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Abstract—In this paper, we consider the age of information
(Aol) of a discrete time status updating system, focusing on find-
ing the stationary Aol distribution assuming that the Ber/G/1/1
queue is used. Following the standard queueing theory, we show
that by invoking a two-dimensional state vector which tracks
the Aol and packet age in system simultaneously, the stationary
Aol distribution can be derived by analyzing the steady state of
the constituted two-dimensional stochastic process. We give the
general formula of the Aol distribution and calculate the explicit
expression when the service time is also geometrically distributed.
The discrete and continuous Aol are compared, we depict the
mean of discrete Aol and that of continuous time Aol for system
with M/M/1/1 queue. Although the stationary Aol distribution of
some continuous time single-server system has been determined
before, in this paper, we shall prove that the standard queueing
theory is still appliable to analyze the discrete Aol, which is even
stronger than the proposed methods handling the continuous Aol.

I. INTRODUCTION

Nowadays, real time data exchange and information trans-
mission are getting more and more important, especially in
those IoT applications. A network node needs fresh infor-
mation to implement certain computations or make resource
scheduling. The age of information (Aol) metric was proposed
in [1] to measure the freshness of the messages obtained at
the receiver, which is defined as the time a packet experiences
since it was generated at the source up to now. Since then, lots
of papers have been published considering different aspects of
Aol, both in theory and in practice [2].

In work [3]], the author determined the limiting time average
Aol for the updating system with M/M/1, M/D/1 and D/M/1
queues, respectively. The mean of the Aol for the basic queues
using LCFS discipline were obtained in [4]]. The authors of
paper [3] considered the system with multiple sources and de-
rived the average Aol of each source, using the newly proposed
method which is called the Stochastic Hybrid System (SHS)
analysis. For the case the system has two parallel transmitters,
the closed-form expression of average Aol was determined
in work [6] by sophisticated random events analysis. Another
related metric called the peak age of information (PAol) was
introduced in [7]], which is defined as the peak value of the
Aol just before it drops when every time a packet is received
by the reveiver. The Aol and peak Aol analysis for three queue
models was carried out in [7], including M/M/1/1, M/M/1/2
and M/M/1/2*, where in the last queue model the packet

waiting in queue can be replaced constantly by the newly
arriving packets, which is newer in time.

We observe that the analysis of the discrete time Aol was
considered in paper [8[, where the authors determined the
mean of the Aol and peak Aol for system with Ber/G/1
and G/G/oo queues by the results obtained in continuous Aol
analysis. After then, the Aol of discrete time status updating
system was also analyzed in work [9]]. The authors gave a new
description for one sample path of the Aol stochastic process.
Provided these results, a general expression of the generation
function of the Aol and peak was derived, which is equivalent
to obtain their stationary distributions. Recently, using the
queueing theory methods, the discrete time Aol and peak
Aol distributions are numerically determined in series work
[1O0]-[12]). In [13]], the stationary distribution of continuous
Aol is determined for single-server system with various queue
models, and it seems that the ideas and methods used in [9]
are from paper [[13]].

In this paper, we consider the discrete Aol of status updating
system with Ber/G/1/1 queue, concentrate on determining the
stationary distribution of the Aol at the destination. In [9], the
authors have obtained the Aol distribution assuming that the
queue used is Geo/Geo/1. Our work is different from theirs
in two aspects. Firstly, in their model, the queue buffer is
unbounded while we consider the bufferless system here. The
Aol analysis for system having infinite size is different from
that of finite size system. Secondly, it is not clear whether the
service time distribution can be relaxed to follow an arbitrary
distribution in [9]], since the Aol distribution of the generalized
system is not given explicitly. While in this work, we show
that by defining a two-dimensional state vector which records
the instantaneous Aol and the age of the packet in system,
all the random transitions can be described following standard
queueing theory. Therefore, the steady state of the established
two-dimensional process can give the stationary Aol, because
the Aol is contained as part of the state vector. It should be
pointed out that our basic idea is straightforward and different
from the methods proposed and used in [9]] and [13].

The concept of multi-dimensional state vector is also in-
troduced in [5]], where it makes up the SHS analysis for
continuous time status updating system. In fact, what we do
here is to generalize SHS analysis to discrete time cases. Due
to the difficulty of solving the system of rate (or intensity)-
balance equations, only the mean or some simple moments of
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Fig. 1. The model of a status updating system.

Aol can be calculated via the SHS analysis in [5]. However,
we will show that when the discrete Aol is considered,
the system of probability-balance equations can be solved
completely for some kinds of status updating systems, such
that the stationary distribution of any state component in
defined muiti-dimensional state vector can be obtained, not
only the distribution of Aol.

The stationary Aol distribution of many single-server sys-
tem has been determined by its Laplace-Stieltjes transfor-
mation (LST) in [13]]. Nevertheless, calculating the reverse
transformation is not easy. The stationary distribution usually
has no closed-form expression. Due to this, it is not easy
to reduce the continuous results of Aol analysis to discrete
versions by direct discretization. On the contrary, as long as
the system of stationary equations are solved, we can get
the explicit expression of discrete Aol distribution directly.
Moreover, we can approach the continuous Aol distribution
beginning with a approximate discrete time system, since any
continuous probability distribution can be approximated by a
k-point discrete one. Along this way, the Aol probability den-
sity function is established, avoiding performing the complex
reverse LST transformation.

The rest of this paper is organized as follows. We describe
the basic status updating system and give the necessary def-
inition in Section II. The main results are given in Section
III. We obtain the general formula of the stationary Aol
distribution assuming that Ber/G/1/1 queue is used in system.
As a specific example, Aol distribution expression of system
with Ber/Geo/1/1 queue is calculated. The distribution curves
for different system parameters are depicted in Section IV.
In the concluding remark of Section V, we discuss how to
generalize our analysis method to more Aol systms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The basic status updating system consists of a source node
and a destination node. The source observes a physical process
X (t) and samples the states of X (¢) at random times. An
updating packet is composed of the sampled state X (¢;) of the
process and the sample time ¢;. The source sends the packets
to destination via a transmitter, which is modeled as a queue.
In Figure[T] the model of a status updating system is depicted.

In the discrete time model, both the time and the Aol are
discretized. During the time when no packet is obtained at the
receiver, the Aol increases constantly. When the receiver gets
an update, the value of the Aol reduces to the system time of

the arriving packet at the end of that time slot. In general, the
system time of a packet equals the sum of the waiting time in
queue and the service time the packet consumes at the server.
However, for the queue model used in this paper, the packet
waiting time equals zero.

Now, we give the definition of the time average Aol under
the discrete time setting.

Definition 1. In the discrete time model, the limiting time
average age of information A is defined as

A 72, o) 0

where a(k) denotes the value of Aol at kth time slot.

We simply deal with the expression (1) as follows.
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is the probability that the Aol takes value n when the ob-
serving time tends to infinity. The number M is defined to be
M = maxi<p<ra(k).

Always the Aol processes are assumed to be ergodic. Ergod-
icity property ensures that we can obtain the Aol performance
metrics by investigating any one sample path of the process.
Notice that if all the probabilities m,, n > 1 are determined,
then the distribution of the Aol is known as well.

III. DISCRETE AOI-DISTRIBUTION: BER/G/1/1 QUEUES

In this Section, assume that the queue model is Ber/G/1/1,
we derive the general expression of the stationary Aol distri-
bution.

A. Stationary distribution of the Aol: Ber/G/1/1 queues

Assume that at each time slot, a new updating packet comes
independently and with identical probability p. We use A
to denote the interarrival time between successive arriving
packets, then the distribution of A is

Pr{A=j}=(1-p/'p (i=1)

The packet service time is represented by B, suppose that
its distribution is written as

Pr{B=j}=q¢; (j2>1)

The updating packet comes at the beginning of one time
slot, while the Aol is recorded and modified at the end of
each time slot. The terms state, age-state and the state vector
are used interchangeably.

Define the two-dimensional vector (ng,my), where ny
denotes the value of the Aol at the kth time slot and the second
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Fig. 2. An illustration of discrete state and state transfers: Status updating
system with Ber/G/1/1 queue.

component my, represents the age of the packet in system at
that time. Constituting the two-dimensional stochastic process

Aolgerja/ijn = {(ng, me) =g >my, > 0,k > 1}

In the following paragraphs, we analyze all the random
transfers of age-states (n,m) and determine the transtion
probabilities, such that the stationary equations describing the
steady state of the Aol process can be established. Notice that
the first component of the two-dimensional state vector, n,
denotes the Aol at the destination. Therefore, as long as all
the stationary probabilities of state (n,m) are determined, the
distribution of the Aol is obtained either. An illustration of the
discrete state and state transfers are provided in Figure 2]

First of all, assume that the state vector is (n,m) at the kth
time slot, where n > m > 0. At the (k + 1)th time slot, it
shows that (n,m) can only transfer to either (n 4+ 1,m + 1)
or (m+ 1,0) depending on whether or not the packet service
is complete. Because m is greater than zero, which means an
updating packet is served at the transmitter currently and the
system is full. Let Py, 1m),(5,5) be the transition probability the
age-state jumps to (4, j) at the next time slot from the current
state (n,m). We have that

Plo,m),(n+1,m+1) = Pr{B >m|B >m — 1} (2)

The conditional probability is used in equation (2) because
when the service time B is longer than m time slots, we must
know the event {B > m — 1}.

On the contrary, if the service of the packet finishes at the
next time slot, the system is emptied and the age-state changes
to (m + 1,0). Therefore, we have

P(n,m),(m—i—l,o) = PT{B = m|B >m — 1} 3)

Next, consider the case m = 0. At this time, the transmitter
is idle and the system is empty. Thus, the state transitions are
totally governed by the interarrival time A.

For the state vector (n,0), n > 1, if no packet comes at
next time slot, then

Pioy,(n1,00=1—p 4)

Assume that a new packet comes at next time slot. In this
case, we have to consider two sub-cases further. When the
packet comes and does not leave after one time slot, the age-
state changes to (n + 1, 1). Otherwise, if the arriving packet
finishes the service in single time slot and gets to receiver,
we show that the state vector will jump to (1,0). Summarize
above discussions, we obtain

Pn0),(nr1,1) =pPr{B > 1}, Puy0)0,0 =pPr{B=1}
So far, all the state transfers are analyzed and the corre-
sponding transition probabilities are determined. Define 7, )
as the stationary probability of the state (n,m). Then, we give
the stationary equations of the Aol process Aolpe,/q/1/1-

Theorem 1. Denote 7 (y, .,y as the stationary probability of
the age-state (n,m), where n > m > 0. Then, for the two-
dimensional stochastic process Aolp.,/G/1/1, the stationary
equations are determined as

T(nm) = T(n—1,m—1) Pr{B >m — 1|B >m — 2}
(n>m>2)
T(n,1) = T(n—1,00p Pr{B > 1} (n>2)
Tn0) = Tn-1,0 (1 =) + (il T(kan—1)
xPr{B=n—-1B>n-2} (n>2)
m10) = (k21 T(roy) pPr{B = 1}

(&)

Proof. We explain each line of (5) as follows. First of all,
for the case n > m > 2, the system is full and is still
full before one time slot. The newly arriving packet cannot
enter the transmitter if there exists such one, so that the state
transitions are totally determined by the random service time
B. Assume that the current state is (n — 1, m — 1), then with
probability Pr{B > m — 1|B > m — 2} the age-state jumps
to (n,m) at next time slot. This gives the first line of (5).

Consider the state (n,1) in second line, notice that before
one time slot the system is empty because m reduces to 0.
Starting with (n — 1,0), let a packet comes and stays at the
system, which occurs with probability p Pr{B > 1}, we show
that the age-state transfers to (n, 1) at next time slot.

Now, the state transitions of age-state (n,0), n > 2 are
analyzed. From the state (n—1,0), as long as no packet arrives
in next time slot, the value of the Aol at the receiver increases
1 and the second component m remains zero, we get the state
vector (n,0). On the other hand, assume that the original state
is (k,n — 1) and the service of the packet finishes at the next
time slot, it shows that the state will transfer to (1, 0) as well.
Combining all the transitions from (k,n — 1) to (n,0) where
k > n, we obtain the stationary equations for state vectors
(n,0), n > 2 and explain the third line of (5).

Finally, beginning with an empty system, an arriving packet
experiences single time slot service and then delivers to
destination will make the age-state jump to (1,0), which yields
the last equation in (5). ]



As long as all the probabilities 7, ,,) are determined by
solving the system of equations (5), the stationary distribution
of the Aol can be obtained since we have

n—1
Pr{A =n} = Zm:O T (n,m)
Furthermore, for k > 1, the distribution function of the Aol
can also be obtained as

Pr{A <k} = 22:1 Pr{A=n}= Z::1 Z:;lo T(n,m)

We solve the system of equations (5) and determine all the
stationary probabilities 7(,, ,,,) in Theorem 2.

(n>1) (6)

Theorem 2. When the Aol process Aolpe, /G 1)1 reaches the
steady state, the stationary probabilities for all the age-states
(n,m) are given as follows. Firstly,

pq F'(p, n)
Tn.0) = —~ = n>1 (7
O T T (=) S S (=1
and the probabilities T(pn m), n > m > 1 are solved as
el -a)Fpn—m) (2L, 0)
() L+p(l—a) Y Y, @
where for n > 2, define that

1— n—2 .
Flp,n)=(1—p)" '+ q—q PR O AR

®)

and denote F(p,1) = 1.

The proof of Theorem 2 is given in Appendix A.
Given all the stationary probabilities, the distribution of Aol
can be determined by equation (6).

Corollary 1. Assume that the queue used in status updating
system is Ber/G/1/1. When the system runs in steady state, the
stationary Aol-distribution is calculated as

n—1
PI‘{A = n} = T(n,0) + Zm:l T(n,m)

_ paF(p,n) + pPa(l—a) Yon Flpon —m) (33, @)
L+p(1—q1) 3oy X, @
The Aol cumulative probabilities are determined as

Pria<k}=Y" Pr{A=n} (k>1)

where F(p,n) is defined in equation (9).

Proof. Since the first component of the state vector denotes
the Aol at the receiver, the probability that the Aol equals n
can be obtained by adding up all the stationary probabilities
having n as first component. We show that

n—1
PI‘{A = TL} = Zm:O 7T(n,m)

n—1

=T(n,0) T Zm:l T(n,m)
_ pq1 F(p, n)

L+p(l—q) X 2o

N anl P’a(l—q)F(p,n—m)(3°, a)
1+ p(]- - ql) Zi:l Z?im @
_panF(p,n) +p*ai(l —q1) S Flp,n—m) (8, @)

L+p(l—q) Y 2o, @

m=1

For k > 1, the cumulative probability of the Aol equals the
sum of probabilities the Aol takes value n from n =1 to k.
This completes the proof of Corollary 1. [

B. The Aol stationary distribution: Ber/Geo/l/l queue

When the packet service time B is also a geometric random
variable, we can calculate the explicit expression of Aol
distribution. Suppose that B is distributed as

Pr{B=k}=(1-7""y (k>1) (10)

To keep queueing system stable, let p < ~. We first find all

the stationary probabilities by solving the system of equations

(5), and then derive the explicit expression of Aol-distribution.
The results are stated in Theorem 3 below.

Theorem 3. When the service time B is also geometrically
distributed, the stationary probabilities T (y ) are solved as

P2 [(1-p)" —(1=7)"]

T(n,0) = ( (p)t?(fm))(v*p() S (n>1)
_ p’Y 1_p n—m 1_7 mo__ 1—"Y n
Mnm) = (+y—pV)(v—p) (n>m=>1)

The Theorem 3 can be proved either from the general
formulas (7)-(9) or solving system of equation (5) directly.
We give the derivation details in Appendix B.

By collecting all the stationary probabilities with identical
Aol-component, we can derive the stationary distribution of
the Aol. The cumulative probability distribution of the Aol is
calculated accordingly. The calculation detalis are omitted.

Corollary 2. The distribution of Aol for the status updating
system with Ber/Geo/1/l queue is given as

p(A—p? (1 —p)" = (1 —7)"]
(p+~y—p7)(y—p)?
()P =)
(p+v—p7)(y—Dp)

Pr{A =n} =

(n>1) (11)
and the Aol cumulative probability is determined as

Pr{A <k} =1-— (1= p)y? [(1 = p)k+ly — p(1 — y)k+1]

(p+~v—p7)(y—p)
PP(1+ky) (1 —)Ft!
(p+v-p7)(y—Dp) (k21) (2

Notice that in order to obtain the stationary distribution
of Aol, we invoke a two-dimensional state vector (n,m)
where the first component denotes the instantaneous Aol at
the destination, while the latter parameter represents the age
of the packet in system. Since the system size is 1, so that
the packet waiting time is zero, the second component m is
exactly the packet service time, which should be geometrically
distributed in this case. We prove this claim by computing the
marginal distribution of M, which is defined as the random
variable of the second component of the age-state.
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Fig. 3. Numerical simulations of discrete Aol and discrete approximations of mean of continuous Aol.

For m > 1, we show that

oo

PO =m} =3 )
- Z:;mﬂ (iw) [(1 prjr - _(;W—)(z)_p—) (1—)"]
(p+n (p;i)(v -p) {1 ;p(l - ;7(1 -
- H%maﬂ)m (13)

We have used the probability expressions obtained in
Theorem 3. Probability (13) should be normalized by the
probability that the transmitter is not idle, since in that case
we have m = 0. It shows that

Pr{system is not idle}
_ > _ p1=9)
=1-) o =

p+7vy—pY
Therefore, for m > 1, we obtain that

Pr{M = m} B
Pr{system is not idle}

m—1

Pr{B =m} = (L=7)""y

which is indeed the geometric distribution with parameter ~.
From (11), the mean of the discrete Aol can be calculated.
We will show that when the time slot is sufficiently small,
the average discrete Aol is close to average continuous Aol,
which is denoted by A, /M/1/1 and is determined in [7] as

— 1
A =—1
M/M/1/1= < )

Corollary 3. For the system with Ber/Geo/l/l queue, the
limiting time average discrete Aol is equal to

1 p

p l+p

Pd
ﬁ Pd

(14)

——(d) 1 1
AB(—:T/Geo/l/l = v (1_7)—"_7—’_

Pd

and approaches ZM/]\/[/I /1 in almost all the range of py,
which is discrete traffic intensity and is defined as pq = p/~.

The Proof of Corollary 3 is shown in Appendix C.

IV. NUMERICAL RESULTS

In Figure [3] we draw the stationary distribution of discrete
Aol along with its cumulative probabilities. In addition, the
mean of discrete and continuous Aol are also depicted.

We take two group of parameters (p, ) with fixed ratio 0.5.
From Figure 34 it sees that the Aol distribution curve is more
concentrated when p and 7 are both larger, and has higher
peak probability. The cumulative probability distributions also
show that when the parameters are larger, the Aol cumulative
probability gets to 1 more faster.

Average Aols of system with M/M/1/1 and Ber/Geo/1/1
queue are given in Figure We draw both curves for three
different cases, where the service rate p (or ) is fixed and the
traffic intensity varies. Numerical results show that in almost
all the ranges of p (or pg), the mean of discrete Aol is very
close to its continuous counterpart.

V. CONCLUSION

In this paper, we find the stationary distribution of discrete
Aol for the system with Ber/G/1/1 queue. By defining a two-
dimensional age-state which contains Aol and describing all
the random state transitions, we show that the Aol distribu-
tion can be obtained if the steady state of constituted two-
dimensional stochastic process is solved. The idea of using a
multiple-dimensional state vector comes from SHS analysis of
Aol. What we do is generalizing SHS method to discrete time
status updating systems. The numerical results show that the
mean of discrete Aol is very close to the mean of continuous
Aol when time slot is small enough.

To obtain the exact probability density function of con-
tinuous Aol, often a reverse LST transformation has to be
computed which is not easy. We point out that although the
proposed idea is straightforward, it is still appliable to analyze
Aol of more systems. The biggest advantage is that the exact
expression of Aol distribution can be obtained as long as the
steady state of constituted Aol stochastic process is solved.
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APPENDIX A
PROOF OF THEOREM 2

In this Appendix, we solve the system of equations (5) and derive all the stationary probabilities 7y, ,,). For convenience,
the stationary equations are copied in the following.

T(n,1) = T(n—1,0p Pr{B > 1} (n>2)
W(no):ﬂ—(n 10)(1— ) (Zzonﬂ'(k’n_l))Pf{B:n—”B>’I’L-2} (TLZZ)
1,0 = (X521 7(k0)) pPr{B = 1}

Firstly, we show that the equations (17) can be simplified by eliminating the dependence on the second component m. For
a general age-state (n,m), n > m > 2, iteratively applying the first line of (17) yields

T(nm) = T(n—1,m—1) Pr{B >m — 1|B > m — 2} (n>m>2)

15)

T(n,m) = T(n—1,m—1) PI‘{B >m — ].|B >m — 2}
= T(n—2,m—2) Pr{B >m —2|B >m — 3} Pr{B >m — 1|B > m — 2}

= T(n—m+1,1) Pr{B > 1} x--- x Pr{B >m — 1|B > m — 2}
= T(n-mt1,1) Pr{B >m — 1}
= Tn—m,0)P(1 —q1) Pr{B >m — 1} (16)

For the last step recursion, we use the second line of (17).

Equation (18) shows that probability 7(, ), 7 > m > 1 can be represented by 7(, 0), m > 1. As a result, to solve system
of equations (17) we only need to determine those stationary probabilities 7, o).

Next, the infinite sum in the third line of (17) is calculated. We show that

(ZOO T (kn— 1)PT{B=n—1|B>n—2}
( T (k—nt1,0)P (l—ql)Pr{B>n—2}>Pr{B=n—1|B>n—2}
( o Te—nt1 o)) p(l —q1)Pr{B =n—-1}

=p(l— lh)qn 1 (ZZOZI W(k,u))
1-—

a1
_d-wae, (17
q1
In order to obtain equation (19), notice that the last equation in (17) implies that
o0 (1,0
T = (18)
Zk:l ®0 = Tpgy

Substituting (19) into the third line of (17), we derive the following recursive formula for the probabilities 7, o).

(1 —q)7m(,0

T(n,0) = T(n—1,0)(1 = p) + T’%q (n>2) 19)
Repeatedly using (21) yields following equations
(I —q)mq,
T(n,0) = Tn—1,0)(1 — ) + T(lo)%q
(I —q)m,0 (1 —q)mu0
= (W(nQ,o)(l -p)+ AQn—2 (1 -p)+ AQn—l
q1 q1
(1 —q)mu0
= M(n—2,0)(1 -p)?+ T() (1= P)gn—2 + qn—1]
(1= q1)7m(0 n—2 ,
= 1—p) bty ——2 7 1—p)Vqn_1- 20
Ta,0l—p)" + m ijo( P Gn-1-; 20)

Let n =1 in (22), we obtain the obvious equation m(; gy = 7(1,0)- Thus, the expression (22) is valid for all n > 1.



Since all the probabilities 7(,, .,y add up to 1, we have

ED NS S Ly Toum)
D INNLTTED DU DI Ly Tom)
- Zw T(n,0) + Z:Zl Z,imﬂ T(n-m,0P(1 — 1) Pr{B >m — 1}
= nO‘+pI—QDEZ:d(§:zﬂﬂwm)PﬂB>wn—l}
:(§271WMﬁJ[1+pﬂf—mJ§::;lPdB:>np—1ﬂ

T(1,0) e
o {1 +p(1—q1) Zle Pr{B >m — 1}} (21

from which the first probability 7(; ) can be determined as

Ppq1

_ = 22
O T ) X Pr{B>m—1} 22)
Define
1 (n=1)
F(p,n)=
w7 {(1 PRSI i (n22)
Thus, according to equation (22), we can write that
pq F'(p, n)
T(no) =T F(p,n = = n>1 (23)
o0 =Ta0 ) = T e s g (2
The other probabilities 7, ) can be determined by using recursive expression (18) as
T(n,m) = T(n-m,0)P(1 —q1) Pr{B >m — 1}
=0 P n—mp(—a) (3 )
21(1 — ) F — >
_ D ql( Q1) (pa n m) (Zl:m QI) (24)

T+p(l—qi) Xy Do

So far, we completely solve the system of equations (17) and obtain all the stationary probabilities. This completes the proof
of Theorem 2.

APPENDIX B
PROOF OF THEOREM 3

In this appendix, we solve the system of stationary equations when the queue adopted in system is Ber/Geo/1/1 queue.
It is not difficult to obtain the solutions in Theorem 3 by using the general results (6)-(9). Firstly, from the equation (22)
we have

ne (]. — ql)’]T 1,0 n—2 .
Tn0) = Tr,0y(L —p)" L+ —— 1D > U =pYauy

7=0
=m0l —p)" '+ qu)lmlvo) (Zj__j(l —pYi(l— 7)ngjv)
—7r(10>{ nlzj()(l_ >J]
= T(1,0) 1= ) ( -)" o .



The first probability 7(;,g) can be determined from equation (24) as

- Y4
O T =) S Pr{B >m—1}
_ Py
Lp(l =) 3oy Yo, (I =)k 1y
_ Py
L+p(l—v) > (L —y)mt
_ Py
T+p(1—=7)(1/7)
2
p+y—py
Combining (27) and (28), we obtain
1 _ n _ 1 _ n
o) = Py’ [(1—p)" = (1—7)"] (n>2) 27

(p+v—py)(v—p)
Notice that expression (29) is also valid for the case n = 1.
The other probabilities 7, ) can be found by calculating equation (18) directly. For n > m > 1, we have
T(n,m) = 7T(n—m,O)p(l - Q1) PI‘{B >m — 1}

= 7T(nfm,O)p(l - 7) Zk:m(l - V)k_lfy

= 71-(nfm,O)p(l - 7)m

_ @)’ —p (A =)™ = (1 =)"] (28)

(p+~y—p7)(vy—p)

So far, all the probabilities are determined. This completes the proof of Theorem 3.

APPENDIX C
PROOF OF COROLLARY 3

The average discrete Aol Z}fir /Geoy1/1 18 calculated as

ABer/Geo/l/l = Zn: nPr{A = n}

p(l - " (m)* o n
- (ptv-py ( p)? Z" 1 n(=2)"] (p+v—p7)(v—p) Z" =)
p(l—=p)* (p+y=—pN(r-p) (7)* PP(1=7)(2-7)
Tty -p? p*? (p+v—py)(y—p) o
_O=py  pPO-72-7)
p(y —p) (p+v—m)(7—p)7
(I=pv)y Q=72 -9) 29)

~pay(y = pay)  (pay + v — pay?) (Y — pav)Y
:1(1+1_7_Pd<1_7) pa(l —7) )
l=pa  1=pa 1+ (1=7)pa

1 1 d
e R e (30
Y pPd T + pd
where in (29) we substitute pg = p/.
It is easy to see that

p

ABer/Geo/l/l = Anymn = ; <1 + - P + 1+p>

when (1 — ) — 1, i.e., when the time slot is short enough.
This completes the proof of Corollary 3.



	I Introduction
	II System Model and Problem Formulation
	III Discrete AoI-distribution: Ber/G/1/1 queues
	III-A Stationary distribution of the AoI: Ber/G/1/1 queues
	III-B The AoI stationary distribution: Ber/Geo/1/1 queue

	IV Numerical Results
	V Conclusion
	References
	Appendix A: Proof of Theorem 2
	Appendix B: Proof of Theorem 3
	Appendix C: Proof of Corollary 3

