48)–(51).

Now we fix 0 < RI < I(Z;U), and

RS = I(Z;U)−RI − 2δ,

RJG = I(Y ;U)− I(Z;U) +RI + 6δ,

RJC = I(Y ;U) + 3δ,

RL = I(X;U)− I(Z;U) +RI + 6δ,

MI = 2nRI , MS = 2nRS , MJG = 2nRJG , (78)

where I(Y ;U), I(X;U), and I(Z;U) are specified in (51).
Next we generate 2n(I(Y ;U)+δ) sequences of un(s, j), where

each symbol of these sequences is i.i.d. Gaussian with mean
zero and variance 1− α, and s ∈ S and j ∈ [1 : MJG ].



Seeing yni (i ∈ I), the component encoder looks for
un(s, j) such that (yni , u

n(s, j)) ∈ B(n)δ (Y U). If there are
multiple pairs of such (s, j), the encoder picks one at random.
We denote the pair chosen by the component as (sG(i), jG(i))
and it is shared with the encoder. The encoder uses sG(i) to
conceal the chosen secret key sC(i) by sC(i) ⊕ sG(i). This
masked information is combined with jG(i) to form the helper
data jC(i) as jC(i) = (jG(i), sC(i)⊕ sG(i)). If there does not
exist such a pair, the component shares (1, 1) with the encoder.
In this case, the encoder declares error.

Observing zn, the noisy version of xnw, the component
decoder looks for un(s, j(i)) such that (zn, un(s, j(i))) ∈
A(n)
δ (ZU) for all i ∈ I and some s ∈ S. If a unique pair (i, s)

is found, the component sets (ŵ, ŝG(w)) = (i, s) and forwards
this result to the decoder of the chosen-secret BIS model. The
decoder detects sC(ŵ)⊕ sG(ŵ) from the public DB based on
ŵ, and outputs ŵ = i and ŝC(w) = sC(ŵ)⊕ sG(ŵ)	 ŝG(w).
In the final step, the estimated key ŝC(w) and sC(ŵ) in the
key DB are compared, and if they are equal, the authentication
is successful. If there is no such unique pair, the component
shares (1, 1) with the decoder and upon receiving these
information, error is declared.

Analysis of Error Probability:

For individual W = i, the operation at the decoder
(77) means that ŜC(i) = SC(i) if and only if ŜG(i) =

SG(i). In (61), it was revealed that Pr{(Ŵ , ŜG(W )) 6=
(W,SG(W ))|W = i} ≤ 4δ. Therefore, the error probability
of the chosen-secret BIS model can also be bounded by

Pr{(Ŵ , ŜC(W )) 6= (W,SC(W ))|W = i} ≤ 4δ (79)

for large enough n.

Analyses of Identification and Secrecy Rates:

Equations (16) and (17) are straightforward from the pa-
rameter settings.

Analysis of Storage Rate:

1

n
logMJC

≤ 1

n
logMJG +

1

n
logMS

= I(Y ;U)− I(Z;U) +RI + 6δ + I(Z;U)−RI − 2δ

= I(Y ;U) + 4δ =
1

2
log

(
1

α

)
+ 4δ

= RJC + δ. (80)

Analysis of Secrecy-Leakage: It holds that

I(JC(i);SC(i)|Cn)

= I(JG(i), SC(i)⊕ SG(i);SC(i)|Cn)

= I(JG(i);SC(i)|Cn)

+ I(SC(i)⊕ SG(i);SC(i)|JG(i), Cn)

= I(JG(i);SC(i)|Cn) +H(SC(i)⊕ SG(i)|JG(i),Cn)

−H(SC(i)⊕ SG(i)|JG(i), SC(i), Cn)

≤ I(JG(i);SC(i)|Cn) + logMS

−H(SG(i)|JG(i), SC(i), Cn)

(a)
= logMS −H(SG(i)|JG(i), Cn)

= I(JG(i);SG(i)|Cn) + logMS −H(SG(i)|Cn), (81)

where (a) holds because SC(i) is chosen independently of
(SG(i), JG(i)) for given Cn. In (68) and (70) of Section IV,
it was clarified that

H(SG(i)|Cn) ≥ logMS − 5nδ, (82)
I(JG(i);SG(i)|Cn) ≤ 5nδ (83)

for large enough n. Substituting (82) and (83) into (81), the
secrecy-leakage of the chosen-secret BIS model is bounded by

1

n
I(JC(i);SC(i)|Cn) ≤ 10δ (84)

for large enough n.

Analysis of Privacy-Leakage Rate:
It can be proved that

I(Xn
i ; JC(i)|Cn) = I(Xn

i ; JG(i)|Cn). (85)

To verify this, first one can easily see that

I(Xn
i ; JC(i)|Cn) = I(Xn

i ; JG(i), SC(i)⊕ SG(i)|Cn)

≥ I(Xn
i ; JG(i)|Cn). (86)

Meanwhile, it can be shown that

I(Xn
i ; JC(i)|Cn)

= I(Xn
i ; JG(i), SC(i)⊕ SG(i)|Cn)

= I(Xn
i ; JG(i)|Cn) + I(Xn

i ;SC(i)⊕ SG(i)|JG(i), Cn)

= I(Xn
i ; JG(i)|Cn) +H(SC(i)⊕ SG(i)|JG(i), Cn)

−H(SC(i)⊕ SG(i)|Xn
i , JG(i), Cn)

(b)

≤ I(Xn
i ; JG(i)|Cn) + logMS

−H(SC(i)⊕ SG(i)|Xn
i , JG(i), SG(i), Cn)

=I(Xn
i ; JG(i)|Cn) + logMS

−H(SC(i)|Xn
i , JG(i), SG(i), Cn)

(c)
= I(Xn

i ; JG(i)|Cn) + logMS − logMS

= I(Xn
i ; JG(i)|Cn), (87)

where
(b) follows as conditioning reduces entropy,
(c) follows because SC(i) is chosen uniformly from S and

independent of other RVs.



From (86) and (87), (85) clearly holds. By invoking the result
of (73), the privacy-leakage rate can also be made that

1

n
I(Xn

i ; JC(i)|Cn) ≤ RL + δ (88)

for large enough n.
Finally, by using the selection lemma [13, Lemma 2.2],

there is at least one good codebook satisfying all the conditions
in Definition 3 for large enough n.

VI. CONCLUSION AND FUTURE WORK

We characterized the capacity region of identification, se-
crecy, storage, and privacy-leakage rates for both generated-
and chosen-secret BIS models under Gaussian sources. The
models considered in this study are the RSM, namely, the
enrollment channel is noisy. We showed that an idea for
deriving the capacity regions is to convert the system to
another one where the data flows of each user are in one-
way direction. We also gave numerical computations of three
different examples for the derived regions and from these
results, it appeared that achieving high secrecy and small
privacy-leakage rates simultaneously is unlikely manageable.
For future work, we plan to extend this scenario to consider
Gaussian vector sources and channels.
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