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Abstract—Coded distributed matrix multiplication (CDMM)
schemes, such as MatDot codes, seek efficient ways to distribute
matrix multiplication task(s) to a set of N distributed servers
so that the answers returned from any R servers are sufficient
to recover the desired product(s). For example, to compute the
product of matrices U,V, MatDot codes partition each matrix
into p > 1 sub-matrices to create smaller coded computation
tasks that reduce the upload/storage at each server by 1/p, such
that UV can be recovered from the answers returned by any
R = 2p−1 servers. An important concern in CDMM is to reduce
the recovery threshold R for a given storage/upload constraint.
Recently, Jeong et al. introduced Approximate MatDot (AMD)
codes that are shown to improve the recovery threshold by
a factor of nearly 2, from 2p − 1 to p. A key observation
that motivates our work is that the storage/upload required for
approximate computing depends not only on the dimensions of
the (coded) sub-matrices that are assigned to each server, but also
on their precision levels — a critical aspect that is not explored by
Jeong et al. Our main contribution is a rudimentary dimensional
analysis of AMD codes inspired by the Generalized Degrees of
Freedom (GDoF) framework previously developed for wireless
networks, which indicates that for the same upload/storage, once
the precision levels of the task assignments are accounted for,
AMD codes surprisingly fall short in all aspects of even the
trivial replication scheme which assigns the full computation
task to every server. Indeed, the trivial replication scheme has
a much better recovery threshold of 1, better download cost,
better computation cost, and much better encoding/decoding
(none required) complexity than AMD codes. The dimensional
analysis is supported by simple numerical experiments.

I. INTRODUCTION

Coded distributed matrix multiplication (CDMM) [1]–[26]

(see Figure 1) seeks to distribute a matrix multiplication task

among N servers as efficiently as possible so that from the

answers received from any R responsive servers the sink (user)

is able to recover the desired computation result. R is referred

to as recovery threshold. Existing state-of-the-art solutions [1],

[2], [4] to CDMM are built upon matrix partitioning and

polynomial based coding – the constituent matrices U, V

are partitioned into block submatrices, coded shares of which

are sent to the servers. The servers compute the products of

their encoded shares, which can be viewed as evaluations

of carefully constructed polynomials with partitioned block

matrices as coefficients. Categorized by different partitioning

strategies, state-of-the-art approaches fall into three classes:

Polynomial codes [1] for row-by-column partitioning, MatDot

codes [2] for column-by-row partitioning and Entangled Poly-

nomial codes (EP codes) [4] for arbitrary partitioning.

When CDMM schemes are utilized for computations over

real numbers, numerical stability concerns become important

[27]–[29]. As noted in the literature [30], [31], this is because

real Vandermonde matrices (which are essential in decoding)

are ill-conditioned, especially for large R. In other words,

small error in answers (that is a natural result of quantization)

yields large error in decoded computation results. To over-

come this problem, a variety of techniques are developed, for

example, Chebyshev polynomial based coding schemes [27],

circulant and rotation matrix embeddings [28], and random

Khatri-Rao product codes [29].
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Fig. 1: Coded Distributed Matrix Multiplication (CDMM).

Another important concern in CDMM literature has been

to find ways to reduce the recovery threshold for a given

storage/upload cost per server. In this regard, a recent break-

through is reported in [32] which introduces approximated

CDMM solutions under the polynomial based coding frame-

work. Based on MatDot codes1 and a set of sufficiently

small evaluation points, [32] shows that Approximate MatDot

(AMD) codes achieve the recovery threshold of R = p with

bounded error ǫ. Compared with MatDot codes where the

achieved recovery threshold is R = 2p − 1, this is “nearly

twice as efficient as exact multiplication”.

Since a repetition code scheme which replicates the full

computation task at every server can trivially achieve the

recovery threshold of R = 1, it is crucial that the recovery

threshold be optimized subject to constraints on the upload or

storage cost. On the one hand, because AMD codes use the

same matrix partitioning by a factor of 1/p as MatDot codes,

1As in [32], the results generalize to ǫ-approximate EP codes as well.
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one might imagine that just like MatDot codes, AMD codes

require a fraction 1/p of the storage/upload cost (compared to

repetition codes). But on the other hand, when approximate

computation is involved, the storage/upload cost also depends

strongly on the precision with which numerical values need to

be represented. Our work is motivated by the goal of properly

accounting for the scaling of upload/storage costs as a function

of the desired precision of computation.

To accomplish this goal we take an approach inspired by

the Generalized Degrees of Freedom (GDoF) framework that

has been extensively used [33], [34] to study the approximate

and robust capacity limits of wireless networks. Based on

a similar framework, our rudimentary dimensional analysis

reveals insights consistent with [32] in terms of the required

‘small’ size of evaluation points.2 Surprisingly, it also reveals a

strongly pessimistic outlook of AMD codes. The advantage of

reduced recovery threshold that is achieved by AMD codes, is

shown to come at the cost of increased upload/storage costs by

a factor of p, due to increased precision requirement from the

uploads. Intuitively, this is because the small evaluation points

of AMD codes produce extremely ill-conditioned decoding

Vandermonde matrices. In fact the dimensional analysis shows

that AMD codes give away so much in their upload/storage

costs that they fall short of even replication codes in all

regards. Indeed, the trivial replication scheme has a much

better recovery threshold of 1, better download cost, better

computation cost, and much better encoding/decoding (none

required) complexity than AMD codes. The dimensional anal-

ysis is supported by modest numerical experiments.

Notation: For integers m,n such that m < n, [m :
n] , {m,m + 1, · · · , n}, Xm:n , {Xm,Xm+1, · · · ,Xn}.

[n] , [1 : n]. ||.||F denotes the Frobenius norm. The notation

Õ(a log b) suppresses3 polylog terms. When an m× p matrix

A is multiplied by a pλ × nκ matrix B where B is written

as a block matrix with p× n blocks and the blocks have the

dimension λ×κ, the product AB means that (A⊗Iλ)B where

⊗ is the Kronecker product and Iλ is the λ×λ identity matrix.

II. PRELIMINARIES

A. MatDot Codes [2]

Partition matrices U,V as follows,

U = [U1,U2, · · · ,Up],V = [V1,V2, · · · ,Vp]
T (1)

Let α1, α2, · · · , αN be distinct elements in R. Server i, upon

receiving the encoded matrices,

Fi = U1 + αiU2 + · · ·+ αp−1
i Up (2)

Gi = Vp + αiVp−1 + · · ·+ αp−1
i V1, (3)

2Our analysis can also be extended to ‘large’ evaluation points, but since
the conclusion remains pessimistic, that case is omitted here.

3There is another standard definition of the notation Õ which fully

suppresses polylog terms, i.e, O(apolylog(b)) is represented by Õ(a). The
definition used in this paper emphasizes the dominant factor in the polylog
term.

computes the product,

Ci = FiGi =

p∑

i=1

p∑

j=1

UiVjα
p−1+i−j
i . (4)

The product can be viewed as a polynomial (with respect to

α) of degree 2p− 2. With the answers from any R = 2p− 1
servers, the user is able to recover all the coefficients of the

polynomial, so that the desired matrix product C = UV =∑p
i=1 UiVi can be recovered since it is the coefficient of the

term αp−1. The recovery threshold is R(p, 0) = 2p− 1. The

notation is explained in the next section.

B. Approximate Computation [32]

Assume ||U||F ≤ η, ||V||F ≤ η. The goal is to perform

approximate computation so that

|Ĉi,j −Ci,j | ≤ ǫ (5)

The recovery threshold subject to the constraint (5), is denoted

as R(p, ǫ). [32] introduces Approximate MatDot codes that are

able to achieve the ‘optimal’ recovery threshold R(p, ǫ) = p.

The main result of [32] is summarized below.

Theorem 1. [32] (Achievability) For any 0 ≤ ǫ ≤
min(2, 3η2

√
2p− 1), AMD codes can be constructed by

choosing the evaluation points α1, α2, · · · , αN as

|αi| ≤
ǫ

6η2
√
2p− 1(p2 − p)

(6)

such that R(p, ǫ) = p.

(Converse) For all 0 ≤ ǫ ≤ η2, R(p, ǫ) ≥ p

Remark 1. Intuitively, the key idea of AMD codes is to assign

small values to the evaluation points αi, so that the terms with

sufficiently high powers of αi become essentially negligible,

thus reducing the number of unknowns, which in turn reduces

the recovery threshold.

III. THE PRICE OF PRECISION IN CDMM

A. GDoF Framework

Inspired by the GDoF framework that has been used exten-

sively [33], [34] to study the approximate capacity of wireless

networks let us introduce a similar basic framework to study

the fundamental tradeoffs in the approximate computing prob-

lem. As a toy example to introduce basic notation, using base-

B representation4 for numerical values, consider a random

variable that takes values, say in [0, Bµ), B = 10, µ = 4, and

let W be its representation accurate to ν = 5 digit precision.

W may be represented as (cf. [34]),

W = Bµ(W +B−νW̃ ) (7)

with W, W̃ ∈ [0, 1), such that BµW represents the

actual value (with infinite precision), B−νW̃ represents

noise that primarily affects (truncates or subtracts) the

4GDoF studies [34] of wireless networks use base P representation, and
P is labeled ‘power’ as a legacy from prior DoF studies where it indeed
represents transmit power.



digits that appear after the ν digits that are accurately

known, and W represents the truncated value. For exam-

ple, w1w2w3w4.w5 = 104(0.w1w2w3w4w5w6w7 · · · +
10−5(−0.w6w7 · · · )), is a 5 digit precision representation of

the actual value w1w2w3w4.w5w6w7 · · · where the precise

digits are highlighted in bold. Note that the noise term B−νW̃
is not independent of W . Equivalently, one may view W as

the truncated version of W , carrying only the ν digits of W
that are accurately known, i.e.,

W = Bµ−ν(W )ν , (8)

where we define the notation,

(W )ν , ⌊BνW ⌋, (9)

to represent the integer value comprised of the top ν digits of

the normalized quantity W . This will be the standard notation

throughout this work.

The GDoF framework uses such exponential representations

in a generic B-ary alphabet, and allows the base B to approach

infinity. This has the advantage that it removes lower order

effects (because of normalization by log2(B) when measuring

information in B-ary units), thus smoothing out the finer

details, e.g., the choice of the particular input distribution,

which do not scale with alphabet size, and exposes the

sharp fundamental tradeoffs that are typically expected from

dimensional analysis. In fact, for the GDoF framework, instead

of the interval [0, 1) it suffices to assume that W and W̃ are

O(1), i.e., bounded by some constants independent of B. We

will use the overline and tilde notations throughout this work

to represent the normalized (limited to O(1)) precise values

and noise, and µ•, ν• for the magnitude and precision levels,

respectively.

B. Dimensional Analysis: min(νf , νg) ≥ pν

As the main result of this work we will show in this section

that for AMD codes the uploads to each server (Fi,Gi) need

precision levels (νf , νg) that are at least p times greater than

the precision level of the computed product (ν). In other words,

the main result is the bound,

min(νf , νg) ≥ pν.

Using notation consistent with the GDoF formulation, the

uploads to the servers are represented as

Fi = Bµf (Fi +B−νf F̃i) = Bµf−νf (Fi)
νf (10)

Gi = Bµg (Gi +B−νgG̃i) = Bµg−νg (Gi)
νg (11)

where

Fi = U1 + αiU2 + · · ·+ αp−1
i Up (12)

Gi = αp−1
i V1 + αp−2

i V2 + · · ·+Vp. (13)

It is assumed that the normalized inputs Ui,Vi, and the noise

terms F̃i, G̃i are all O(1). Thus, the uploads Fi,Gi have

precision νf , νg , respectively. The scaling factors Bµf , Bµg

can be normalized away in this setting, but let us keep them for

an explicit representation of the scale of Fi and Gi. Following

the insights of [32], the distinct constants αi are assumed to

be small, say

αi = B−δαi (14)

for some δ > 0 and αi = Θ(1). The products FiGi computed

by the servers are expressed as follows.

FiGi = Bµf+µg

(
FiGi +B−νf F̃iGi +B−νgFiG̃i

+B−νf−νg F̃iG̃i

)
(15)

which has precision limited to min(νf , νg) digits because of

the additional noise terms. From Server i, the user downloads

FiGi to νy digit precision. Since FiGi has only min(νf , νg)
digit precision, we require

νy ≤ min(νf , νg). (16)

The download from Server i is then represented as

Yi = Bµf+µg (Yi +B−νyỸi) = Bµf+µg−νy (Yi)
νy (17)

Yi = FiGi (18)

= U1Vp + αi(U1Vp−1 +Up−1Vp) + · · ·
+ αp−1

i (U1V1 + · · ·+UpVp) + α2p−2
i (UpV1) (19)

= X0 + αiX1 + · · ·+ α2p−2
i X2p−2 (20)

The compact notation Xi is used for the O(1) terms that

represent the corresponding sums of various UiVj terms. The

desired term is Xp−1.

A recovery threshold of p means that decoding must be

accomplished with only p server responses. Without loss of

generality, say we have the responses Y1, · · · ,Yp.




Y1

Y2

...

Yp


 = Bµf+µg




1 α1 · · · αp−1
1

1 α2 · · · αp−1
2

...
... · · ·

...

1 αp · · · αp−1
p







X0

X1

...

Xp−1




+Bµf+µg




αp
1 · · · α2p−2

1

αp
2 · · · α2p−2

2
... · · ·

...

αp
p · · · α2p−2

p







Xp

Xp+1

...

X2p−2


+Bµf+µg−νy




Ỹ1

Ỹ2

...

Ỹp




(21)

From here, with certain (‘mild’) additional assumptions (see

Section VI and Section VII) it can be information theoretically

argued that the desired quantity Xp−1 = UV can be recovered

from Y with precision no higher than (min(νy, pδ) − (p −
1)δ)+. We defer the information theoretic derivation to Section

VII at the end of this paper, and provide here an intuitive

justification instead, as follows.

Solving for Xp−1 = UV involves an inversion of the first

Vandermonde matrix while treating the other terms as noise.

The first Vandermonde matrix has condition number at least

Ω(B(p−1)δ), which causes a noise amplification by that factor

in the remaining terms. Intuitively, since X0,X1, · · · ,Xp−2



dominate Xp−1, this amounts to projection of the Y vector

along the vector that lies in the null space of the first p − 1
columns of the first vandermonde matrix. In this projected

dimension, Xp−1 can be recovered as the dominant term, and

the remaining noise level is determined by the stronger of the

two projected noise terms: the projection of Ỹ, which has

strength Bµf+µg+(p−1)δ−νy , and the projection of Xp, which

has strength Bµf+µg+(p−1)δ−pδ. Note that the B(p−1)δ scaling

factor appears in each case due to the noise amplification

impact of the inversion of the first Vandermonde matrix. This

allows the user to recover

UV = UV +B(p−1)δ−min(νy,pδ)ŨV (22)

Thus, the answer can be recovered with ν digit precision,

provided that,

ν ≤ min(νy, pδ)− (p− 1)δ (23)

≤ min(νf , νg, pδ)− (p− 1)δ (24)

=⇒





ν ≤ νf − (p− 1)δ
ν ≤ νg − (p− 1)δ
ν ≤ δ

(25)

Thus, the dimensional analysis yields a bound on the required

precision of the uploads as,

νf ≥ ν + (p− 1)δ (26)

≥ ν + (p− 1)ν (27)

= pν (28)

Similarly, νg ≥ pν.

IV. OBSERVATIONS

Let us interpret the result of [32] that is summarized as

Theorem 1 in this paper, in GDoF terms. To this end, let η =
Bµ/2, ǫ = Bµ−ν , where ν can be regarded as the precision

level. Thus the entries of U,V are of the order Bµ/2, so

that the entries of C are of the order Bµ. The precision level

of each entry is at least ν digits in the B-ary alphabet. [32]

shows that to evaluate the matrix product to ν digit precision,

the choice of the αi should satisfy condition (6) which is re-

stated as follows in GDoF terms,

|αi| = B−δαi ≤
Bµ−ν

6Bµ
√
2p− 1(p2 − p)

= O(B−ν) (29)

=⇒ δ ≥ ν (30)

This is indeed one of the conditions that we find from our

dimensional analysis as well, as it appears in (25).

The dimensional analysis goes a bit further, and reveals a

rather pessimistic outlook according to which AMD codes fall

short of even trivial repetition codes in all aspects. A repetition

code refers to the scheme that assigns the full computation task

to each server by uploading the entire U,V matrices to each

server, with ν digit precision, and downloads the result of the

computation from any 1 server, also to ν digit precision. On the

other hand, AMD codes upload submatrices that are smaller by

1/p in terms of their number of elements, but with precision

pν for each element, which is p times larger, so they have

the same upload/storage cost as repetition codes. Moreover, in

terms of recovery threshold, computation cost, and download

cost, AMD codes are strictly worse than repetition codes.

Repetition codes have a recovery threshold of 1 because

the download from any 1 server suffices. While repetition

codes download the answer UV as a λ × λ matrix to ν
digit precision from only one server, AMD codes download

a λ × λ matrix from each of p servers, in each case to pν
precision, so the download cost of AMD codes is p2 times

greater than repetition codes. In terms of computation cost,

recall that the complexity of multiplying two n digit numbers

is super-linear in n — the trivial multiplication scheme has

complexity O(n2) but the Schönhage—Strassen algorithm

reduces it to Õ(n logn) which is still superlinear. Now, AMD

codes require fewer multiplications by a factor of 1/p due

to matrix partitioning, however, since each multiplication is

between numbers with a greater number of digits by a factor

of p, and the complexity of multiplication is super linear in the

number of digits, it turns out that AMD codes require greater

computation complexity at each server, compared to repetition

codes. Specifically, AMD codes require p times fewer multi-

plications than repetition codes but each multiplication has

complexity Õ(pν log(pν)) for AMD codes, as compared to

Õ(ν log ν) for repetition codes. The comparison is illustrated

in Table I. While encoding and decoding complexities are not

listed in the table, note that repetition codes do not require

encoding/decoding at all, so AMD codes fall short of repetition

codes in this regard as well.

MatDot codes AMD codes Repetition codes

Recovery
threshold

2p− 1 p 1

Upload/storage
per server

ν/p ν ν

Total
Download

(2p − 1)ν p2ν ν

Computation
cost per server

Õ( ν log ν

p
) Õ(ν log(pν)) Õ(ν log ν)

TABLE I: MatDot codes vs AMD codes vs repetition codes.

Values shown are relative to each other.

Last but not the least, it is important to also note the

caveat that while dimensional analysis allows elegant char-

acterizations of fundamental tradeoffs, this elegance relies

on asymptotic analysis that neglects lower order effects. As

such, in settings where the lower order effects are important,

e.g., where matrices comprised of small numbers are being

multiplied to low precision so the large B assumption is not

justified, it is conceivable that the conclusions of the dimen-

sional analysis may be violated. While dimensional analysis

informs our intuition and provides principled reasoning at a

high level, ultimately numerical results are still important to

fully reveal the finer tradeoffs for particular settings. Elaborate

experiments are beyond the scope of this work, but modest

numerical results are provided next, that indeed validate the

insights from the dimensional analysis.



V. NUMERICAL RESULTS

Consider a simple setting where p = 3, and the dimensions

of the U, V matrices are 1× 3 and 3× 1, respectively, U =
[U1, U2, U3],V = [V1, V2, V3]

T , where U1, U2, U3, V1, V2, V3

are uniformly i.i.d. over [0, 1]. We use base B = 10, i.e.,

decimal representations. The recovery threshold of AMD

codes for this setting is R = 3, and to simplify5 our simulation,

we consider the setting N = R = 3. The encoded version of

the constituent matrices for Server i are the following two

scalars.

Fi = truncate(U1 + αiU2 + α2
iU3, γ), (31)

Gi = truncate(V3 + αiV2 + α2
iV1, γ), (32)

where the function truncate(x, γ) truncates the value of x at

γ digits after the decimal. The answer returned by Server

i is Yi = truncate(FiGi, γ). Denote maxi∈[N ] αi as αmax,

the selection of evaluation nodes α1, α2, α3 is given as αi =
i
N αmax, ∀i ∈ [N ]. We use the decoding algorithm6 [32, (55)],

i.e., the minimum norm solution to decode ǫ-approximate

MatDot codes.

Figure 2 plots the Monte Carlo simulation results of up-

load/download cost per server (i.e., γ) versus mean absolute

error (MAE) for γ ∈ {4, 5, · · · , 16} and αmax = 10−4. It

is evident that to achieve the desired approximation error of

10−4, i.e., ν = 4, the upload/download cost per server required

is at least γ = 12 = 3×4 = pν, which confirms our analytical

result. Figure 3 plots Monte Carlo simulation results of αmax

versus MAE for αmax ∈ {10−7, 10−6, · · · , 10−1} and γ = 12.

Simulation results show that for the given upload/download

cost per server γ = 12, the best approximation error is

achieved when αmax = 10−4 = 10−12/3 = 10−γ/p. Since

given γ = 12, as illustrated in the red line in Figure 3,

repetition codes (which do not depend on the selection of

αmax) achieve the MAE of no more than 10−4 with the same

upload cost, this again confirms our analytical results that ǫ-
approximate MatDot codes fall short of repetition codes.

VI. CONCLUSION

The nature of our analysis is that of a converse argument,

i.e., an impossibility result, which is only as strong as the

generality with which it applies. So it is important to note

its limitations. For instance, the information theoretic analysis

in Section VII assumes Xi are independent and scalars, but

neither of those assumptions is beyond reproach. Indeed, while

Xi are perhaps algebraically independent, they may not be

statistically independent, and in general they can certainly be

matrices. The assumptions of Section VII are still meaningful,

in that the converse applies to any scheme that does not take

advantage of any potential dependence between Xi and that

5Note that indeed, this is the best-case scenario for AMD codes. When
there are stragglers, i.e., N > R, the condition number of the corresponding
decoding matrix is even worse.

6To completely characterize the trade-off between upload/download costs,
approximation error ǫ and the choice of αmax, we do not declare failure
in our decoding algorithm even if the norm of the minimum norm solution
exceeds the threshold

√

2p − 1η2 in Algorithm 1 of [32].
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Fig. 2: Upload cost per server γ vs mean absolute error.
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Fig. 3: log10(αmax) versus mean absolute error.

decodes each element of the Xp−1 matrix by the same decod-

ing rule. To our knowledge, this is true for all existing CDMM

schemes, including AMD codes, and is likely to be true for

most future schemes as well, because the applications for

CDMM typically require low decoding complexity. Similarly,

aside from their magnitude constraints, the evaluation points

αi are assumed ‘generic’, which is also true for all known

schemes, but specialized choices of αi that achieve alignment

may be possible. This possibility is reminiscent of rational

alignment in wireless networks [35]. On the other hand, even

if such constructions are possible, the limited precision aspect

may negate their benefits, if analogies may be drawn from

wireless GDoF studies [36]. Nevertheless, all such limitations

of current analysis leave the door open for future surprises.

So while the benefits of AMD codes are indeed called in

question by current analysis, we do not expect this pessimistic

outlook to be the final word along this new research avenue.

On the contrary, we are optimistic that the idea of exploiting

the power dimension, that is introduced by AMD codes, may

find clever uses in coded computing to enable new forms of

interference alignment [37], [38], just as the power dimension

plays a critical role in the GDoF characterizations of wireless

networks. Better formalizations of the GDoF perspective for

distributed computing, that improve upon our rudimentary



attempt in this work, may be the key to future advances along

this promising research avenue.

VII. APPENDIX

Let us make the simplifying assumption that Xi, i ∈ [0 :
2p− 2] are independent scalars, and that there exists a finite

constant ∆ such that the joint differential entropy of any non-

empty subset S ⊂ {Xi : i ∈ [0 : 2p−2]} is bounded as h(S) >
∆ (bits). The assumption of independence of Xi and that they

are scalars may appear rather restrictive, because in practice

Xi may be neither, but the assumption is general enough to

encompass any decoding scheme that does not exploit potential

dependencies across Xi, and which applies the same decoding

rule to recover each element of the Xp−1 = UV matrix. See

Section VI for additional discussion of such limitations.

The ν digit precision of the recovered computed value is

represented by the following bound on the mean absolute error

distortion,

E|UV −UV| = O(B−ν). (33)

Therefore, we have

I(UV;UV) = h(UV)− h(UV | UV) (34)

≥ ∆− h(UV −UV | UV) (35)

= ν log(B) + o(log(B)) (36)

For step (36) we used the fact that Laplace distributions are

(differential) entropy maximizers subject to a mean absolute

deviation7 constraint. Now, if any decoding rule applied to

Y1:p recovers UV which represents Xp−1 = UV to ν-digit

precision, then we have the Markov Chain Xp−1 = UV ↔
Y1:p ↔ UV. From the GDoF perspective we have,

ν ≤ lim
B→∞

I(UV;UV)

log(B)
(37)

≤ lim
B→∞

I(Xp−1;Y1:p)

log(B)
(38)

For cleaner notation we will occasionally suppress o(log(B))
terms that are inconsequential for GDoF according to (38).

I(Xp−1;Y1:p) ≤ I(Xp−1;Y1:p) (39)

= h(Y1:p)− h(Y1:p | Xp−1) (40)

h(Y1:p) = h(Y1) + h(Y2 | Y1) + · · ·+ h(Yp | Y1:p−1)

≤ −(0 + 1 + · · ·+ (p− 1))δ log(B) + o(log(B)) (41)

This is because conditioning on Y1:i−1 allows (Gaussian)

elimination of X0:i−2 terms from Yi, leaving the dominant

term as B−(i−1)δXi−1 whose bounded support limits its

7The choice of mean absolute error vs mean squared error in (33) is
inconsequential from a GDoF perspective. For example, if the precision
constraint (33) is framed instead in terms of mean squared error, i.e., MSE
= O(B−2ν ), the same GDoF bound is still obtained by using the fact that
Gaussians are entropy maximizers subject to a variance constraint.

entropy to −(i− 1)δ log(B) (uniform distribution maximizes

entropy). Next we bound the other entropy term.

h(Y1:p | Xp−1) ≥ h(Y1:p | Xp−1,Xp+1:2p−2) (42)

= h


Q




X0

...

Xp−2

Xp





 = h(X0:p−2,Xp) + log | det(Q)| (43)

≥ ∆+ log | det(Q)| = log | det(Q)|+ o(log(B)), (44)

where

Q =




1 · · · αp−2
1 B−(p−2)δ αp

1B
−pδ

1 · · · αp−2
2 B−(p−2)δ αp

2B
−pδ

...
...

...
...

1 · · · αp−2
p B−(p−2)δ αp

pB
−pδ


 . (45)

Note that (43) follows by the assumption of independence.

The determinant of Q can be approximated as

| det(Q)| = O(B−(0+1+2+···+(p−2)+p)δ). (46)

Substituting this approximation into (44), we have

h(Y1:p | Xp−1) ≥ −(1 + 2 + · · ·+ (p− 2) + p)δ log(B).
(47)

Combining (38), (40), (41) and (47), we have our first desired

bound,

ν ≤ δ. (48)

Our next bound is obtained as follows.

I(Xp−1;Y1:p) = I(Xp−1; (Y1:p)
νy ) (49)

≤ I

(
Xp−1;

{
(Xi)

(νy−iδ)+
}
i∈[0:p−1]

)
(50)

= I
(
Xp−1; (Xp−1)

(νy−(p−1)δ)+
)

(51)

≤ H((Xp−1)
(νy−(p−1)δ)+) (52)

≤ (νy − (p− 1)δ)+ log(B) + o(log(B))
(53)

X0

δ

X1

· · ·

Xp−2 δ
Xp−1 δ

Xp

δ

Xp+1 · · ·

X2p−3

δ
X2p−2

(Y)νy

νy

Fig. 4: The digit levels where various Xi appear in Y



Recall that Y1:p is an invertible function of (Y1:p)
νy . The

key step (50) is explained by Figure 4 which shows that

(Y1:p)
νy is in turn a function (up to bounded distortion which

is inconsequential for GDoF) of the top νy digits of X0, the top

(νy−δ)+ digits of X1, the top (νy−2δ)+ digits of X2,· · · , and

the top (νy − (p− 1)δ)+ digits of Xp−1. Rigorous derivations

of such bounds, while tedious, may be found in several recent

works [39], so let us omit the details here. Combined with

(38) this gives us our other desired bound:

ν ≤ (νy − (p− 1)δ)+. (54)
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