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Abstract—When an individual’s DNA is sequenced, sensitive
medical information becomes available to the sequencing labo-
ratory. A recently proposed way to hide an individual’s genetic
information is to mix in DNA samples of other individuals. We
assume these samples are known to the individual but unknown
to the sequencing laboratory. Thus, these DNA samples act as
“noise” to the sequencing laboratory, but still allow the individual
to recover their own DNA samples afterward. Motivated by this
idea, we study the problem of hiding a binary random variable
X (a genetic marker) with the additive noise provided by mixing
DNA samples, using mutual information as a privacy metric.
This is equivalent to the problem of finding a worst-case noise
distribution for recovering X from the noisy observation among
a set of feasible discrete distributions. We characterize upper
and lower bounds to the solution of this problem, which are
empirically shown to be very close. The lower bound is obtained
through a convex relaxation of the original discrete optimization
problem, and yields a closed-form expression. The upper bound
is computed via a greedy algorithm for selecting the mixing
proportions.

Index Terms—DNA sequencing, genetic privacy, additive dis-
crete noise, worst-case noise distribution.

I. INTRODUCTION

Advances in DNA sequencing technologies have led to the
generation of human genetic data at an unprecedented rate [1].
This offers exciting prospects for biomedical research, and
recent studies have leveraged the genetic data of hundreds of
thousands of individuals to identify genetic markers associated
with many traits and diseases [2–5].

Genetic testing for disease predisposition [6] and popular
direct-to-consumer genomics services [7, 8] can provide us
with important and actionable information about our health.
However, these services require the submission of a blood or
saliva sample, making an individual’s entire DNA available
to the testing center. This raises significant privacy concerns
regarding genetic data [9], particularly with respect to the
potential use of this information by insurance companies [10].

Given the potential privacy risks of DNA sequencing, an
important question is whether it is possible to alter a physical
DNA sample prior to submitting it to a laboratory, in order
to “hide” some of its genetic information. One possible way
to alter a sample could be to mix it with the DNA of other
individuals. Upon sequencing, the lab would then observe a
mixture of the data from the different samples, which would
hinder its ability to retrieve individual genetic variants.

The general idea of mixing samples to attain genetic privacy
was proposed in [11] (and later extended in [12]). Suppose
Alice wants to have her DNA sequenced and has at her
disposal the DNA samples of K other people who already
know their DNA sequence. Alice can then mix all K+1 DNA
samples and send them to the sequencing lab. From the lab’s
perspective, the DNA of the K additional individuals plays
the role of noise, impairing the lab’s ability to recover Alice’s
DNA. However, upon receiving the sequencing data back,
the contribution of the “noise individuals” can be removed,
and Alice can recover her DNA sequence information. This
approach is illustrated in Figure 1.

Motivated by this idea, we study how to optimally mix DNA
samples in order to maximize the privacy achieved. We focus
on a single biallelic site s on the genome; i.e., a location on
the human genome that admits two possible alleles, and can
thus be modeled as a single variable X ∈ {0, 1}. It should be
noted that the vast majority of locations where a variant has
been observed are biallelic [13]. A biallelic site could model,
for example, the presence of the mutation on the BRCA2 gene
that increases the likelihood of breast cancer [14] and many
other disease genetic markers.

In order to hide her genotype X from the sequencing lab,
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Fig. 1. In order to hide her genotype X at a given locus s, Alice mixes
her DNA sample with that of K individuals in amounts α1, ..., αK . Upon
receiving the sequencing data from the lab, Alice can remove the contribution
from the “noise individuals” (whose genotype at s is known) to recover X .
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Alice mixes into her sample the samples of K individuals us-
ing proportions α0, α1, ..., αK , where

∑K
i=0 αi = 1. We model

the lab’s observation of site s as Y = α0X +
∑K
i=1 αiZi,

where Zi ∈ {0, 1} is the allele value of the ith noise
individual. This is motivated by the fact that, if the lab uses
shotgun sequencing technologies [15], each reading of site s is
effectively a Ber

(
α0X +

∑K
i=1 αiZi

)
random variable. Via

repeated readings of s, Y can thus be obtained with arbitrary
accuracy, so we assume for simplicity that Y is observed
exactly. We refer to Section VII for additional motivation and
discussion on model assumptions.

Following [11], we model X,Z1, ..., ZK as i.i.d. random
variables with Pr(X = 1) = p ∈ [0, 0.5]. We refer to p as the
minor allele frequency, a parameter that is known in practice
for genetic loci of interest. As in [11], we utilize the mutual
information as our privacy metric. If we let α = (α0, ..., αK)
and Zα =

∑K
k=1 αkZk, our goal is thus to solve

min
α∈RK+1: α>0,

∑K
i=0 αi=1

I (X;α0X + Zα) , (1)

i.e., choose the mixing coefficients α0, ..., αK to minimize
the mutual information between X and the lab’s observation.
Here, α > 0 means that all entries of α are positive. We
discuss the connection between our problem formulation and
the work in [11, 12] in more detail in Section IV.

The problem in (1) is equivalent to maximizing the con-
ditional entropy H(X|Y ); i.e., the residual uncertainty in X
after observing Y = α0X + Zα, and can thus be understood
as maximizing the privacy of X . It can also be thought of as
the problem of finding a worst-case noise Zα among those
of the form

∑
k αkZk, with Zk being i.i.d. Ber(p). Our main

result is that the solution to (1) is lower-bounded as

min
α∈RK+1: α>0,

∑K
i=0 αi=1

I (X;α0X + Zα) > I (X;X +G) ,

(2)

where G ∼ Geom
(
(1− p)K

)
and G is independent of X .

The right-hand side of (2) can be computed explicitly as a
function of p and K. Moreover, we verify empirically that
this lower bound is very close to an upper bound provided by
a greedy algorithm that sets α0 = 1 and selects α1, α2, ..., αK
sequentially to minimize the resulting mutual information,
establishing I (X;X +G) as a good approximation to the
solution of (1). We derive (2) via a convex relaxation of (1),
and use KKT conditions to show the lower bound.

We note that some of the assumptions in our problem setup
such as Alice choosing αis exactly are not very realistic, and
we discuss these assumptions in Section VII.

II. PROBLEM SETTING AND PRELIMINARIES

Our goal is to characterize the mixing proportions
α0, ..., αK that minimize the mutual information in (1). Notice
that we do not need to constrain the mixing proportions to add
up to 1, since scaling the observation Y does not change the
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Fig. 2. Optimal value of (3) for integral αis compared to the uniform scheme
and the binary scheme, for K = 5 and p ∈ [0, 0.5]. At p = 0.5, the optimal
scheme is α = [1, 1, 2, 4, 8, 16]. At p = 0.25, the optimal scheme is α =
[1, 1, 1, 2, 3, 4]. At p = 0.01, the optimal scheme is α = [1, 1, 1, 1, 1, 1].

mutual information. As a result, we can restrict ourselves to
solving the optimization problem

min
α∈RK+1: α>0

I(X;α0X + Zα), (3)

where α = (α0, ..., αK), Zα =
∑K
i=1 αiZi, and X,Z1, ..., ZK

are independent Ber(p) random variables.
The optimization problem in (3) is surprisingly complex.

The symmetry between the variables α0, ..., αK may suggest
that αi = 1 for i = 0, ...,K would be an optimal solution.
However, a brute-force solution to (3) over integer αis for
small values of K shows that optimal solutions (α0, ..., αK)
vary widely for different values of p, as illustrated in Figure 2.
Observe that the curve appears to be only piecewise smooth.
At p = 0.5, the optimal solution is given by [1, 1, 2, 4, 8, 16], at
p = 0.25, the optimal solution is given by [1, 1, 1, 2, 3, 4], and
at p = 0.01, the optimal solution is given by [1, 1, 1, 1, 1, 1].

As it turns out, the optimal solution to (3) can be exactly
characterized in the two extremes cases of p. More precisely,
if we define the uniform scheme to be αi = 1 for i = 0, ...,K,
and we define the binary scheme to be α0 = 1 and αi = 2i−1

for i = 1, ...,K, we have the following result.

Theorem 1. Fix some K ∈ N. Then there exists some p∗ > 0
such that the uniform scheme is optimal for p < p∗. Moreover,
the binary scheme is optimal for p = 0.5.

The two statements in Theorem 1 are divided into Lemma 7
and Lemma 9, which are proved in the appendix. Aside from
the cases p = 0.5 and p ≈ 0, there does not appear to be a
simple expression for the optimal solution α.

Notation: Throughout the paper we use N to denote the set of
natural numbers excluding 0, N0 to denote the set of natural
numbers including 0, and [N ] to denote the set of natural
numbers in {1, 2, ..., N} for an integer N. For a vector v,
v > 0 means that all entries of v are positive.
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III. MAIN RESULTS

In order to tackle the discrete optimization problem in (3)
in the entire interval p ∈ [0, 0.5], we seek to bound its optimal
solution. Our main result is the following lower bound.

Theorem 2. For any K ∈ N and p ∈ [0, 0.5], we have

min
α∈RK+1 : α>0

I(X ; α0X + Zα) > I(X ; X +G), (4)

where G is a geometric random variable, independent of X ,
with Pr(G = i) = (1− p)K(1− (1− p)K)i for i ∈ N0.

Intuitively, Theorem 2 says that the noise distribution of G
is worse than the worst-case noise Zα. This lower bound can
in fact be explicitly computed as

I(X ; X +G) = H(p)

− (p− 1)
(
(1− p)K − 1

)
log

(
1− (1− p)K+1

(p− 1) ((1− p)K − 1)

)

− p log

(
1− (1− p)K+1

p

)
. (5)

Observe that this formula is quickly computable for any value
of K and p, making it attractive from a computational stand-
point. To assess how tight the lower bound is, we empirically
compare it to an upper bound that is computed with a greedy
algorithm in Figure 3. For a given p and K, the greedy
algorithm chooses α0 = 1, α1 = 1, and sequentially chooses

αj = arg min
a∈N : 16a61+

∑j−1
i=1 αi

I(X ; X + aZj +

j−1∑

i=1

αiZi) (6)

for 2 6 j 6 K. At the jth step we consider all values of αj
between 1 and 1+

∑j−1
i=1 αi because setting αj > 1+

∑j−1
i=1 αi

can not decrease the mutual information from when αj =

1 +
∑j−1
i=1 αi.

As seen in Figure 3, I(X ; X +G) serves as a tight lower
bound when compared with the upper bound. A similar picture
can be obtained for other values of K. This is surprising,
because for a given K, it is not possible in general to choose
αis to make the pmf of

∑j−1
i=1 αiZi look like the pmf of G

(or a shifted version of it), as illustrated in Figure 4.
While finding the greedy solution (α0, ..., αK) requires

Ω(2K) time in the worst case, similar plots to Figure 3 can be
obtained for larger values of K using a more computationally
efficient variation of the greedy algorithm.

At a high level, we prove the lower bound in Theorem 2
by forming a convex relaxation of the minimization problem,
perturbing the relaxation to form a problem that is analyti-
cally solvable using KKT conditions, and using perturbation
analysis to find a lower bound on the relaxation.

IV. CONNECTION TO PRIOR WORK

Our problem formulation (1) is motivated by the problem
studied in [11]. In [11], the authors consider the same high-
level problem of providing privacy to genotype information
through the mixture of distinct samples prior to sequencing.
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Fig. 3. Comparison between the lower bound from (4) and the upper bound
provided by the greedy algorithm for K = 15.
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Fig. 4. Comparison of the pmf of Zα produced by the greedy algorithm (α =
[1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 19]) and the (truncated) Geometric
pmf in the lower bound (4), for K = 15 and p = 0.25.

But there are several differences in the focus of the analysis in
[11]. In addition to considering the privacy of Alice’s genotype
information, they also consider the probability of Alice being
able to correctly recover her genotype. Moreover, they assume
the presence of sequencer noise. This means that each reading
the sequencer makes is incorrect with some probability. The
authors of [11] propose a scheme that uses U ∈ N non-
communicating sequencers to sequence U unknown DNA
samples with privacy and reconstruction guarantees. Similar
to our problem formulation, they also use K noise individuals
to generate privacy. However, they do not study the problem
of optimizing the proportions of each DNA sample sent to
the sequencers to maximize privacy. In contrast, our paper
uses only one sequencing laboratory to sequence the DNA of
one unknown DNA sample, and optimizes the privacy without
considering sequencer noise or the reconstruction condition.

The proposed solution in [11] involves the sequencing of
the unknown DNA of U individuals simultaneously using
U non-communicating sequencing laboratories and K noise
individuals. The mixture of the DNA samples of all K noise
individuals and all unknown DNA samples except the ith one
is sent to the ith sequencing laboratory. For each mixture
sent to a sequencing laboratory, the included DNA samples
are mixed in equal proportion. Observe that each sequencing

3



laboratory observes a mixture that includes U − 1 unknown
DNA samples. Therefore, the analysis in our paper is directly
applicable to the strategy from [11] when two unknown
samples and two non-communicating sequencing laboratories
are used because this is the only case where only one unknown
DNA sample is included in the mixture sent to each sequencer.
In this case, the scheme used in [11] is the uniform scheme in
the language of our paper, which we showed generates optimal
privacy for p close to 0.

In [12], the unknown DNA samples of U individuals are
mixed with the samples of K = U noise individuals and
then sequenced using one sequencing laboratory. Both the ith
unknown sample and the ith noise sample are mixed in with
amount αi = 2iα0 for i = 0, 1, ...,K − 1. While our analysis
only applies to the case U = K = 1 of their problem setting,
it is interesting that they choose the proportion of each noise
individual according to the binary scheme, which we showed
is optimal in our problem formulation for p = 0.5.

V. PROOF OF THEOREM 2

We obtain the lower bound on I(X ; α0X + Zα) =
H(p) − H(X |α0X + Zα) by finding a lower bound on
−H(X |α0X + Zα). Therefore, we consider

min
α∈RK+1: α>0

−H

(
X

∣∣∣∣∣ α0X +

K∑

k=1

αkZk

)
. (7)

Observe that the pmf of the random variable Zα =
∑K
i=1 αiZi

has probability (1 − p)K at its lowest support value. More
precisely, 0 is the minimum value that Zα can take, which
occurs with probability (1−p)K . A relaxation to (7) can then
be obtained by ignoring all constraints on the pmf of Zα except
the constraint on the minimum pmf value. Thus, for a fixed
value of α0, a relaxation to (7) is given by

min
Q
−H (X | α0X +Q) (8)

subject to: Q is a discrete random variable
Q is independent of X

Pr(Q = 0) = (1− p)K

Pr(Q = i) = 0 for i < 0.

Furthermore, as we prove in Lemma 3 in Section VI, fixing
α0 = 1 in (8) and constraining the support of Q to be integer
does not change the optimal value. We assume these additional
constraints throughout.

Let q(i) be the pmf of Q; i.e., q(i) = Pr(Q = i) for i > 0. In
order to write (8) explicitly in terms of q under the assumption
that Q has integer support and α0 = 1, we define

gj(q) , −H(X|X +Q = j) Pr(X +Q = j)

= Pr(Q+X = j)

×
[

(1− p)q(j)
Pr(Q+X = j)

log

(
(1− p)q(j)

Pr(Q+X = j)

)

+
pq(j−1)

Pr(Q+X = j)
log

(
pq(j−1)

Pr(Q+X = j)

)]

= (1− p)q(j) log

(
(1− p)q(j)

(1− p)q(j) + pq(j−1)

)

+ pq(j−1) log

(
pq(j−1)

(1− p)q(j) + pq(j−1)

)
. (9)

Assuming integer support for Q and fixing α0 = 1, we have
that (8) written in terms of gj(q) is given by

min
q(i)>0: i∈N0

∑

j∈N
gj(q) (10)

subject to: q(0) = (1− p)K
∞∑

j=0

q(j) = 1.

Observe that (10) is a convex minimization problem with
infinitely many variables. For such problems, to the best of our
knowledge, a solution to the KKT conditions is not in general
guaranteed to yield an optimal solution. For that reason, we
do not seek to directly solve the KKT conditions and, instead,
we consider a support-constrained version of (10), where the
support of the pmf of Q is restricted to {0, ..., n}, and let
n→∞. The support-constrained version of (10) is given by

min
q(i)>0: i∈{0,...,n+1}

n+1∑

j=1

gj(q) (11)

subject to: q(0) = (1− p)K , q(n+1) = 0
n+1∑

j=0

q(j) = 1.

Note that this is no longer a relaxation to the original problem.
In order to ensure that the derivative of the objective func-

tion exists at all feasible q(i), and ultimately find a lower bound
on the optimal value of (11) through perturbation analysis, we
change the constraints in (11) from q(i) > 0 to q(i) > 0 and
from q(n+1) = 0 to q(n+1) = ε where ε > 0, obtaining

min
q(i)>0: i∈{0,...,n+1}

n+1∑

j=1

gj(q) (12)

subject to: q(0) = (1− p)K , q(n+1) = ε
n+1∑

j=0

q(j) = 1.

Let V ∗n be the optimal value of (11) and let V ∗n,ε be the
optimal value of (12) for a given ε. Due to the continuity
of the objective function in (11), we have V ∗n > infε>0 V

∗
n,ε.

More precisely, for any solution to (11), it follows that (12)
can get arbitrarily close to the corresponding value as ε → 0
due to the continuity of the objective function.

While we do not know the solution to (11) or (12), we will
perturb (12) to form a problem we can solve analytically, then
use perturbation analysis to lower bound the optimal value of
(12), and ultimately lower bound the optimal value of (11).
Let β , (1− p)K . The perturbed version of (12) is given by

min
q(i)>0: i∈{0,...,n+1}

n+1∑

j=1

gj(q) (13)
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subject to: q(0) = β, q(n+1) = β(1− β)n+1

n+1∑

j=0

q(j) = 1− (1− β)n+2.

Observe that as n increases, we have that β(1 − β)n+1 → 0
and 1−(1−β)n+2 → 1. In other words, the constraints in (13)
approach the constraints in (11). We can solve (13) by solving
the KKT conditions since the problem is convex, Slater’s
condition holds, and the objective function and constraint
functions are differentiable on the domain q(i) > 0. Let f0(q)
be the objective function of (13). The Lagrangian is given by

L(q, v, λ) = f0(q) + v1

(∑

i

q(i) − 1 + (1− β)n+2

)

+ v2
(
q(0) − β

)

+ v3
(
q(n+1) − β(1− β)n+1

)
. (14)

The perturbation values in (13) are carefully chosen so that
the KKT conditions yield an optimal solution given by

q(i) = β(1− β)i for i ∈ {0, ..., n+ 1}. (15)

This corresponds to the first n + 2 terms of the pmf of a
Geometric distribution. The derivation of (15) and the optimal
Lagrange multipliers v∗1 , v

∗
2 , v
∗
3 are provided in Lemma 4.

Let U∗n be the solution to (13), obtained by plugging in (15).
Using the perturbation analysis from Section 5.6.1 of [16], we
see that the optimal value of (12), V ∗n,ε, is lower bounded as

V ∗n,ε > U∗n − v∗1
(
(1− β)n+2

)
− v∗3

(
−β(1− β)n+1 + ε

)
,

(16)

where v∗1 and v∗3 are the optimal Lagrange multipliers for (13)
described in Lemma 4 in Section VI. Taking the infimum of
(16) over ε > 0 then yields

V ∗n > U∗n − v∗1
(
(1− β)n+2

)
− v∗3

(
−β(1− β)n+1

)
. (17)

The sequence V ∗n of optimal values returned by (11) is non-
increasing in n. Thus, letting n → ∞ in (17) implies that
limn→∞ U∗n is a lower bound to −H(X |α0X +Zα) for any
choice of αi’s. Notice that, as n→∞, q(j) in (15) converges
to the pmf of a Geometric random variable G with Pr(G =
i) = β(1− β)i = (1− p)K(1− (1− p)K)i for i ∈ N0. Since
the objective function of (13) is −H(X|X +Q) where Q has
pmf q(j), this concludes our proof.

VI. AUXILIARY LEMMAS

Lemma 3. Fixing α0 = 1 and constraining the support of Q to
be intergal in the optimization problem (8) does not change the
optimal value.

Proof: Let α0 ∈ N. Let Q be any discrete random variable
such that its pmf has minimum support value at t = 0. Observe
that

I(X; α0X +Q) = I(X;
α0X +Q

α0
) = I(X; X +D)

where D = 1
α0
Q. For a real number x ∈ R, we define x

mod 1 as x − bxc where b·c is the floor function. Let D̂ =
D + S, where S = (−D) mod 1. Then

I(X; α0X +Q) = I(X; X +D)

= I(X; X + D̂ − S)

(i)
= I(X; X + D̂, S)

> I(X ; X + D̂) (18)

where (i) follows since from X + D̂ − S, we can compute

S = (−(X + D̂ − S)) mod 1,

X + D̂ = (X + D̂ − S) + S.

Therefore it suffices to fix α0 = 1 and only consider discrete
random variables Q with integer support and minimum support
value at 0 in the optimization.

Lemma 4. A solution to the KKT conditions for (13) is

q(i) = β(1− β)i for i ∈ {0, ..., n+ 1}

v1 = −p log

(
p

(1− p)(1− β) + p

)

− (1− p) log

(
(1− p)(1− β)

(1− p)(1− β) + p

)

v2 = (1− p) log

(
(1− p)(1− β)

(1− p)(1− β) + p

)

v3 = p log

(
p

(1− p)(1− β) + p

)
. (19)

Proof: Let f0(q) be the objective function of (13). The
Lagrangian of (13) is given in (14). The derivative of f0(q)
with respect to q(j) is given by

p log

(
pq(j)

(1− p)q(j+1) + pq(j)

)

+ (1− p) log

(
(1− p)q(j)

pq(j−1) + (1− p)q(j)

)
(20)

for j ∈ {1, ..., n}. For j = 0 and j = n+1, the derivative can
be similarly computed and the KKT conditions are

q(0) = (1− p)K ,
q(n+1) = (1− p)K(1− (1− p)K)n+1,
n+1∑

j=0

q(j) = 1− (1− (1− p)K)n+2,

for j = 1, ..., n, p log

(
pq(j)

(1− p)q(j+1) + pq(j)

)

+ (1− p) log

(
(1− p)q(j)

pq(j−1) + (1− p)q(j)

)
+ v1 = 0,

p log

(
pq(0)

(1− p)q(1) + pq(0)

)
+ v1 + v2 = 0,

(1− p) log

(
(1− p)q(n+1)

pq(n) + (1− p)q(n+1)

)
+ v1 + v3 = 0. (21)
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The last three conditions can be rewritten as

for j = 1, ..., n, p log

(
p

(1− p) q(j+1)

q(j)
+ p

)

+ (1− p) log

(
(1− p)

p
q(j−1)

q(j)
+ (1− p)

)
+ v1 = 0,

p log

(
p

(1− p) q(1)q(0)
+ p

)
+ v1 + v2 = 0, (22)

(1− p) log

(
(1− p)

p
q(n)

q(n+1)
+ (1− p)

)
+ v1 + v3 = 0. (23)

Notice that, if the ratio q(j+1)

q(j)
between consecutive values of

q(j) is the same for all j, then v1, v2, v3 can be chosen so
that these derivatives equal 0 for all j. Setting

q(j+1)

q(j)
= (1− (1− p)K),

we have that (19) is a solution to all equations in (21).

Lemma 5. For any K ∈ N, p ∈ [0, 0.5], and αi > 0, i ∈
0, 1, ...,K, we have that

I(X ; α0X +

K∑

i=1

αiZi) > H(p)− 1 + pK+1 + (1− p)K+1.

Proof: Define Sα =
∑K
i=0 αi, and let TY be the set of

support values of Y = α0X +
∑K
i=1 αiZi. Clearly, Sα is the

maximum element in TY . We have that

I(X ; Y )

= H(p)−H(X | Y )

> H(p)− (1− pK+1 − (1− p)K+1)

= H(p)− 1 + pK+1 + (1− p)K+1

where the third line follows because

H(X | Y )

=
∑

t∈TY

Pr(Y = t)H(X | Y = t)

= Pr(Y = 0) ·H(X | Y = 0)

+ Pr(Y = Sα) ·H(X | Y = Sα)

+
∑

t∈TY \{0,Sα}

Pr(Y = t)H(X | Y = t)

= (1− p)K+1 · 0 + pK+1 · 0

+
∑

t∈TY \{0,Sα}

Pr(Y = t)H(X | Y = t)

6
∑

t∈TY \{0,Sα}

Pr(X +
K∑

i=1

αiZi = t)

= 1− pK+1 − (1− p)K+1.

Lemma 6. For any K ∈ N, p ∈ [0, 0.5], we have that

I(X ; X +

K∑

i=1

2i−1Zi)

= H(p)−
K∑

i=1

(pi(1− p) + p(1− p)i)H


 1

1 + p(1−p)i
pi(1−p)


 .

Proof: We will prove this by induction on K ∈ N. Let
p ∈ [0, 0.5]. For K = 1, we have that

I(X ; X + Z1)

= H(p)−H(X | X + Z1)

= H(p)− 2p(1− p)H(0.5)

which matches the formula. Assume the formula holds for the
(K − 1)th case where K > 1. Consider the Kth case:

I

(
X ; X +

K∑

i=1

2i−1Zi

)

= H(p)−H

(
X | X +

K∑

i=1

2i−1Zi

)

= H(p)− (1− p)H

(
X | X +

K−1∑

i=1

2i−1Zi

)

− pH

(
X | X +

K−1∑

i=1

2i−1Zi

)

− (pK(1− p) + p(1− p)K)H

(
pK(1− p)

pK(1− p) + p(1− p)K

)

= H(p)−H

(
X | X +

K−1∑

i=1

2i−1Zi

)

− (pK(1− p) + p(1− p)K)H


 1

1 + p(1−p)K
pK(1−p)




= H(p)−
K∑

i=1

(pi(1− p) + p(1− p)i)H


 1

1 + p(1−p)i
pi(1−p)


 .

Lemma 7. For any K ∈ N, the binary scheme is optimal for
p = 0.5.

Proof: For any K ∈ N and p = 0.5, the performance of
the binary scheme is given by

I

(
X ; X +

K∑

i=1

2i−1Zi

)

= H(0.5)− 2

K∑

i=1

(0.5)i+1H(0.5)

= 1−
K∑

i=1

(0.5)i
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= 1−
(

1− (0.5)K+1

0.5
− 1

)

= (0.5)K

= 1− 1 + (0.5)K+1 + (0.5)K+1

Thus, the performance of the binary scheme matches the lower
bound for p = 0.5.

Lemma 8. For any K ∈ N, p ∈ [0, 0.5], we have that

I

(
X ; X +

K∑

i=1

Zi

)

= H(p)−
K∑

i=1

(1− p)K+1−ipi
(
K + 1

i

)
H

(
i

K + 1

)

Proof: We have that

I

(
X ; X +

K∑

i=1

Zi

)

= H(p)−H

(
X | X +

K∑

i=1

Zi

)

= H(p)

−
K+1∑

t=0

Pr

(
X +

K∑

i=1

Zi = t

)
H

(
X | X +

K∑

i=1

Zi = t

)

and

Pr

(
X +

K∑

i=1

Zi = t

)
= (1− p)K+1−tpt

(
K + 1

t

)
.

Due to Bayes rule, we have

Pr

(
X = 1 | X +

K∑

i=1

Zi = t

)
=

t

K + 1
,

and thus,

H

(
X | X +

K∑

i=1

Zi = t

)
= H

(
t

K + 1

)
. (24)

Thus,

I

(
X ; X +

K∑

i=1

Zi

)

= H(p)

−
K+1∑

t=0

Pr

(
X +

K∑

i=1

Zi = t

)
H

(
X | X +

K∑

i=1

Zi = t

)

= H(p)−
K+1∑

t=0

(1− p)K+1−tpt
(
K + 1

t

)
H

(
t

K + 1

)

= H(p)−
K∑

t=1

(1− p)K+1−tpt
(
K + 1

t

)
H

(
t

K + 1

)
.

Lemma 9. For any K ∈ N, there exists some p∗ > 0 such that
the uniform scheme is optimal for p < p∗.

Proof: Consider the optimization problem (1) with α0

fixed to 1. We can assume this without loss of generality
since scaling all αis by the same constant does not change
the mutual information. We have that

I(X ; X +

K∑

i=1

αiZi) = H(p)−H(X | X +

K∑

i=1

αiZi)

and

H(X | X +

K∑

i=1

αiZi)

=
∑

t∈N0

Pr(X + Zα = t)H(X | X + Zα = t) (25)

Observe that as p → 0, we have that H(p) → 0, and
H(X | X +

∑K
i=1 αiZi) → 0 since 0 6 H(X | X +∑K

i=1 αiZi) 6 H(p). Thus, I(X ; X +
∑K
i=1 αiZi) → 0 as

p→ 0. We will show that each nonzero term in (25) decreases
like O(p), except the t = 1 term which decreases like Θ(p)
if there exists some αi = 1 for i > 1. Therefore, we will
show that the uniform scheme maximizes the coefficient in
the asymptotic expression for the t = 1 term, proving that the
uniform scheme is optimal as p→ 0.

For any t such that 0 6 t < 1, we have that H(X | X +
Zα = t) = 0 because if X = 1, then X + Zα > 1.

Next, consider the term Pr(X +Zα = 1)H(X | X +Zα =
1). Observe that

Pr(X + Zα = 1)

= (1− p) Pr(Zα = 1)

+ pPr(Zα = 0)

and

Pr(Zα = 1) = p(1− p)K−1|{i : αi = 0}|+O(p2),

Pr(Zα = 0) = (1− p)K ,

where the O(p2) term in expression for Pr(Zα = 1) follows
because it is possible for 2 or more Zis to equal 1 such that
the corresponding αis add up to 1. If |{i : αi = 0}| > 1, we
have that

Pr(X + Zα = 1)H(X | X + Zα = 1)

= (p(1− p)K(1 + |{i : αi = 1}|) + o(p))

×H(X | X + Zα = 1)

= (p(1− p)K(|{i : αi = 1}|) + o(p))

× log

(
p(1− p)K(1 + |{i : αi = 1}|) + o(p)

p(1− p)K |{i : αi = 1}|+ o(p)

)

+ p(1− p)K log

(
p(1− p)K(1 + |{i : αi = 1}|) + o(p)

p(1− p)K

)

= (p(1− p)K(|{i : αi = 1}|) + o(p))

× log

(
(1 + |{i : αi = 1}|) + o(1)

|{i : αi = 1}|+ o(1)

)
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+ p(1− p)K log((1 + |{i : αi = 1}|) + o(1))

∼ p
(
|{i : αi = 1}| log

(
1 +

1

|{i : αi = 1}|

)

+ log(1 + |{i : αi = 1}|)
)

(26)

The coefficient of p in the asymptotic expression for
Pr(T (K) = 1)H(X | T (K) = 1) above is maximized when
|{i : αi = 1}| = K. This is because

d

dx

(
x log

(
1 +

1

x

)
+ log(1 + x)

)
> 0

for all x > 0. In contrast, suppose that |{i : αi = 0}| = 0.
Then, we have that

Pr(Zα = 1)

= b(1− p)K−apa + o(pa) (27)

for some a ∈ N such that a > 2, and therefore,

Pr(X + Zα = 1)H(X | X + Zα = 1)

= (p(1− p)K + b(1− p)K+1−apa + o(pa))

×H(X | X + Zα = 1)

= (b(1− p)K+1−apa + o(pa))

× log

(
(p(1− p)K + b(1− p)K+1−apa + o(pa))

b(1− p)K+1−apa + o(pa))

)

+ p(1− p)K log

(
(p(1− p)K + b(1− p)K+1−apa + o(pa))

p(1− p)K

)

= (b(1− p)K+1−apa + o(pa)) log

(
1 +

(1− p)a−1

bpa−1 + o(pa−1))

)

+ p(1− p)K log
(
(1 + b(1− p)1−apa−1 + o(pa−1))

)

∼ bpa log

(
1

bpa−1

)
+ p(1− p)K bp

a−1

ln(2)

= o(p). (28)

Now consider any t > 1. For such a value of t, we have
that

Pr(Zα = t− 1) = d(1− p)K−cpc + o(pc)

for some c ∈ N, c > 1 and d ∈ N because there must be at
least one i ∈ [K] such that Zi = 1 in this case. Furthermore,
we have

Pr(Zα = t) = b(1− p)K−apa + o(pa)

for some a ∈ N, a > 1 and b ∈ N because there must be at
least one i ∈ [K] such that Zi = 1 in this case. Thus,

Pr(X + Zα = t)H(X | X + Zα = t)

= (d(1− p)K−c+1pc + o(pc))

× log(1 +
b(1− p)K−apa+1) + o(pa+1)

d(1− p)K−c+1pc + o(pc)
)

+ (b(1− p)K−apa+1 + o(pa+1))

× log(1 +
d(1− p)K−c+1pc + o(pc)

b(1− p)K−apa+1 + o(pa+1)
)

= o(p). (29)

Thus, the only term in (25) that decays like Θ(p) as p → 0
is the t = 1 term when there is at least one i ∈ [K] such
that αi = 1. Furthermore, the uniform scheme maximizes the
coefficient for this term. Thus, there exists some p∗ > 0 such
that the uniform scheme is optimal for p < p∗.

We now justify the last line in (29). Consider the first term
above in the second line of (29). If c < a+ 1, it follows that

(d(1− p)K−c+1pc + o(pc))

× log

(
1 +

b(1− p)K−apa+1) + o(pa+1)

d(1− p)K−c+1pc + o(pc)

)

= (d(1− p)K−c+1pc + o(pc))

× log

(
1 +

b(1− p)K−apa+1−c + o(pa+1−c)

d(1− p)K−c+1 + o(1)

)

∼ (d(1− p)K−c+1pc + o(pc))

× b(1− p)K−apa+1−c + o(pa+1−c)

ln(2)(d(1− p)K−c+1 + o(1))

= o(p).

If c > a+ 1, it follows that

(d(1− p)K−c+1pc + o(pc))

× log

(
1 +

b(1− p)K−apa+1 + o(pa+1)

d(1− p)K−c+1pc + o(pc)

)

6 (d(1− p)K−c+1pc + o(pc))

× log

(
1

d(1− p)K−c+1pc + o(pc)

)

6 (d(1− p)K−c+1pc + o(pc)) log

(
1

(1− p)KpK

)

= K(d(1− p)K−c+1pc + o(pc))

× log

(
1

p(1− p)

)

= o(p).

Finally, consider the second term. It follows that

(b(1− p)K−apa+1 + o(pa+1))

× log

(
1 +

d(1− p)K−c+1pc + o(pc)

b(1− p)K−apa+1 + o(pa+1)

)

6 (b(1− p)K−apa+1 + o(pa+1))

× log

(
1

b(1− p)K−apa+1 + o(pa+1)

)

6 (b(1− p)K−apa+1 + o(pa+1))

× log

(
1

(1− p)KpK

)

= K(b(1− p)K−apa+1 + o(pa+1))

× log

(
1

p(1− p)

)

= o(p).
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VII. DISCUSSION OF MODEL ASSUMPTIONS

The model proposed in this paper represents an initial
attempt at studying the problem of providing privacy to genetic
information through the physical mixing of samples prior to
sequencing. In this section we provide additional discussion
and motivation for some of the modeling assumptions made.

While the idea of achieving privacy by forcing the sequenc-
ing lab to sequence a mixture of DNA samples may seem
odd at first, to a certain extent, it already occurs in standard
DNA sequencing pipelines. A person’s DNA is made up of
two copies of each chromosome: a paternal chromosome and
a maternal chromosome. Hence, an individual’s DNA can be
thought of as a 50-50 mixture of the DNA of two unrelated
individuals: the father and the mother. Once a person’s DNA
is sequenced using next-generation sequencing technologies,
the sequencing reads are aligned to the human reference
genome, and genetic variants are identified. These reads are
equally likely to have come from the paternal and maternal
chromosomes. In Figure 5, we show the alignment of Illumina
sequencing data from one individual to the BRCA2 gene (in
chromosome 13) [14]. In the highlighted position, out of the
eight reads that cover it, four have the reference allele and
four have the alternative allele. This can be seen as a real-life
illustration of the privacy strategy discussed in our paper, since
it is not possible to know whether it is the person’s father or
mother that has the minor allele. If the DNA samples of K
individuals were mixed, the picture will be similar to the one
in Figure 5, except that the minor allele counts will correspond
to the mixture of 2K chromosomes.

One drawback of the model we study (and also the model in
[11]) is that the allele at different loci are implicitly assumed
to be independent. In reality, genetic variants that are close in
the genome are more likely to be inherited together, leading
to what is known as linkage disequilibrium [18]. This creates
dependence across different the alleles at different loci, which
tends to reduce the privacy at any given locus. One way
to deal with this would be to extend our problem setup to

Fig. 5. Alignment of Illumina sequencing data from one individual to
the BRCA2 gene (in chromosome 13) on the human reference genome,
visualized with the Integrative Genome Viewer [17]. In the dashed column
(∼13,906,980), out of the eight reads that cover it, four have the reference
allele and four have the alternative allele. Given this data, one cannot infer
whether it is the individual’s father or mother chromosome that carries the
minor allele.

simultaneously consider the privacy of a group of nearby
correlated locations.

Our problem setup also relies on the fact that the locations
that admit more than one allele are observed in separate reads.
In the context of shotgun sequencing, this is equivalent to
the locations being far enough apart in the genome that a
single read (150bp for standard Illumina platforms) cannot
simultaneously cover two loci. This is often the case, as the
number of single-nucleotide polymorphisms (SNPs) analyzed
by standard genomic services is around one million, while the
length of the human genome is roughly 3 billion. Furthermore,
standard direct-to-consumer genomic services utilize SNP
arrays for sequencing, which essentially probe specific SNPs
the genome, rather than obtaining shotgun sequencing reads
that could simultaneously cover multiple variants [19].

It should be noted that our current results do not take
into account the noise from the sequencing machine itself.
Moreover, by assuming that the observation Y is the precise
proportion of the minor allele we are essentially assuming that
a very high coverage is used for sequencing. To make the setup
more realistic, a noise term should be added to the observation
Y . Another practical challenge is that Alice would not be
able to choose the proportions α0, α1, ..., αK with arbitrary
precision. The inclusion of noise terms in the observation Y
would also mitigate the unrealistic nature of this assumption.
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