
ar
X

iv
:2

10
9.

12
07

0v
3

 [
cs

.I
T

]
 2

7
Ju

n
20

22
1

A Unified Treatment of Partial Stragglers and

Sparse Matrices in Coded Matrix Computation
Anindya Bijoy Das and Aditya Ramamoorthy

Abstract—The overall execution time of distributed matrix
computations is often dominated by slow worker nodes (strag-
glers) within the computation clusters. Recently, coding-theoretic
techniques have been utilized to mitigate the effect of stragglers
where worker nodes are assigned the job of processing encoded
submatrices of the original matrices. In many machine learn-
ing or optimization problems the relevant matrices are often
sparse. Several prior coded computation methods operate with
dense linear combinations of the original submatrices; this can
significantly increase the worker node computation times and
consequently the overall job execution time. Moreover, several
existing techniques treat the stragglers as failures (erasures) and
discard their computations. In this work, we present a coding
approach which operates with limited encoding of the original
submatrices and utilizes the partial computations done by the
slower workers. While our scheme can continue to have the
optimal threshold of prior work, it also allows us to trade off the
straggler resilience with the worker computation speed for sparse
input matrices. Extensive numerical experiments done over cloud
platforms confirm that the proposed approach enhances the
speed of the worker computations (and thus the whole process)
significantly.

I. INTRODUCTION

Matrix computations are an indispensable part of several

machine learning and optimization problems. The large scale

dimensions of the matrices in these problems necessitates

the usage of distributed computation where the whole job

is subdivided into smaller tasks and assigned to multiple

worker nodes. In these systems, the overall job execution time

can be dominated by slower (or failed) worker nodes, which

are referred to as stragglers. Recently, a number of coding

theory techniques [1]–[11] have been proposed to mitigate

the effect of stragglers for matrix-vector and matrix-matrix

multiplications (see [12] for a tutorial overview). For example,

[1] proposes to compute ATx, where A ∈ R
t×r and x ∈ R

t,

in a distributed fashion by partitioning the matrix A into two

block-columns as A = [A0 | A1], and assigning the job of

computing AT
0 x, AT

1 x and (A0 +A1)
T
x, respectively, to

three different workers. Thus, we can recover ATx if any

two out of three workers return their results. This implies that

This work was supported in part by the National Science Foundation (NSF)
under grants CCF-1910840 and CCF-2115200. The material in this work has
appeared in part at the 2021 Information Theory Workshop (ITW), Kanazawa,
Japan and the 2022 IEEE International Symposium on Information Theory
(ISIT), Aalto University in Espoo, Finland.

Anindya Bijoy Das (das207@purdue.edu) was with the Dept. of Electrical
and Computer Engineering at Iowa State University. He is now with the Dept.
of Electrical and Computer Engineering, Purdue University, West Lafayette,
IN 47907 USA.

Aditya Ramamoorthy (adityar@iastate.edu) is with the Dept. of Electrical
and Computer Engineering, Iowa State University, Ames, IA 50011 USA.

the system is resilient to one straggler, while each of those

workers has effectively half of the overall computational load.

In general, we define the recovery threshold as the minimum

number of workers (τ) that need to finish their jobs such that

the result ATx (for matrix-vector multiplication), or ATB

(for matrix-matrix multiplication; where B ∈ R
t×w) can be

recovered from any subset of τ worker nodes.

While the recovery threshold is an important metric for

coded computation, there are other important issues that also

need to be considered. First, in many of the practical exam-

ples, the matrices A and/or B can be sparse. If we linearly

combine m submatrices of A, then the density of the non-

zero entries in the encoded matrices can be up to m-times

higher than the density of A; the actual value will depend

on the underlying sparsity pattern. This can result in a large

increase in the worker node computation time. As noted in

[13], the overall job execution time can actually go up rather

than down. Thus, designing schemes that combine relatively

few submatrices while continuing to have a good threshold is

important. Second, much of prior work (see [13]–[20] for some

exceptions) treats stragglers as erasures, and thus discards the

computations done by the slower workers. But a slower worker

may not be a useless worker and efficiently utilizing the partial

computations done by the slower workers is of interest.

In this work, we propose an approach for both distributed

matrix-vector and matrix-matrix multiplications which makes

progress on both of the issues mentioned above. In our

approach, many of the assigned submatrices within a worker

node are uncoded; this makes the worker computations signif-

icantly faster. Moreover, our proposed approach can exploit

the partial computations done by the slower workers. We

emphasize that our approach continues to enjoy the optimal

recovery threshold (see [3]) for storage fractions of the form

1/kA and 1/kB (for the worker nodes). Furthermore, we also

present approaches to trade off the straggler resilience with

number of submatrices of A and B that are encoded.

This paper is organized as follows. In Section II, we

discuss the problem setup, related works and summarize our

contributions. Then, in Section III, we present the details of

our scheme and discuss our results about straggler resilience,

suitability for sparse input matrices and utilization of partial

computation. Next, in Section IV, we show the results of

extensive numerical experiments and compare the performance

of our proposed method with other methods. Finally, Section

V concludes the paper with a discussion of possible future

directions.

http://arxiv.org/abs/2109.12070v3

2

II. PROBLEM SETUP, RELATED WORK AND SUMMARY OF

CONTRIBUTIONS

In this work by matrix-computations we refer to either

matrix-vector multiplication or matrix-matrix multiplication.

In the case of matrix-vector multiplication, we typically parti-

tion matrix A into submatrices, generate encoded submatrices

and distribute a certain number of these encoded submatrices

and the vector x to n worker nodes depending on their storage

capacities. Each worker node computes (in a specified order)

the product of its assigned submatrices and the vector x. Each

time a product is computed, it is communicated to the central

node. The central node is responsible for recovering ATx once

enough products have been obtained from the workers.

Matrix-matrix multiplication is a more general and challeng-

ing problem. Here, we first perform a block decomposition of

matrices A and B with sizes q×u and q×v respectively. The

(i, j)-th block of A is denoted Ai,j , 0 ≤ i ≤ q − 1, 0 ≤ j ≤
u−1 (similar notation holds for the blocks of B). The central

node carries out encoding on both the Ai,j submatrices and

the Bi,j submatrices. In particular, although it calculates scalar

linear combinations of the submatrices, it is not responsible

for any of the computationally intensive matrix operations.

Following this, it sends the coded submatrices of A and B

to the workers. The worker nodes compute the corresponding

pair-wise products (either all or some subset thereof) of the

submatrices assigned to them in a specified order and send the

results back to the central node which performs appropriate

decoding to recover ATB.

A. Problem Setup

We assume that the system has n workers each of which

can store the equivalent of γA = 1
kA

and γB = 1
kB

fractions

of matrices A and B. It is assumed that some of the worker

nodes will fail or will be too slow (which is often the case in

real-life clusters); the number of such nodes is assumed to be

s (or less).

Definition 1. We define the recovery threshold as the min-

imum number of workers (τ) that need to finish their jobs

such that the result ATx (for matrix-vector multiplication,

where A ∈ R
t×r and x ∈ R

t), or ATB (for matrix-matrix

multiplication; where A ∈ R
t×r and B ∈ R

t×w) can be

recovered from any subset of τ worker nodes.

The recovery threshold of a scheme is said to be optimal

if it is the lowest possible given the storage constraints of the

worker nodes.

In our approach, we partition matrix A into

∆A = LCM(n, kA) submatrices (block-columns) as

A0,A1,A2, . . . ,A∆A−1 where LCM indicates the least

common multiple. We also partition matrix B into ∆B = kB
submatrices (block-columns) as B0,B1,B2, . . . ,B∆B−1

and set ∆ = ∆A∆B . We denote the number of assigned

submatrices from A and B to any worker as ℓA and ℓB
respectively, so ℓA = ∆A

kA
and ℓB = ∆B

kB
= 1. Any worker

will compute all pairwise block-products, thus the worker will

be responsible for computing ℓ = ℓAℓB = ℓA block-products.

We say that any submatrix Ai, for i = 0, 1, . . . ,∆A − 1,

appears within a worker node as an uncoded block if Ai is

assigned to that worker as an uncoded submatrix. Similarly,

Ai is said to appear within a worker node in a coded block if

a random linear combination of some submatrices including

Ai is assigned to that worker. At this point, we define the

“weight” of the encoded submatrices as it will serve as an

important metric for working with sparse input matrices.

Definition 2. We define the “weight” of the encoding as the

number of submatrices that are linearly combined to arrive at

the encoded submatrix.

If the “input” submatrices A and/or B are sparse, the

encoded submatrices will be denser and the density is propor-

tional to the weight of the encoding. Computing the product

of two dense matrices is more computationally expensive than

computing the product of two sparse matrices. Thus, low

weight encodings are desirable to enhance the speed of overall

computation in case of sparse matrices.

In each worker node there are locations numbered

0, 1, . . . , ℓ − 1 where 0 indicates the top location and ℓ − 1
the bottom location. The worker node starts processing the

assigned submatrix product at the top (location 0) and then

proceeds downwards to location ℓ− 1. For this system, if the

central node can decode ATB from any Q block products

(respecting the top-to-bottom computation order), we say that

the scheme has the corresponding Q/∆ value. A smaller Q/∆
value of a system indicates that the system can utilize the

partial computations of the slower workers more efficiently

than a system with higher Q/∆ value. It is to be noted that

in our problem there are a total of ∆ submatrix products to

be recovered. Hence, Q/∆ ≥ 1.

We shall use the terminology of symbols and submatrices

(or submatrix-products) interchangeably at several places.

B. Discussion of Related Work

Several coded computation approaches [1]–[11] have been

introduced in the literature of distributed matrix multiplication

in recent years. Many of these ideas are presented in a tutorial

fashion in [12]. We compare the properties of different coded

matrix-multiplication schemes in Table I. Moreover in Table

II, we outline the notations used in this paper.

With storage fractions γA = 1/kA and γB = 1/kB and

q = 1, the approach in [3] has a threshold τ = kAkB
which is shown to be optimal [3]. It proceeds by creating

encoded matrix polynomials whose coefficients correspond to

the blocks of the input matrices and subsequently evaluating

them at distinct points. The decoding process corresponds to

polynomial interpolation. Moreover, there are other variants

of polynomial code-based works [7], [20], random code-based

approaches [8], or convolutional code-based methods [6], [10]

which are also resilient to optimal number of stragglers.

It should be noted that there are several other approaches

[13], [16], [23] which are sub-optimal in terms of straggler

resilience.

There are some works [2], [4], [24], [25] which consider

the case of q > 1 in the block decomposition of the input

3

TABLE I: Comparison with existing works on distributed matrix-matrix multiplications. We did not add the works of [6], [16], [21], [22]

in this table since they are applicable for matrix-vector multiplication only.

CODES
OPTIMAL NUMERICAL PARTIAL SPARSELY

THRESHOLD? STABILITY? COMPUTATION? CODED?

REPETITION CODES ✗ ✓ ✗ ✓

PROD. CODES [23], FACTORED CODES [11] ✗ ✓ ✗ ✗

POLYNOMIAL CODES [3] ✓ ✗ ✗ ✗

BIV. HERMITIAN POLY. CODE [20] ✓ ✗ ✓ ✗

ORTHOPOLY [7], RKRP CODE [8]
✓ ✓ ✗ ✗

CONV. CODE [10], CIRC. & ROT. MAT. [9]

β-LEVEL CODING [14] ✗ ✓ ✓ ✓

SCS OPTIMAL SCHEME [14] ✓ ✓ ✓ ✓

Proposed Scheme ✓ ✓ ✓ ✓

TABLE II: Notation Table

NOTATION DEFINITION DESCRIPTION

γA, γB STORAGE FRACTION FOR A AND B, RESPECTIVELY γA = 1

kA
, γB = 1

kB

n NUMBER OF TOTAL WORKER NODES n ≥ kAkB
sm NUMBER OF MAXIMUM POSSIBLE FULL STRAGGLERS sm = n− kAkB

∆A,∆B
NUMBER OF BLOCK-COLUMNS THAT ∆A = LCM(n, kA)

A AND B, RESPECTIVELY, ARE PARTITIONED INTO AND ∆B = kB
∆ TOTAL NUMBER OF UNKNOWNS THAT NEED TO BE RECOVERED ∆ = ∆A∆B

τ RECOVERY THRESHOLD OF THE SCHEME τ ≥ kAkB
s NUMBER OF STRAGGLERS s = n− τ
x RELAXATION IN NUMBER OF STRAGGLERS x = sm − s

y REDUCTION OF WEIGHTS IN CODED SUBMATRICES OF A y = ⌊ kAx

sm
⌋

Q
NUMBER OF SUBMATRIX PRODUCTS THAT HAVE TO BE COMPUTED

Q ≥ ∆
IN THE WORST CASE TO RECOVER THE INTENDED RESULT

ζ WEIGHT FOR THE ENCODING OF B ζ ≤ kB

ℓu, ℓc
NUMBER OF UNCODED AND CODED SUBMATRICES OF A ℓu = ∆

n
AND

ASSIGNED TO EVERY WORKER NODE ℓu + ℓc = ∆A/kA

matrices. While this can reduce the recovery threshold as

compared to the case of q = 1, it comes at the cost of

increased computational load at each of the workers. Moreover

the communication load between the worker node and the

central node also increases.

While much of the initial work on coded computation

focused on the recovery threshold, subsequent work has identi-

fied other metrics that need to be considered as well. Here we

discuss several such other concerns that have been discussed

in this literature.

Sparsity of the “input” matrices: There are practical applica-

tions in machine learning, optimization and other areas where

the underlying matrices A and B are sparse. If we want to

compute the inner product of two n-length vectors a and x

where a has around δn (0 < δ ≪ 1) non-zero entries, it takes

≈ 2δn floating point operations (flops) as compared to ≈ 2n
flops in the dense case where δ ≈ 1. The linear encoding in

several prior approaches [3], [4], [7], [8], [10], [20] is dense,

i.e., it significantly increases the number of non-zero entries in

the encoded matrices which are assigned to the worker nodes.

For example, in the approach of [3] the encoded matrices

of A (respectively B) are obtained by linearly combining

kA (respectively kB) submatrices. This in turn can cause the

worker computation time to increase by up to kAkB times,

i.e., the advantage of distributing the computation may be lost.

This underscores the necessity of considering schemes where

the encoding only combines a limited number of submatrices.

Numerical stability: Another major issue of the polynomial

based approaches [3] is numerical instability. It should be

noted that the encoding and decoding algorithms within coded

computation operate over the real field, although the cor-

responding techniques are borrowed from classical coding

theory. Unlike the finite field, the recovery from a system

of equations can be quite inaccurate in the real field if

the corresponding system matrix is ill-conditioned. The poly-

nomial code approach [3] uses Vandermonde matrices for

the encoding process which are well-recognized to be ill-

conditioned [26].

A number of prior works [7]–[10], [19], [27] have addressed

this issue and emphasized that the worst case condition number

(κworst) of the decoding matrices over all different choices of

s stragglers is an important metric to be optimized. The work

of [7] presents an approach within the basis of orthogonal

polynomials, and demonstrates that κworst of their schemes

is at most O(n2s). The approach in [10] proposes a random

convolutional code based approach, and provides a computable

upper bound on κworst, while the work of [9] leverages

the properties of rotation matrices and circulant permutation

4

matrices to upper bound κworst by O(ns+5.5). In terms of

numerical stability, [9] provides the best results in numerical

experiments. The work in [8] presents an approach where

they take random linear combinations of the submatrices

to generate the coded submatrices (this was also suggested

in Remark 8 of [3]) and shows the improvement over the

polynomial code approach. Some other approaches [6], [19]

address this issue, but they are applicable to matrix-vector

multiplication only.

Partial Stragglers: The third issue in distributed computations

is that several approaches [3], [7]–[10] treat stragglers as

erasures; in other words they assume that no useful infor-

mation can be obtained from the slower worker nodes. But

some recent works [14], [15], [20], [22] consider that a slow

worker may not be a useless worker; rather exploiting these

partial computations can enhance the speed of the overall job.

In these approaches, multiple jobs are assigned to each of

the worker nodes, so that the central node can leverage the

partial computations. This naturally leads to the Q/∆-metric

discussed previously; it was introduced in [22] and discussed

in-depth in [14]. We present a detailed comparison with [14]

in Section IV.

C. Summary of Contributions

The contributions of our work can be summarized as

follows.

• For a system with n workers each of which can store

γA = 1
kA

fraction of matrix A and γB = 1
kB

fraction

of matrix B, we propose a coded matrix-matrix multipli-

cation scheme which (i) is optimal in terms of straggler

resilience (s = n − kAkB); (ii) can utilize the partial

computations done by the slower worker nodes; and (iii)

enhances the worker computation speed when the “input”

matrices A and B are sparse. Specifically, several of the

assigned submatrices in our scheme our uncoded.

• Our work allows us to trade off the straggler resilience

with the weight of the encoding scheme. If the recovery

threshold is relaxed to τ = kAkB + x, then we can

further reduce the weight of the encoded A submatrices

while ensuring that the number of uncoded A submatrices

remains the same (as in the optimal threshold case). We

show that the coded submatrices will be linear combina-

tions of kA − y uncoded submatrices; where y = ⌊kAx
sm
⌋.

Thus the worker computation speed can be enhanced in

comparison to the case of τ = kAkB when x = 0.

• We provide upper and lower bounds on the value of Q for

our scheme. We show that for x = 0, the bounds are the

same. Moreover, we have demonstrated several numerical

examples which show that the difference between the

bounds is small even when x > 0.

• Our theoretical results are supported by extensive nu-

merical experiments conducted on AWS clusters. Fig. 1,

depicts such a comparison in terms of overall computation

time required by different approaches for sparse input

matrices in a system of n = 24 worker nodes. We have

simulated the stragglers in such a way that the slower

workers have one-fifth of the speed of the non-straggling

nodes. From Fig. 1, it can be verified that our proposed

approach requires significantly less overall computation

time than the dense coded approaches when the “input”

matrices are sparse.

D. Motivating Example

Example 1. Consider distributed matrix-matrix multiplication

with n = 5 workers each of which can store γA = γB = 1
2

portions of matrices A and B, respectively. The job assign-

ment according to our proposed approach is shown in Fig. 2,

where matrices A and B are partitioned into ∆A = 10 and

∆B = 2 submatrices, respectively. In this case, each worker

is responsible for computing all its corresponding pairwise

block-products in a natural top-to-bottom order, e.g., worker

W0 computes AT
0 (r0B0 + r1B1) followed by AT

1 (r0B0 +
r1B1), . . . , (c0A4+c1A9)

T (r0B0+r1B1). Thus, each worker

computes four uncoded-coded and one coded-coded block

products. It can be verified that for these parameters, both

the polynomial code approach and the approach in Fig. 2 are

resilient to one straggler.

We emphasize that the approach in Fig. 2 has some notable

advantages over the polynomial code approach. Suppose that

matrices A and B are sparse. In the polynomial code approach,

the encoded submatrices are approximately twice as dense

as the original matrices. Thus, computing the product of the

corresponding encoded matrices will take about twice as much

time as compared to uncoded-coded block products in Fig. 2.

Moreover, the latter approach can utilize the partial calcu-

lations done by the slower workers. The polynomial code

approach needs at least four workers to fully finish their

respective assigned jobs. On the other hand, in Fig. 2, the

final result can be recovered as soon as any Q = 23 block

products are computed over all the workers according to the

assigned computation order, where we recall that the central

node needs to recover twenty submatrix products of the form

AT
i Bj , 0 ≤ i ≤ 9, 0 ≤ j ≤ 1. Thus, our approach allows us to

leverage partial computations in scenarios where workers have

differing speeds. It should be noted that the approach in [14]

provides Q = 21 for the same system, however, the coding for

matrix A is denser in case of [14], which can lead to higher

worker computation time.

III. MATRIX-MATRIX MULTIPLICATION SCHEME

We now describe our proposed matrix-matrix multiplication

scheme, beginning with an illustrative example that describes

the encoding scheme and outlines the decoding scheme in case

of worker node failures.

A. An illustrative example

Consider the example in Fig. 3 where the system has 12
worker nodes each of which can store 1/3-rd fraction of A

and 1/3-rd fraction of B. First we partition A into 12 block-

columns, and assign three uncoded and one coded submatrix

of A to each of the worker nodes. The coded submatrices

are always linear combinations of three uncoded submatrices.

Similarly, we partition B into three block-columns, and assign

5

0 1 2 3 4 5 6
0

4

8

12

16

Number of slower workers

O
v
er

al
l

co
m

p
u

ta
ti

o
n

ti
m

e
(i

n
s
)

Polynomial code [3]
Ortho-Poly Code [7]
RKRP Code [8]
SCS optimal Scheme [14]
Proposed Scheme

0 1 2 3 4 5 6
0

12

24

36

48

Number of slower workers

O
v
er

al
l

co
m

p
u

ta
ti

o
n

ti
m

e
(i

n
s
)

Polynomial code [3]
Ortho-Poly Code [7]
RKRP Code [8]
SCS optimal Scheme [14]
Proposed Scheme

Fig. 1: Comparison among different coded approaches in terms of overall computation time for different number of slower worker nodes
when the “input” matrices are 98% sparse (left) or 95% sparse (right). The system has n = 24 worker nodes each of which can store
γA = 1/4 and γB = 1/5 fraction of matrices A and B, respectively, so the recovery threshold, τ = 20. The slower workers are simulated
in such a way so that they have one-fifth of the speed of the non-straggling workers.

W0 W1 W2 W3 W4

A0

A1

A2

A3

c0A4 + c1A9

r0B0 + r1B1

A2

A3

A4

A5

c2A6 + c3A1

r2B0 + r3B1

A4

A5

A6

A7

c4A8 + c5A3

r4B0 + r5B1

A6

A7

A8

A9

c6A0 + c7A5

r6B0 + r7B1

A8

A9

A0

A1

c8A2 + c9A7

r8B0 + r9B1

Fig. 2: Matrices A and B are partitioned into ten and two block-
columns, respectively. Each worker is assigned four uncoded-coded
and one coded-coded block-products. The coefficients ri’s and ci’s
are chosen i.i.d. at random from a continuous distribution.

only one coded B submatrix to each of the worker nodes; these

are always linear combinations of two uncoded B submatrices.

There is a particular top-to-bottom order in which the tasks

are executed within each worker node, e.g., in W0 it is

AT
0 (r0B0+r1B1),A

T
1 (r0B0+r1B1),A

T
2 (r0B0+r1B1) and

finally (c00A3 + c01A7 + c02A11)
T (r0B0 + r1B1), where

c00, c01 and c02 represent the random coefficients for the

encoded A submatrix in worker W0.

To better understand the structure of the encoding scheme,

consider the following class decomposition of A subma-

trices: C0 = {A0,A4,A8}, C1 = {A1,A5,A9}, C2 =
{A2,A6,A10}, C3 = {A3,A7,A11}. The assignment of

encoded A submatrices to each worker node are performed

in a “cyclic” fashion, whereby a representative from each

class is chosen for an uncoded assignment and a random

linear combination of all members of the class is chosen

for the coded assignment. For, instance in W0 the three

uncoded assignments are from (top-to-bottom) from classes

C0, C1 and C2 whereas the coded assignment is a random

linear combination of the members of C3. The sequence is

shifted cyclically in W1 and continues in a similar manner. The

encoding of the B submatrices also follows a cyclic-pattern

W0 W1 W2 W3 W4 W5

A0

A1

A2

{A3,A7,A11}

r0B0 + r1B1

A1

A2

A3

{A4,A8,A0}

r2B1 + r3B2

A2

A3

A4

{A5,A9,A1}

r4B2 + r5B0

A3

A4

A5

{A6,A10,A2}

r6B0 + r7B1

A4

A5

A6

{A7,A11,A3}

r8B1 + r9B2

A5

A6

A7

{A8,A0,A4}

r10B2 + r11B0

W6 W7 W8 W9 W10 W11

A6

A7

A8

{A9,A1,A5}

r12B0 + r13B1

A7

A8

A9

{A10,A2,A6}

r14B1 + r15B2

A8

A9

A10

{A11,A3,A7}

r16B2 + r17B0

A9

A10

A11

{A0,A4,A8}

r18B0 + r19B1

A10

A11

A0

{A1,A5,A9}

r20B1 + r21B2

A11

A0

A1

{A2,A6,A10}

r22B2 + r23B0

Fig. 3: Distributed matrix multiplication over n = 12 worker nodes
with γA = γB = 1

3
; so ∆A = 12 and ∆B = 3. In this figure,

any {Ai,Aj ,Ak} means a random linear combination of those
submatrices. The coefficients ri’s are chosen i.i.d. at random from a
continuous distribution.

whereby W0 contains a random linear combination of B0 and

B1, W1 contains a random linear combination of B1 and B2

and so on.

It can be verified that each class (for example, C0) appears

in each worker node either as an uncoded assignment or as

part of a coded assignment.

It turns out that this scheme is resilient to the failure of any

s = 3 workers. While a general proof requires more ideas,

we illustrate the recovery process by means of an example.

Suppose W0, W10 and W11 are failed so that all uncoded

assignments of A0 are lost. Note that A0 ∈ C0 and since

we only encode the A submatrices within a certain class, it

suffices for us to examine those submatrix products where

class C0 participates. From Fig. 3 we can see that A4 ∈ C0 and

A8 ∈ C0 participate in an uncoded manner in W2,W3,W4 and

W6,W7,W8 respectively. The coded assigments correspond-

ing to C0 appear in W1,W5 and W9.

6

Consider the following encoding matrices (with permuted

columns for ease of viewing) that represent the coding co-

efficients for the submatrices of A and B respectively. The

columns in left-to-right order correspond to worker nodes

specified in the expression for W in (3) below.

GA =





Uncoded A0

︷ ︸︸ ︷

1 1 1

Uncoded A4

︷ ︸︸ ︷

0 0 0

Uncoded A8

︷ ︸︸ ︷

0 0 0

Coded C0

︷ ︸︸ ︷

∗ ∗ ∗
0 0 0 1 1 1 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 1 1 1 ∗ ∗ ∗



 ,

(1)

GB =





∗ 0 ∗ ∗ ∗ 0 ∗ 0 ∗ 0 ∗ ∗
∗ ∗ 0 0 ∗ ∗ ∗ ∗ 0 ∗ 0 ∗
0 ∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ 0



 ,

(2)

W =
[
0 10 11 2 3 4 6 7 8 1 5 9

]
.

(3)

The asterisks in the above equations represent i.i.d. random

choices from a continuous distribution.

Suppose for instance that W0,W10 and W11 are stragglers.

In this case one can observe that from W2,W3 and W4 we can

recover the products AT
4 Bj for j = 0, 1, 2. This is because the

corresponding system of equations for these three unknowns

looks like




∗ ∗ 0
0 ∗ ∗
∗ 0 ∗



 , (4)

where the asterisks represent the chosen i.i.d. random coeffi-

cients. It can be seen that this matrix will be full rank with

probability-1. In a similar manner we can argue that from

W6,W7 and W8 we can recover the products AT
8 Bj , j =

0, 1, 2. Following this, workers W1,W5 and W9 allow the

recovery of AT
0 Bj , j = 0, 1, 2. A more involved argument

made in Section III-E shows that in fact under any pattern of

three stragglers the product ATB can be recovered.

The Q/∆ analysis is a bit more subtle. We divide the

workers into three groups: G0 = {W0,W1,W2,W3}, G1 =
{W4,W5,W6,W7} and G3 = {W8,W9,W10,W11}. Within

each group each class appears at all possible locations, e.g.

within G0, C0 appears at location-0 in W0, location-3 in

W1, location-2 in W2 and location-1 in W3 and so on. The

appearances of Cm in all different locations within a group

allows us to leverage the properties of the cyclic assignment as

done previously in [14], [22] and arrive at corresponding upper

and lower bounds for Q/∆. We note here that the bounds

match for x = 0. As this is much more involved, we defer the

argument to Section III-E.

B. Overview of Alg. 1

We now discuss the scheme specified formally in Algorithm

1. The symbols and notation introduced in Algorithm 1 are

summarized in Table II.

Weight of the linear combination of A and B submatrices:

Note that sm = n − kAkB is the maximum number of

stragglers that the scheme can be resilient to, whereas we

want resilience to s ≤ sm stragglers. Line 1 in Alg. 1 sets

Algorithm 1: Proposed scheme for distributed matrix-

matrix multiplication

Input : Matrices A and B, n-number of worker

nodes, s-number of stragglers, storage

fraction γA = 1
kA

and γB = 1
kB

;

s ≤ sm = n− kAkB .

1 Set x = sm − s and y = ⌊kAx
sm
⌋;

2 Set ∆A = LCM(n, kA) and ∆B = kB and Partition A

and B into ∆A and ∆B block-columns, respectively;

3 Set ∆ = ∆A∆B , p = ∆
n

and ℓ = ∆A

kA
;

4 Number of coded submatrices of A in each worker

node, ℓc = ℓ− p;

5 Set ω = 1 + ⌈ sm
kB
⌉ and ζ = 1 + kB −

⌈
kB

ω

⌉

;

6 Define Ci =
{
Ai, Aℓ+i, . . . , A(kA−1)ℓ+i

}
, and

λi = 0, for i = 0, 1, . . . , ℓ− 1;

7 for i← 0 to n− 1 do

8 u← i× ∆A

n
;

9 Define T = {u, u+ 1, . . . , u+ p− 1} (modulo

∆A);

10 Assign all Am’s sequentially from top to bottom to

worker node i, where m ∈ T ;

11 for j ← 0 to ℓc − 1 do

12 v ← u+ p+ j (mod ℓ);
13 Denote Y ∈ Cv as the set of the element

submatrices at locations (modulo kA)

λv, λv +1, λv + 2, . . . , λv + kA − y− 1 of Cv;

14 Assign a random linear combination of Aq’s

where Aq ∈ Y;

15 λv ← λv + kA − y (modulo kA);

16 end

17 Define V = {i, i+ 1, . . . , i+ ζ − 1} (modulo ∆B);

18 Assign a random linear combination of Bq’s where

Bq ∈ V;

19 end

Output : 〈n, γA, γB〉-scheme for distributed

matrix-matrix multiplication.

the parameter x = sm − s. Thus, x measures the relaxation

of the straggler resilience that we are able to tolerate. This

allows us to reduce the weight of the linear combination of

the A submatrices. In particular, let y = ⌊kAx
sm
⌋. Then, our

algorithm combines at most kA − y submatrices of A.

The encoded submatrices of B are obtained by combining

ζ submatrices of {B0,B1, . . . ,B∆B−1}. Line 5 specifies the

assignment of ζ; it can be observed that ζ ≤ ∆B = kB .

Assignment of encoded submatrices of A: We further di-

vide the set {A0,A1, . . . ,A∆A−1} into ℓ disjoint classes

C0, C1, . . . , Cℓ−1, i.e.,

Cm =
{
Am, Aℓ+m, A2ℓ+m, . . . , A(kA−1)ℓ+m

}
. (5)

This implies that |Cm| = kA, for m = 0, 1, . . . , ℓ − 1, and

submatrix Ai belongs to Ci (mod ℓ).

The worker nodes are assigned submatrices from each class

Cm, 0 ≤ m ≤ ℓ − 1 in a block-cyclic fashion; the block shift

is specified by ∆A/n (line 8). In each worker node, the first

p = ∆/n assignments are uncoded, i.e., they correspond to

7

a specific element of the corresponding class. The remaining

ℓc = ℓ − p assignments are coded. Each coded assignment

corresponds to random linear combination of an appropriate

(kA − y)-sized subset of the corresponding class. This is

discussed in line 8 – 16 in Alg. 1.

As each location of every worker node is populated by a

submatrix from a class Cm where 0 ≤ m ≤ ℓ − 1, we will

occasionally say that the class Cm appears at a certain location

(between 0 to ℓ − 1) at a certain worker node. To ensure

that each submatrix of Cm participates in “almost” the same

number of coded assignments, we use a counter λi to keep

track of the linear combination that will be formed from the

corresponding class Ci, 0 ≤ i ≤ ℓ− 1 (lines 6, 13 – 15 in Alg.

1).

In Section III-A, we discussed an example where x = 0
so that y = 0. Therefore, the encoded A matrices combine

all the three submatrices within the respective classes. There

are p = ∆/n = 3 uncoded A submatrices and one coded A

submatrix in each worker node.

Assignment of encoded submatrices of B: For worker Wi,

consider the set V = {i, i + 1, . . . , i + ζ − 1} (mod ∆B).
A random linear combination of Bk for k ∈ V is assigned

to worker Wi. We note here that ζ ≤ kB and can in fact be

as small as ⌈kB/2⌉ depending upon the values of kB and sm
(see line 5 of Alg. 1).

For instance, in Fig. 3, sm = 3 and kB = 3, so that ω = 2
which implies that ζ = 2. Thus, for instance for worker W8,

the set V = {8, 9} (mod ∆B) = {2, 0} (where ∆B = kB)

and it is assigned a random linear combination of B2 and B0.

Moreover, the patterns repeats periodically.

Order of jobs: Note that each worker node is only assigned

one encoded B submatrix. Each worker node computes the

product of its assigned A submatrices with the corresponding

encoded B submatrix in the top to bottom order.

In the following subsections we point out certain “structural”

properties of our scheme. In the presence of s stragglers,

suppose that there is a submatrix AT
i Bj where Ai ∈ Cm that

we cannot decode. Our scheme is such that we can just focus

on the equations where Cm participates. This provides a man-

ageable subset of equations where we can focus our attention.

Different properties of the scheme (Lemma 1 and Claim 2)

allow us to assert that the overall system of equations seen by

submatrices AT
i Bj where Ai ∈ Cm and j = 0, 1, . . . ,∆B − 1

is full-rank even in the presence of s stragglers (Theorem 1).

C. Coding for Matrix A

Let Ui denote the subset of worker nodes where Ai appears

in an uncoded block, for i = 0, 1, . . . ,∆A − 1. Likewise, Vi

denotes the subset of worker nodes where Ai appears in a

coded block. Our first claim states that the number of coded

appearances of any two submatrices in a class can differ by

at most one. The detailed proof is given in Appendix A.

Claim 1. If the jobs are assigned to the workers according to

Alg. 1, for any Ai,Aj ∈ Cm,
∣
∣
∣|Vi| − |Vj |

∣
∣
∣ ≤ 1.

W0 W1 W2 W3 W4

A0

A1

A2

{A3,A8}

{A4,A9}

x

A3

A4

A5

{A1,A6}

{A2,A7}

x

A6

A7

A8

{A14,A4}

{A0,A5}

x

A9

A10

A11

{A12,A2}

{A13,A3}

x

A12

A13

A14

{A10,A0}

{A11,A1}

x

Fig. 4: Matrix-vector case with n = 5 workers and s = 1
stragglers, with γA = 1

3
. Here, sm = n − 1

γA
= 2. In this figure,

any {Ai,Aj} means a linear combination of those submatrices,
where the coefficients are chosen i.i.d. at random from a continuous
distribution.

We now present a lemma which outlines the key properties

of the structure of encoding submatrices of A. It includes the

details on how a given submatrix Ai and the different classes

appear at different locations over all the worker nodes. The

proof of this lemma is detailed in Appendix B.

Lemma 1. Assume that the jobs are assigned to the workers

according to Alg. 1, and consider any submatrix Ai, for i =
0, 1, 2, . . . ,∆A − 1. Then (i) |Ui| = kB , (ii) |Vi| ≥ s and

Ui ∩ Vi = ∅, and (iii) a given class Cm, where 0 ≤ m ≤
ℓ−1, appears at all different locations 0, 1, . . . , ℓ−1 within the

worker nodes of any worker group Gλ, where 0 ≤ λ ≤ c− 1.

Example 2. To clarify the idea of the proof of Lemma

1(ii), We consider an example with distributed matrix-vector

multiplication (which is equivalent to kB = 1 in distributed

matrix-matrix multiplication) in Fig. 4 where we have a system

with n = 5 workers, γA = 1
3 and s = 1. We consider the class,

C0 = {A0,A5,A10}. It can be verified from Fig. 4 that

µ0 =
|V0|+ |V5|+ |V10|

3
=

2 + 1 + 1

3
=

4

3
.

So, ⌊µ0⌋ = 1 and ⌈µ0⌉ = 2; which satisfies the inequality

⌊µ0⌋ ≤ |V0|, |V5|, |V10| ≤ ⌈µ0⌉.

Thus, |Vi| ≥ 1 = s; for any i = 0, 1, . . . ,∆A − 1.

The following corollary states that the submatrices in Cm
are assigned to kAkB distinct workers as uncoded blocks and

to the remaining sm = n − kAkB workers as coded blocks.

The proof appears in Appendix C.

Corollary 1. If Cm =
{
Am, Aℓ+m, . . . , A(kA−1)ℓ+m

}
, then

(i)

∣
∣
∣
∣

(

∪
i:Ai∈Cm

Ui

)∣
∣
∣
∣
= kAkB and

∣
∣
∣
∣

(

∪
i:Ai∈Cm

Vi

)∣
∣
∣
∣
= sm ;

(ii)

(

∪
i:Ai∈Cm

Ui

)

∩

(

∪
i:Ai∈Cm

Vi

)

= ∅ .

D. Coding for Matrix B

To discuss the coding for matrix B, first we consider a

kB × n matrix, where each column has ζ ≤ kB non-zero

entries which are chosen i.i.d. from a continuous distribution.

Moreover, the indices of non-zero entries are consecutive and

8

shifted in a cyclic fashion, reduced modulo kB . For example,

if we have a system with n = 12 workers with kA = 2 and

kB = 5, then ζ = 3 and the corresponding coding matrix for

B, denoted as RB
kB ,n, can be written as

RB
kB ,n =









∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0
∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗
0 0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0









;

(6)

where ∗ indicates the non-zero entries. The entries at indices

i, i + 1, . . . , i + ζ − 1 (reduced modulo kB) are non-zero

(chosen i.i.d. from a continuous distribution) within column

i of RB
kB ,n and the other entries are set to zero. The non-zero

coefficients are used to specify the random linear combination

of the submatrices of B assigned to worker Wi.

Definition 3. A type i submatrix, for i = 0, 1, 2 . . . , kB −
1, is a random linear combination of the submatrices,

Bi,Bi+1, . . . ,Bi+ζ−1 (indices reduced modulo kB). Thus we

can say that worker node Wj is assigned a type j (mod kB)
submatrix (line 18 of Alg. 1).

Consider the case of x = 0 and any Ai, i =
0, 1, 2, . . . ,∆A − 1. From Lemma 1, we know |Ui| = kB
and |Vi| = sm (since x = 0, s = sm). Thus Ai appears at

σ = kB + sm worker nodes. We now investigate the types

(cf. Def. 3) of the coded submatrices of B in those σ worker

nodes. The following claim specifies the types of those B

submatrices, and the proof is given in Appendix D.

Claim 2. Consider the construction in Alg. 1 with x = 0 and

let k be the minimum index of the worker node where Ai

appears (uncoded or coded) and consider the worker nodes

in Ui ∪Vi. The assigned submatrices of B for those worker

nodes are, respectively, from types k, k+1, k+2, . . . , k+σ−1
(reduced modulo kB), which are σ consecutive types.

E. Straggler Resilience and bounds on Q/∆

Lemma 2. Consider any Ai, i = 0, 1, 2, . . . ,∆A − 1, for

the case of x = 0. Construct a kB × σ matrix Ri where

the columns of Ri correspond to the coefficients for coded B

submatrices of the worker nodes in Ui∪Vi and σ = kB+sm.

If ζ > kB −
⌈
kB

ω

⌉

, any kB × kB submatrix of Ri is full rank,

where ω = 1 + ⌈ sm
kB
⌉.

Proof. The proof is given in Appendix E. �

For any class Cm, the encoded submatrices of A within

different worker nodes can be specified in terms of a kA × n
“generator” matrix, e.g., in Fig. 2, the column of the generator

matrix for worker W0 corresponding to C4 = {A4,A9} will

be [c0 c1]
T . Similarly the encoded submatrices of B within

different worker nodes can be specified in terms of a kB × n
“generator” matrix, e.g., in Fig. 2, the column of the generator

matrix for worker W0 will be [r0 r1]
T . We use this formalism

in the discussion below.

Theorem 1. Assume that a system has n worker nodes each

of which can store 1/kA and 1/kB fraction of matrices A and

B, respectively. In each worker, according to Alg. 1, we assign

some uncoded A submatrices and some coded A submatrices

with weight kA − y , where sm = n− kAkB and y = ⌊kAx
sm
⌋.

We also assign a coded B submatrix to each worker which has

a weight ζ, as described in Lemma 2. Then, this distributed

matrix-matrix multiplication scheme will be resilient to s =
sm − x stragglers.

Proof. We assume that there are s = sm − x stragglers, and

we cannot recover an unknown AT
i Bj from the remaining

τ = kAkB + x workers. Let Ai ∈ Cm, for some m =
0, 1, 2, . . . , ℓ− 1. From Lemma 1 part (i), |Um| = |Uℓ+m| =
· · · = |U(kA−1)ℓ+m| = kB . Thus, from Corollary 1, without

loss of generality, by permuting the columns appropriately, the

kA×n generator matrix for the corresponding submatrices of

Cm can be expressed as

GA =









1kB
0 . . . 0

0 1kB
. . . 0

0 0 . . . 0 RA
kA,sm..

.
..
. . . .

..

.

0 0 . . . 1kB









,

where 1kB
represents an all-one row-vector of length kB . An

example of this is shown in Section III-A. Here RA
kA,sm

is

a random matrix of size kA × sm whose each column has

kA−y non-zero entries (and each row has at least s = sm−x
non-zero entries) where y is defined in Line 1 in Alg. 1. The

first kAkB columns of GA denote the uncoded submatrices

of Cm and the next sm = n − kAkB columns denote the

coded submatrices. Similarly, the generator matrix for the

corresponding coded submatrices of B is GB = RB
kB ,n (as

mentioned in (6)). Thus, the generator matrix for the unknowns

of the form AT
αBβ (where Aα ∈ Cm, β = 0, 1, . . . ,∆B−1) is

given by G = GA ⊙GB (⊙ denotes the Khatri-Rao product

[28] which corresponds to column-wise Kronecker product)

which is of size kAkB × n. The following lemma states a

relevant rank property of G, and the corresponding proof is

given in Appendix F.

Lemma 3. Any kAkB × τ submatrix of G has a rank kAkB
with probability 1, where τ = kAkB + x.

The unknowns corresponding to Cm can be represented in

terms of the following Kronecker product as

y =
[

AT
m AT

ℓ+m . . .AT
(kA−1)ℓ+m

]

⊗
[
B0 B1 . . .BkB−1

]

=
[

AT
mB0 AT

mB1 AT
(kA−1)ℓ+mBkB−1

]

,

thus there are kAkB such unknowns of the form AT
αBβ , where

Aα ∈ Cm. Note that AT
i Bj is also one of them which is

assumed to be not decodable from the τ workers. But from

Lemma 3, we can show that any kAkB × τ submatrix of G

has a rank kAkB with probability 1, which indicates that all

kAkB unknowns corresponding to Cm can be recovered from

any τ workers. This contradicts our assumption that AT
i Bj is

not decodable. �

9

Let us consider the example in Fig. 2, and apply the

argument for unknown AT
0 B0. Here we have ℓ = 5, so

A0 ∈ C0 = {A0,A5}. Thus to recover the unknowns of the

form AT
αBβ corresponding to C0, we have the corresponding

generator matrices as

GA =

[
1 1 0 0 c6
0 0 1 1 c7

]

, and

GB =

[
r0 r8 r2 r4 r6
r1 r9 r3 r5 r7

]

;

where the columns correspond to W0,W4,W1,W2 and W3,

respectively. Next we can have the generator matrix G =
GA ⊙ GB having a size 4 × 5 whose any 4 × 4 square

submatrix is full-rank. Thus we can recover the unknowns,

AT
0 B0,A

T
0 B1,A

T
5 B0 and AT

5 B1 from the results returned

by any four workers.

We now present the result of our work on utilizing the partial

computations. It provides the calculation of the value of Q for

our scheme for different system parameters. Before stating the

corresponding theorem, we state the following claim, which

follows from [14]. The proof is detailed in Appendix G.

Claim 3. Assume that the jobs are assigned to the workers

according to Alg. 1, and consider any class Cm, for m =
0, 1, . . . , ℓ − 1. The maximum number of submatrix-products

that can be acquired from the job assignments where Cm
appears exactly κ− 1 times is

η =
n(ℓ− 1)

2
+ c

c1−1∑

i=0

(ℓ − i) + c2(ℓ − c1) ;

where c = n
ℓ

, c1 = ⌊κ−1
c
⌋, and c2 = κ− 1− cc1.

Theorem 2. Alg. 1 proposes a distributed matrix-matrix multi-

plication scheme which provides Q such that Qlb ≤ Q ≤ Qub.

Here the bounds are given by

Qub =
n(ℓ− 1)

2
+ c

cx
1
−1

∑

i=0

(ℓ− i) + cx2(ℓ− cx1) + 1 ; and

Qlb =
n(ℓ− 1)

2
+ c

c0
1
−1

∑

i=0

(ℓ− i) + c02(ℓ − c01) +
⌈smy

kA

⌉

+ 1 ;

where c = n
ℓ

, cx1 =
⌊
kAkB+x−1

c

⌋

, cx2 = kAkB + x − 1 − ccx1

and y =
⌊
kAx
sm

⌋

.

Proof. The proof of this theorem is given in Appendix H. �

When x = 0, then τ = kAkB , cx1 = c01 and cx2 = c02, hence

Qlb = Qub = Q. Let us consider a special case, where n and

kA are co-prime. In that case, ∆A = n×kA, so ℓ = ∆A/kA =

TABLE III: Comparison of properties of the system with n = 8

and γA = 1

3
and γB = 1

2
for different values of x

x y τ Qlb Qub Q

0 0 6 59 59 59
1 1 7 60 62 61

n and c = 1. Moreover, c01 = kAkB − 1 and c02 = 0. Thus, we

have

Q =
n(n− 1)

2
+

kAkB−1∑

i=0

(n− i) + 1

=
n(n− 1)

2
+ nkAkB −

kAkB(kAkB − 1)

2
+ 1

= nkAkB +
(n− kAkB)(n+ kAkB − 1)

2
+ 1

≈ ∆+
sm × 2kAkB

2
+ 1

when sm = n − kAkB is very small. Thus, we have Q
∆ ≈

1 + sm
n

. If sm ≪ n, then Q/∆ is very close to 1, which

indicates that, in this special case, the proposed scheme can

efficiently utilize the partial computations done by the slower

workers.

It should be noted that the trivial lower bound of Q is ∆.

This can be achieved directly by assigning multiple evaluations

in many of the dense coded approaches [3], [7], [8]. But, the

issue here is sparsity. The weights of the encoded A and

B matrices in those approaches are kA and kB , respectively,

which can destroy the inherent sparsity of the matrices, so the

worker computation time can go up significantly.

In our proposed approach, the value of Q is slightly more

than ∆. However, we assign many uncoded A submatrices

and we reduce the weight of B submatrices, which help to

preserve the sparsity of A and B and can reduce the worker

computation time. Thus we can gain in overall computation

time as shown in Fig. 1 even though we lose a small amount

in the Q/∆ metric.

Example 3. We consider an example with n = 8 and γA =
1
3 , γB = 1

2 . So, we partition A into ∆A = LCM(n, kA) =
24 submatrices and B into ∆B = kB = 2 submatrices. The

properties of this scheme are discussed in Table III for different

values of x. For x = 0, the recovery threshold is 6, and Qlb =
Qub = Q = 59. Moreover, for x = 1, the recovery threshold

is 7 and Qlb ≤ Q ≤ Qub where Qub −Qlb = 2.

F. Dealing with sparse input matrices

We now discuss the performance of our scheme when the

input matrices are sparse. In our algorithm, among the ℓ sub-

matrices of A, we assign ℓu = ∆A∆B

n
uncoded submatrices,

where ∆B = kB; the rest ℓc = ℓ− ℓu submatrices are coded,

i.e.,

ℓc
ℓ

= 1−
ℓu
ℓ

= 1−
∆A∆B/n

∆A/kA
= 1−

kAkB
n

=
sm
n

.

10

The usual assumption is that sm ≪ n. This indicates that a

small portion of the whole storage capacity for A is allocated

for the coded submatrices. Thus, the worker nodes will take

less time to compute their assigned block-products in our

proposed approach. We clarify this with an example below.

Consider that A ∈ R
t×r and B ∈ R

t×w are two sparse

random matrices, where the entries are chosen independently

to be non-zero with probability η. Thus, when we obtain

a coded submatrix as the linear combination of kA subma-

trices of A, the probability of any entry to be non-zero is

approximately kAη (here we assume η is small). Similarly,

the probability of any entry in a coded submatrix of B to be

non-zero is approximately kBη, if it is obtained by a linear

combination of kB submatrices. Now for the dense coded

approaches [3], [7], [8], every worker node stores 1/kA and

1/kB fractions of matrices A and B, and thus the compu-

tational complexity of every worker node is approximately

O
(

(ηkAηkB × t)× r
kA

w
kB

)

= O
(
η2 × rwt

)
.

In our proposed approach with x = 0, the fraction of

uncoded A submatrices is kAkB

n
and the remaining sm

n

fraction is coded and obtained from linear combination of

kA submatrices. Moreover, the coded submatrix for B is

obtained by a random linear combination of ζ uncoded sub-

matrices. Thus, the computational complexity for a worker

node to compute the block product between an uncoded

A and coded B submatrix is O
(

(η × ηζ × t) r
∆A

w
kB

)

=

O
(

η2 × rwt × ζ
∆A∆B

)

. Similarly, the computational com-

plexity for a worker node to compute the block prod-

uct between a coded A and coded B submatrix is

O
(

(ηkA × ηζ × t) r
∆A

w
kB

)

= O
(

η2 × rwt × ζkA

∆A∆B

)

. Since

the workers need to compute p uncoded-coded and ℓ−p coded-

coded block products, the total computational complexity for

every worker node in our approach is approximately

p×O

(
η2 × rwt × ζ

∆A∆B

)

+ (ℓ − p)×O

(
η2 × rwt× ζkA

∆A∆B

)

=O

(

η2 × rwt ×

(
ζ

n
+

ζsm
nkB

))

.

Thus, the computational complexity of every worker node

of our approach is around O
(

ζ
n

(

1 + sm
kB

))

times smaller

than that of the dense coded approaches. So we claim that

our proposed approach is much more suited to sparse input

matrices than the dense coded approaches in [3], [7], [8].

For example, the worker computation speed in our proposed

scheme is expected to be approximately 3× faster than the

dense coded approaches in case of the system in Fig. 3; where

n = 12, kB = 3, ζ = 2 and sm = 3. The worker computation

speed can be further improved in our proposed approach if

we consider x > 0, when we combine kA − y submatrices to

obtain the coded submatrices of A.

It should be noted that there are certain approaches [8], [10]

where there are some “systematic” worker nodes which are

responsible for computing only the uncoded block-products.

The computational complexity of every such worker node is

approximately O
(

(η × η × t)× r
kA

w
kB

)

= O
(

η2 × rwt
kAkB

)

,

which is certainly lesser than that of any worker node in our

scheme. However, in the approaches of [8] and [10], there

are τ systematic worker nodes all of which are assigned

uncoded submatrices and sm parity worker nodes all of which

are assigned dense encoded submatrices. It can often be

the case that one of the systematic worker nodes is a full

straggler (failure). In that case, the master node requires results

from at least one parity worker node, where all the assigned

encoded submatrices are dense. That parity worker node will

require much more time to complete its job, hence the overall

computation time will be higher.

On the other hand, in our scheme we have assigned ℓu
uncoded and ℓc coded A submatrices to each worker node,

thus unlike [8] or [10], there is an underlying symmetry in our

scheme so that every non-straggling worker node takes similar

amount of computation time. Thus the overall computation

will be faster, as demonstrated in Fig. 1.

Remark 1. Our scheme is also applicable for distributed

matrix-vector multiplication. In that case, the usual assumption

is that each worker can store the whole vector x, and we can

prove similar theorems by substituting γB = 1 (or kB = 1).

IV. NUMERICAL EXPERIMENTS AND COMPARISONS

In this section, we compare the performance of our approach

with competing methods [3], [7], [8], [10], [14] via exhaus-

tive numerical experiments in AWS (Amazon Web Services)

cluster where a t2.2xlarge machine is used as the central

node and t2.small machines as the worker nodes. All the

corresponding software codes related to the numerical exper-

iments have been made publicly available [29] for ensuring

reproducibility of the results.

Worker Computation Time: We consider a distributed

matrix multiplication system with n = 24 workers, each of

which can store γA = 1
4 fraction of matrix A and γB = 1

5
fraction of matrix B. The input matrices A and B, of sizes

12000× 15000 and 12000× 13500, are assumed to be sparse.

We assume three different cases where sparsity (µ) of the

input matrices are 95%, 98% and 99%, respectively, which

indicates that randomly chosen 95%, 98% and 99% entries

of both of matrices A and B are zero. Table IV shows the

corresponding comparison of the different methods for the

worker computation time for this example. We note that in

real world problems, it is common that the corresponding data

matrices exhibit this level of sparsity (examples can be found

in [30]).

It should be noted that we have mentioned the average value

of worker computation time over all the workers in case of [3],

[7], [14] and our proposed approach. However, in case of [8]

and [10], we have shown the average worker computation time

over the parity workers only because the remaining worker

nodes are message workers where there is no coding involved.

It can easily be verified from the table that the workers

take significantly less time to compute the submatrix products

for our proposed approach than the other methods [3], [7],

[8], [10]. This is because in the other methods the coded

submatrices are linear combinations of all kA = 4 submatrices

from A (or kB = 5 submatrices from B).

11

TABLE IV: Comparison of worker computation time (in seconds)

for matrix-matrix multiplication for n = 24, γA = 1

4
and γB = 1

5

(*for [10], we assume γA = 2

5
and γB = 1

4
) when randomly chosen

95%, 98% and 99% entries of both of matrices A and B are zero.

METHODS S
WORKER COMP. TIME (S)

µ = 99% µ = 98% µ = 95%

POLY CODE [3] 4 1.23 3.10 8.21
ORTHO POLY [7] 4 1.25 3.13 8.14
RKRP CODE [8] 4 1.21 3.09 8.10

CONV. CODE* [10] 4 1.92 5.07 10.72
SCS OPT. SCH. [14] 4 0.91 1.89 4.67
PROP. SCH. (x = 0) 4 0.54 0.97 3.68
PROP. SCH. (x = 2) 2 0.45 0.81 3.21

uncoded A - coded B coded A - coded B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
o

rk
er

C
o

m
p

u
ta

ti
o

n
T

im
e

(i
n

se
c)

SCS optimal scheme [14]

Proposed Scheme x = 0

Proposed Scheme x = 2

Fig. 5: The comparison of worker computation time for the case of
sparse matrices with µ = 98%. We split the total time into two parts:
time required for multiplying p uncoded submatrices of A with the
coded submatrix of B and the time required for multiplying (ℓ− p)
coded submatrices from A and with the coded submatrix of B.

The work most closely related to our approach is our prior

work in [14] (SCS optimal scheme, see Section V in [14]).

Both approaches partition A and B into ∆A = LCM(n, kA)
and ∆B = kB submatrices, respectively. Moreover, both

approaches assign some uncoded submatrices of A and then

some coded submatrices of A; and assign a coded submatrix

of B to each of the worker nodes.

However, there are some crucial differences. [14] requires

the weight of the encoding of the A submatrices to be

∆A − ℓu which is much higher than kA − y. Furthermore

[14] does not allow for a trade-off between the number of

stragglers and the weight of the coded A submatrices; this is

a salient feature of our approach. Moreover, for the coding of

B, SCS optimal scheme in [14] assigns linear combinations

of kB submatrices, whereas in our proposed approach we

assign linear combinations of ζ submatrices where ζ can

be significantly smaller than kB . We emphasize that the our

proposed approach continues to enjoy the optimal straggler

resilience when x = 0. However, we point out that we lose a

small amount in the Q/∆ metric, with respect to SCS optimal

scheme in [14].

Table V shows the weight of the coding matrices for all

TABLE V: Weight of coding for the coded submatrices A and B for

different approaches where ∆A =LCM(n, kA) and ω = 1 +
⌈

sm
kB

⌉

.

The uncoded submatrices for these approaches are assigned in the
same way.

METHODS WEIGHT OF A WEIGHT OF B

SCS OPT. [14] ∆A − ∆AkB

n
= 19 kB = 5

PROP. (x = 0) kA = 4 1 + kB −
⌈

kB

ω

⌉

= 3

PROP. (x = 2) kA −
⌊

kAx

sm

⌋

= 2 1 + kB −
⌈

kB

ω

⌉

= 3

these approaches. In this example, to obtain the coded subma-

trix of A and B in the SCS optimal scheme in [14], we need

to have random linear combination of 19 and 5 submatrices,

respectively; whereas our proposed method assigns linear

combinations of 4 and 3 submatrices while having the optimal

straggler resilience. Moreover, in our proposed approach, if we

consider having a larger recovery threshold with x = 2, then

the weight of coding for A is even lesser. Thus, the worker

computation for our proposed approach is faster than the case

in [14] as shown in Table IV.

This is further clarified using Fig. 5 which shows a detailed

comparison of worker computation for computing uncoded-

coded and coded-coded matrix products. The proposed ap-

proach is faster than [14] when computing the uncoded A

- coded B products because of the reduced weight of encoded

B submatrices. Moreover, our approach is also faster in

computing the coded A - coded B products because of the

reduced weight of encoded A submatrices. Because of these

two differences in coding, worker computation is faster in our

proposed approach in comparison to [14].

Overall Computation Time: Now we compare different ap-

proaches in terms of overall computation time to recover ATB.

Overall computation time is the time required by the worker

nodes to compute the products so that the master node is

able to decode all the unknowns corresponding to ATB. Note

that it is different than the worker computation time discussed

above. For example, we have 24 worker nodes, and assume

that in polynomial code approach [3] (with recovery threshold

20), these worker nodes require t0 ≤ t1 ≤ t2 ≤ · · · ≤ t23
to compute their respective block-products. Then the overall

computation time for this approach is t19.

First, we consider the same system of n = 24 worker nodes

and sparse matrices with 98% or 95% sparsity. We assume

that there can be partial stragglers (slower workers) among

these n worker nodes where the slower workers have one-

fifth of the speed of the non-straggling nodes. We carry out

the simulations for different approaches for different number

of partial stragglers.

The results are demonstrated in Fig. 1 where we can see

that our proposed approach is significantly faster in terms of

overall computation time in comparison to the dense coded

approaches for different number of slower workers. This is

because our proposed approach utilizes the partial stragglers

and deals with sparsity quite well. It should be noted that there

are peaks for [3], [7] when there are five slower workers. The

12

0 1 2 3 4 5 6
6

10

14

18

Number of slower workers

O
v
er

al
l

co
m

p
u
ta

ti
o
n

ti
m

e
(i

n
s
)

Polynomial code [3]
Ortho-Poly Code [7]
RKRP Code [8]
SCS optimal Scheme [14]
Proposed Scheme

Fig. 6: Comparison among different coded approaches in terms of
overall computation time for different number of slower worker nodes
when the “input” matrices are fully dense. The system has n = 24
worker nodes each of which can store γA = 1/4 and γB = 1/5
fraction of matrices A and B, respectively, so the recovery threshold,
τ = 20. The slower workers are simulated in such a way so that they
have half of the speed of the non-straggling workers.

reason is that these codes are designed for four full stragglers

while they do not take account the partial computations of the

slower workers.

Next we simulate another example with dense “input”

matrices in the same system having n = 24 worker nodes

which include some slower worker nodes which have half of

the speed of the non-straggling nodes. The result for overall

computation time is demonstrated in Fig. 6. Although, the

approach in [14] is slightly faster than our proposed approach

(since it has a slightly smaller Q/∆ than ours), our proposed

approach still outperforms the dense coded approaches in [3],

[7], [8] in most of the cases.

Now in order to clarify the trade-off between Q/∆ and

the sparsity of the code, we emphasize that there are two

fold gains in computation time in our scheme: utilization of

partial stragglers and dealing with sparse matrices. Because

of these two fold gains, when the “input” matrices are sparse,

our approach outperforms all the approaches in [3], [7], [8]

and [14] as shown in Fig. 1. On the other hand, if the “input”

matrices are dense, we have the advantage in computation time

because of utilization of partial stragglers only. In that case,

since the approach in [14] has a slightly smaller Q/∆ than

ours, its overall computation is slightly faster, (see Fig. 6).

Value of Q/∆: Many of the available approaches in

coded matrix computations literature [3], [7], [8], [10] cannot

leverage the slow workers, because they assign exactly one

job to each of the worker nodes. On the other hand, the

proposed approach and [14] assign multiple jobs to each of the

worker nodes. This allows the opportunity to leverage partial

stragglers.

We consider the same example of n = 24 worker nodes

and show the comparison in Table VI in terms of Q/∆. We

can see that our approach has a slightly higher Q/∆ than the

approach in [14] and the value of Q/∆ can increase for the

choice of x > 0. However our proposed approach has the same

straggler resilience as [14] and has a significant gain over that

approach in terms of worker computation speed as shown in

TABLE VI: Comparison of utilization of partial stragglers and
numerical stability among different approaches

METHODS Q/∆ κworst

POLY CODE [3] N/A 2.40 × 1010

ORTHO-POLY [7] N/A 1.96 × 106

RKRP CODE [8] N/A 2.83 × 105

CONV CODE* [10] N/A 2.65 × 104

SCS OPT. SCH. [14] 124/120 4.93 × 106

PROP. SCH. (x = 0) 139/120 2.37 × 106

PROP. SCH. (x = 2) 141

120
≤ Q

∆
≤ 142

120
2.25 × 104

Table IV.

It should be noted that the approaches in [3], [7], [8] can

directly be extended to utilizing the partial computations of the

stragglers, and the corresponding Q/∆ value can be improved

to 1. However, in that case, the size of corresponding system

matrix increases significantly and that can lead to a very high

worst case condition number. It indicates that the systems can

be numerically unstable and the recovered results can be quite

inaccurate. This is also discussed in Table IX in [14] with

numerical examples.

Numerical Stability: For the same system we find the worst

case condition number (κworst) of the decoding matrices over

all different choices of s stragglers for all the approaches and

present them in Table VI. As expected, the polynomial code

approach [3] has a very high κworst. The works in [7], [8],

[10] have significantly smaller κworst; however they cannot

leverage the partial computations done by the slower worker

nodes. The method in [14] can utilize the partial stragglers

and also provide κworst in the similar range in comparison to

[6].

Now from Table VI, we can see that our approach for x = 0
also provides comparable values for worst case condition

numbers, which indicates that the corresponding decoding

matrix will not be ill-conditioned. The value of κworst is

further reduced when we consider the case of x = 2. Although

for x = 2, we have resilience to less number of stragglers, it

has significant advantage on worker computation time as we

have shown in Table IV.

V. CONCLUSION

In this work, we have proposed a distributed coded matrix-

multiplication scheme which (i) is resilient to optimal number

of stragglers, (ii) leverages the partial computations done by

the slower worker nodes and (iii) allows limited amount of

coding so that the scheme is suited specifically to the case

when the “input” matrices are sparse.

In our scheme, most of the assigned A submatrices are

uncoded which can preserve the sparsity of the input matrix

A. Thus, the worker computation speed is significantly faster

in our method in comparison to some other prior works. More-

over, our proposed scheme also allows a trade off between the

straggler resilience and the worker computation speed. Com-

prehensive numerical experiments on Amazon Web Services

(AWS) cluster support our findings.

13

There are several directions for the future work of this paper.

It may be interesting to examine if multiple B submatrices

can be assigned to a worker node to reduce the overall

worker computation time while maintaining all the desirable

properties of the scheme. Furthermore, we have the defined

Q as the worst case number of symbols to recover the final

result; analysis on the average number of symbols can be of

interest.

APPENDIX

A. Proof of Claim 1

Proof. We know |Cm| = kA, and we use the random linear

combinations of kA − y uncoded submatrices from matrix A

to obtain the coded symbols. Now consider the indices of the

submatrices of class Cm using the row vector

z̃ =
[
m ℓ+m 2ℓ+m . . . (kA − 1)ℓ+m

]
; (7)

and consider the index parameter for Cm as λm. According to

lines 12 and 13 of Alg. 1, we assign any coded submatrix

of Cm using the random linear combinations of kA − y
submatrices from Cm. The indices of these submatrices are

the consecutive kA − y entries of z̃ in (7), starting from λm.

Next we shift the index parameter right by kA− y in a cyclic

fashion. In this way, after assigning all the coded symbols

corresponding to Cm, let us assume that the index parameter

is λend
m . Now without loss of generality, assume that i < j,

and we have the following three cases.

Case 1: If λend
m ≤ i < j, |Vi| = |Vj |.

Case 2: If i < λend
m ≤ j, |Vi| − |Vj | = 1.

Case 3: If i < j < λend
m , |Vi| = |Vj |.

Thus in all three cases, we have

∣
∣
∣|Vi| − |Vj |

∣
∣
∣ ≤ 1. �

B. Proof of Lemma 1

Proof. Let w̄ = ∆A

n
, so we can write i = δw̄ + α for any Ai

where 0 ≤ α ≤ w̄− 1 and 0 ≤ δ ≤ n− 1. Let f̃(z) for z ∈ Z

be the function defined below.

f̃(z) =

{

z if z ≥ 0,

n+ z otherwise.

where −n < z < n. With p = ∆
n

= kBw̄ and

from the definition of T in Alg. 1, the uncoded sub-

matrices assigned to the worker node Wj are given by

Ajw̄ ,Ajw̄+1,Ajw̄+2, . . . ,Ajw̄+p−1 (indices reduced modulo

∆A). This implies that Ai is assigned to worker nodes

Wf̃(δ),Wf̃(δ−1), . . . ,Wf̃(δ−kB+1) as an uncoded block. The

function f̃(·) handles negative indices. So, we have |Ui| = kB ,

which proves part (i) of the lemma.

Next, we observe that the uncoded assignment to Wj ,

namely Ajw̄ ,Ajw̄+1, . . . ,Ajw̄+p−1, belong to the classes

Cjw̄, Cjw̄+1, . . . , Cjw̄+p−1 and ℓc = ℓ − p coded submatrices

consist of the elements from Cjw̄+p, Cjw̄+p+1, . . . , Cjw̄+ℓ−1,

respectively. In particular, it follows that the assigned sub-

matrices to any worker node Wj belong to the classes

Cjw̄, Cjw̄+1, . . . , Cjw̄+ℓ−1, so that each worker node contains

an assignment from each class Cm, 0 ≤ m ≤ ℓ− 1. Thus, any

submatrix cannot appear more than once within any particular

worker whether in an uncoded or a coded block. This shows

that Ui ∩Vi = ∅.
Now, consider the j-th symbols (i.e., the j-th A submatri-

ces) of the consecutive ℓ worker nodes within a worker group

Gλ, for λ ∈ {0, 1, . . . , c−1}. We can show that all the ℓ classes

are represented over those j-th symbols of these corresponding

ℓ worker nodes. To prove it by contradiction, we assume

that there are two different workers, Wi1 and Wi2 , where the

corresponding symbols come from the same class. Since the

assignments to Wi are Ciw̄, Ciw̄+1, Ciw̄+2, . . . , Ciw̄+p−1, this

is only possible if [(i1 − i2)w̄] mod ℓ = 0. But it is not

possible since |(i1− i2)| < ℓ and w̄ and ℓ are co-prime (since

∆A = LCM(n, kA)). Thus the j-th symbols of ℓ workers of Gλ
come from ℓ different Cm’s. Together with the fact that each

worker node contains all Cm’s, we can conclude part (iii).

Applying the above argument to the j-th coded symbols

of ℓ consecutive workers within a group, we conclude that

these come from ℓ different Cm’s. But we have c such worker

groups each consisting of ℓ consecutive workers. Moreover,

every worker has ℓc coded symbols, thus there are, in total,

ℓc × c coded symbols from any class Cm. Since each of the

coded symbols consists of kA − y submatrices from Cm, we

have
∑

i:Ai∈Cm

|Vi| = ℓc ×
n

ℓ
× (kA − y)

=

(
∆A

kA
−

∆A∆B

n

)

×
n

∆A/kA
× (kA − y)

= sm (kA − y) .

Thus, the average of those corresponding |Vi|’s is given by

µm =

∑

i:Ai∈Cm

|Vi|

kA
=

sm (kA − y)

kA
. (8)

But according to Claim 1,

∣
∣
∣|Vi|− |Vj |

∣
∣
∣ ≤ 1; for any i, j such

that Ai,Aj ∈ Cm. Thus ⌊µm⌋ ≤ |Vi| ≤ ⌈µm⌉, so that

|Vi| ≥
⌊

sm −
smy

kA

⌋

=
⌊

sm −
sm
kA

⌊kAx

sm

⌋⌋

≥
⌊

sm −
sm
kA

kAx

sm

⌋

= sm − x = s .

This concludes the proof for part (ii). �

C. Proof of Corollary 1

Proof. Consider two elements, Au,Av ∈ Cm where u 6= v.

From Lemma 1, we know that |Uu| = |Uv| = kB . Now from

the proof of Lemma 1, we also know that each of the ℓ sub-

matrices assigned to any worker node comes from a different

equivalence class (indices modulo ℓ), i.e., Uu ∩ Uv = ∅. It

can be proved similarly for any two arbitrary elements of Cm.

Now, since |Cm| = kA,

∣
∣
∣
∣

(

∪
i:Ai∈Cm

Ui

)∣
∣
∣
∣
= kAkB .

Now consider any i such that Ai ∈ Cm. According to the

proof of Lemma 1, each worker node contains exactly one

assignment of Cm, i.e., Ui ∩ Vjℓ+m = ∅; if Ajℓ+m ∈ Cm.

Thus we have

(

∪
i:Ai∈Cm

Ui

)

∩

(

∪
i:Ai∈Cm

Vi

)

= ∅.

14

But Cm appears at every worker node, so we can say

that

∣
∣
∣
∣

(

∪
i:Ai∈Cm

Ui

)

∪

(

∪
i:Ai∈Cm

Vi

)∣
∣
∣
∣
= n; and using the

properties mentioned above, we have

∣
∣
∣
∣

(

∪
i:Ai∈Cm

Vi

)∣
∣
∣
∣
= n −

kAkB = sm. �

D. Proof of Claim 2

Proof. According to Definition 3, the assigned submatrix of

B for worker node Wk (minimum node index where Ai

appears) is of type k. Now suppose that Ai continues to

appear at worker nodes Wk+1,Wk+2, . . . ,Wk+d where d ≥ 0
(either coded or uncoded). Thus, the corresponding assigned

submatrices of B are from types k+1, k+2, . . . , k+d (reduced

modulo kB).

Assume Ai ∈ Cm. Since Ai does not appear at Wk+d+1,

this implies that the assignment corresponding to Cm in

Wk+d+1 is uncoded. This is because we have x = 0, so

that y = 0, i.e. all Ai ∈ Cm participate in a coded block.

Thus, suppose Aj ∈ Cm appears in Wk+d+1 as an uncoded

block. We point out that according to the proof of Lemma 1,

Aj appears at consecutive kB worker nodes in an uncoded

fashion.

This means that the next worker node that where Ai can

potentially appear is Wk+d+kB+1, which has a submatrix of

type k + d + kB + 1 (mod kB), which is the same as type

k+d+1 (mod kB). On the other hand, if Ai does not appear at

Wk+d+kB+1, another member of Cm will appear in the next kB
worker nodes. Then we would need to move to Wk+d+2kB+1

for the next potential appearance of Ai, where we have the

submatrix from type k+ d+2kB +1 (mod kB), which is the

same as type k + d+ 1 (mod kB).

The above argument shows that after having the B sub-

matrices of types k, k + 1, k + 2, . . . , k + d (mod kB) from

Wk,Wk+1,Wk+2, . . . ,Wk+d, we will have a submatrix of

type k + d+ 1 (mod kB). Applying the argument recursively,

we can conclude the required result. �

E. Proof of Lemma 2

Proof. Let b represent a vector with kB unknowns so that

bT =
[
b0 b1 b2 . . . bkB−1

]
.

Let cT = bT Ri, where c is of length σ. In order to prove the

lemma, we need to show that we can decode all kB unknowns

of b from any kB entries of c.

Consider a bipartite graph G = C ∪ B whose vertex set

consists of two sets, C (representing any kB entries of c) and

B (representing the entries of b). An edge connects ci to bj if

bj participates in the corresponding equation. Thus, a columns

of Ri corresponds to a vertex in C and the non-zero entries

of the column correspond to the edges incident on the vertex.

In the argument below, we suppose that the random linear

coefficients are indeterminates and we argue that there exists

a matching in G where all the unknowns in B are matched.

Thus, according to Hall’s marriage theorem [31], we need to

argue that for any C̃ ⊂ C, the cardinality of the neighbourhood

of C̃, denoted as N (C̃) ⊂ B, is at least as large as |C̃|.

To argue this, we partition the columns of Ri into ω
disjoint sets, Ω0,Ω1, . . . ,Ωω−1, where each of the sets,

Ω0,Ω1, . . . ,Ωω−2, have kB columns each, and Ωω−1 has the

remaining σ− kB(ω− 1) ≤ kB columns. According to Claim

2, for any Ai, since the corresponding B submatrices come

from σ consecutive types, we can partition it in such a way

so that each set Ω0,Ω1, . . . ,Ωω−2 has exactly one column

corresponding to every submatrix type, and Ωω−1 has the

remaining ones. So, by permuting some columns of Ri we

can equivalently state

cT = bT [Ω0 Ω1 . . . Ωω−2 Ωω−1]

where ω =
⌈

σ
kB

⌉

= 1 +
⌈
sm
kB

⌉

.

Note that the non-zero entries in the columns in any Ωk are

cyclically shifted. We are trying to determine the neighborhood

of any m elements of C. Using the arguments in the proof of

Theorems 7 and 8 in [14], we can show that for C̃, such that

|C̃| = m, we have

|N (C̃)| = min
(

ζ +
⌈m

ω

⌉

− 1, kB

)

.

However, we need |N (C̃)| ≥ m; which indicates that

ζ ≥ 1 +m−
⌈m

ω

⌉

; for m = 1, 2, . . . , kB.

Since sm and kB are given, ω = 1+
⌈
sm
kB

⌉

is constant for any

given parameters. Now 1+m−
⌈
m
ω

⌉

is an increasing sequence

for integer m ≤ kB , so we need to set ζ ≥ 1 + kB −
⌈
kB

ω

⌉

.

Thus for any C̃, we have |N (C̃)| ≥ |C̃|, which indicates that

we have a matching. Since the entries are chosen randomly

from a continuous distribution, we can say that any kB × kB
submatrix of Ri is full rank. �

F. Proof of Lemma 3

Proof. The matrix G = GA ⊙ GB has a size kAkB × n.

We can pick any arbitrary τ columns of G which provides

us with a kAkB × τ submatrix, Gsub. Let us choose the

corresponding columns from GA and GB to form GAsub
and

GBsub
, respectively, so that Gsub = GAsub

⊙GBsub
.

First we partition GA into kA + 1 block columns, and

denote them as b0, b1, . . . , bkA
, where each of the first kA block

columns have kB columns each and bkA
has sm columns. We

denote ei (for i = 0, 1, . . . , kA − 1) as a vector of length kA,

whose i-th element is 1 and other elements are 0. Thus for

i = 0, 1, . . . , kA − 1, we can say that the columns in bi are

ei. We assume that δi is the number of columns which are

missing from the block column bi of GA to form GAsub
, so

∑kA−1
i=0 δi ≤ s. Thus we have η =

∑kA−1
i=0 δi + x columns in

GAsub
from bkA

of GA.

Next from Lemma 1, part (ii), we have at least s = sm− x
appearances of any Ai ∈ Cm in block bkA

in GA. Thus, out

of those chosen η columns in block bkA
, every such Ai will

appear in at least η0 = η − x =
∑kA−1

i=0 δi columns.

Now, let us choose the columns of GAsub
which are from

b0. Next choose δ0 ≤ η0 such columns of GAsub
which are

from bkA
of GA having non-zero entries at index 0. We set

15

each of those δ0 columns as e0. Thus we have kB columns

each of which is e0, and after the Khatri-Rao Product with

the corresponding kB columns from GBsub
, we have a matrix

having the following form

u0 =
[
R0

kB ,kB
0kB ,kB

0kB ,kB
. . . 0kB ,kB

]T

︸ ︷︷ ︸

kA blocks

where R0
kB ,kB

is obtained by taking some kB columns from

σ = kB + sm columns corresponding Am0
(which is the first

member of Cm), for the case x = 0, as described in Claim 2

and Lemma 2. So, R0
kB ,kB

is full rank.

Similarly, we can choose the columns of GAsub
which are

from b1. Next choose δ1 ≤ η0 − δ0 more columns of GAsub

which are from bkA
of GA having non-zero entries at index

1. We set each of those δ1 columns as e1. Thus we have kB
columns each of which is e1, and after the Khatri-Rao Product

with the corresponding kB columns from GBsub
, we have a

matrix having the following form

u1 =
[

0kB ,kB
R1

kB ,kB
0kB ,kB

. . . 0kB ,kB

]T

︸ ︷︷ ︸

kA blocks

where R1
kB ,kB

is obtained by taking some kB columns from

σ = kB+sm columns for A1, for the case x = 0, as described

in Claim 2 and Lemma 2. So, R1
kB ,kB

is full rank.

We can continue the similar process for b2, b3, . . . , bkA−1,

and we can show that we will have enough remaining columns

even for bkA−1, since η0 =
∑kA−1

i=0 δi. Thus in this way, we

can show that we have a kA× kA block diagonal matrix, u =
[u0 u1 . . . ukA−1], each of whose diagonal blocks is of

size kB × kB and of full rank, thus the whole block diagonal

matrix is full rank.

Finally, as there exists a choice of values that makes the

chosen kAkB × kAkB submatrix of Gsub nonsingular, it

continues to be nonsingular with probability 1 under a random

choice. It should be noted that we will have some additional

x = τ − kAkB columns in Gsub, and thus any kAkB × τ
submatrix of G has a rank kAkB with probability 1. �

G. Proof of Claim 3

Proof. Consider any worker group Gλ, λ = 0, 1, . . . , c − 1
consisting of ℓ worker nodes. The submatrices corresponding

to Cm appear in all different locations, 0, 1, . . . , ℓ − 1 (cf.

Lemma 1), in Gλ. Let α0 be the maximum number of

submatrix-products that can be processed across all worker

nodes of Gλ such that none of those submatrices from Cm is

processed even once. Then, from Fig. 7 it can be seen that

α0 = 0 + 1 + 2 + · · ·+ ℓ− 1 =
ℓ(ℓ− 1)

2
. (9)

Now we know that we can process α0 submatrix-products

from each of the worker groups without processing any

submatrix-product corresponding to Cm. Any additional pro-

cessing will necessarily process a submatrix-product corre-

sponding to Cm. Suppose we choose any particular worker,

where the position index of Cm is i. In that case, we can ac-

quire at most ℓ−1− i more symbols (i.e., submatrix-products)

W0 W1
. . . Wℓ−2 Wℓ−1

C0

C1

. . .

Cℓ−3

Cℓ−2

Cℓ−1

C1

C2

. . .

Cℓ−2

Cℓ−1

C0

. . .

. . .

. . .

. . .

. . .

. . .

Cℓ−2

Cℓ−1

. . .

Cℓ−5

Cℓ−4

Cℓ−3

Cℓ−1

C0

. . .

Cℓ−4

Cℓ−3

Cℓ−2

0 1 ℓ− 1− i ℓ− 2 ℓ− 1

Fig. 7: We partition the given n worker nodes into c = n/ℓ disjoint
groups of worker nodes. We show a group of ℓ worker nodes (from
W0 to Wℓ−1, shown in green) where any class (without loss of
generality, assume Cℓ−1) appears exactly ℓ times, in all ℓ different
locations. Once we acquire the symbol Cℓ−1 from location i, we can
acquire (ℓ−1− i) more symbols from that worker node without any
further appearances of Cℓ−1. We show the corresponding numbers
for the selected worker group.

from that particular worker without any more appearances of

Cm. A corresponding example is shown in Fig. 7.

This is true for all c = n/ℓ worker groups, since in each

group any class appears at all locations. Thus, the maximum

number of submatrix-products that can be processed for each

additional appearance of Cm can be expressed by the following

vector.

z = (
︸ ︷︷ ︸

c

ℓ, ℓ, . . . , ℓ,
︸ ︷︷ ︸

c

ℓ− 1, . . . , ℓ− 1, . . . ,
︸ ︷︷ ︸

c

1, 1, . . . , 1) . (10)

Here z is a non-increasing sequence, so in order to ob-

tain the maximum number of submatrix-products where Cm
appears at most κ − 1 times, we need to acquire submatrix-

products sequentially as mentioned in z. Let c1 = ⌊κ−1
c
⌋ and

c2 = κ−1−cc1; so cc1+c2 = κ−1. Then we can choose the

first κ− 1 workers (as mentioned in z) so that we can have η
symbols where Cm appears exactly κ− 1 times, so

η = cα0 +
κ−2∑

i=0

z[i]

=
n(ℓ− 1)

2
+ c

c1−1∑

i=0

(ℓ− i) + c2(ℓ− c1).

This concludes the proof. �

H. Proof of Theorem 2

Proof. We assume that there is such AT
i Bj which can still

not be recovered after some certain Qub symbols are acquired,

where Qub is defined in the theorem statement. Assume that

Ai ∈ Cm. Now from Theorem 1, we know that any τ =
kAkB +x out of those n submatrix-products corresponding to

Cm are enough to recover all the corresponding unknowns. So,

to prove the upper bound for Q, we try to find the maximum

number of block products (Q
′

) which can be acquired over all

16

the worker groups where there are at most τ − 1 appearances

of Cm. According to Claim 3, Q′ is given by

Q
′

=
n(ℓ− 1)

2
+ c

cx
1
−1

∑

i=0

(ℓ− i) + cx2(ℓ − cx1);

where cx1 = ⌊ τ−1
c
⌋ and cx2 = τ − 1 − ccx1 with τ = kAkB +

x. It indicates that we can recover all kAkB such unknowns

corresponding to Cm if we acquire any Q = Q′+1 submatrix-

products over n workers. Thus according to Theorem 1, we

can recover the unknown AT
i Bj from any Qub submatrix-

products, which concludes the proof for upper bound.

On the other hand, to prove the lower bound, we pick

a particular submatrix A∆A−1 and show a certain pattern

of Qlb − 1 block-products from which AT
∆A−1Bj cannot

be decoded, for any j = 0, 1, 2, . . . , kB − 1. Note that

A∆A−1 ∈ Cℓ−1 (since ℓ divides ∆A).

To form that pattern of Qlb − 1 block-products, first we

choose cα0 = n(ℓ−1)
2 block-products from all c worker groups

where Cℓ−1 does not appear. Since according to Corollary 1(i),

Cℓ−1 appears at kAkB worker nodes in an uncoded fashion,

where we know that the uncoded locations of Cℓ−1 in every

worker group are 0, 1, . . . , p−1. Thus, we can acquire at most

M more symbols where

M = [ℓ+ (ℓ− 1) + (ℓ− 2) + · · ·+ (ℓ − p+ 1)] c

such that Cℓ−1 appears only in an uncoded fashion. This is

because c× p = kAkB , where p = ∆/n. However, we know

that A∆A−1 appears at location p− 1 at worker node Wn−kB

according to the scheme. Thus, we can construct a pattern

where A∆A−1 appears exactly kB − 1 times by removing ℓ−
p+ 1 symbols from worker Wn−kB

. Let

Q
′′

= cα0 +M − (ℓ − p+ 1)

= cα0 + ℓ+ (ℓ − 1) + (ℓ− 2)

+ · · ·+ (ℓ− p+ 2)c+ (c− 1)(ℓ− p+ 1)

=
n(ℓ − 1)

2
+ c

p−2
∑

i=0

(ℓ − i) + (c− 1)(ℓ− p+ 1)

=
n(ℓ − 1)

2
+ c

c0
1
−1

∑

i=0

(ℓ− i) + c02(ℓ − c01);

since c01 =
⌊
kAkB−1

c

⌋

=
⌊
kAkB

c
− 1

c

⌋

= p − 1 and c02 =

kAkB − 1 − cc01 = c − 1. Then, we have shown a pattern

such that from Q
′′

symbols we cannot recover the unknowns

corresponding to A∆A−1.

Now according to Claim 1 and the proof of Lemma 1,

A∆A−1 appears at ⌊µℓ−1⌋ = sm −
⌈
smy
kA

⌉

coded submatrices

of Cℓ−1 (µm is defined as the average of the coded appearances

of all the submatrices of class Cm and its value is given in (8)).

Since Cℓ−1 appears at sm locations, it indicates that there are

an additional sm − ⌊µm⌋ =
⌈
smy
kA

⌉

coded submatrices where

A∆A−1 does not appear.

Thus, we finally form a pattern of Q
′′

+
⌈
smy
kA

⌉

= Qlb − 1

symbols where A∆A−1 appears exactly kB − 1 times, where

y =
⌊
kAx
sm

⌋

. But there are kB unknowns corresponding to

A∆A
− 1 in the form of AT

∆A−1Bj , so we cannot decode

the AT
∆A−1Bj’s from this specific pattern of Qlb−1 symbols.

This concludes the proof for the lower bound of Q.

�

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. on

Info. Th., vol. 64, no. 3, pp. 1514–1529, 2018.
[2] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” in Proc. of Adv.

in Neur. Inf. Proc. Syst. (NIPS), 2016, pp. 2100–2108.
[3] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an

optimal design for high-dimensional coded matrix multiplication,” in
Proc. of Adv. in Neur. Inf. Proc. Syst. (NIPS), 2017, pp. 4403–4413.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Trans. on Info. Th., vol. 66, no. 3, pp. 1920–1933, 2020.

[5] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl. Conf.

on Machine Learning (ICML), 2017, pp. 3368–3376.
[6] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplica-

tion: A convolutional coding approach,” in Proc. of IEEE Intl. Symp. on

Info. Th., 2019, pp. 3022–3026.
[7] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded

computing,” IEEE Trans. on Info. Th., vol. 67, no. 5, pp. 2758–2785,
2021.

[8] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-product codes for numerically-stable distributed matrix mul-
tiplication,” in Proc. of Annual Conf. on Comm., Control, and Computing

(Allerton), Sep. 2019, pp. 253–259.
[9] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix com-

putations via circulant and rotation matrix embeddings,” IEEE Trans. on

Info. Th., vol. 68, no. 4, pp. 2684–2703, 2022.
[10] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust

distributed matrix computations via convolutional coding,” IEEE Trans.

on Info. Th., vol. 67, no. 9, pp. 6266–6282, 2021.
[11] A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored LT and

factored raptor codes for large-scale distributed matrix multiplication,”
IEEE J. Select. Areas Info. Th., vol. 2, no. 3, pp. 893–906, 2021.

[12] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed
matrix computation via coding theory: Removing a bottleneck in large-
scale data processing,” IEEE Sig. Proc. Mag., vol. 37, no. 3, pp. 136–145,
2020.

[13] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
in Proc. of Intl. Conf. on Machine Learning (ICML), 2018, pp. 5152–
–5160.

[14] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation
schemes that leverage partial stragglers,” IEEE Trans. on Info. Th.,
vol. 68, no. 6, pp. 4156–4181, 2022.

[15] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in Proc. of IEEE Intl. Symp. on Info. Th., 2018, pp.
1988–1992.

[16] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,
“Rateless codes for near-perfect load balancing in distributed matrix-
vector multiplication,” Proceedings of the ACM on Meas. and Analysis

of Comp. Syst., vol. 3, no. 3, pp. 1–40, 2019.
[17] S. Kianidehkordi, N. Ferdinand, and S. C. Draper, “Hierarchical coded

matrix multiplication,” IEEE Trans. on Info. Th., vol. 67, no. 2, pp. 726–
754, 2021.

[18] E. Ozfatura, S. Ulukus, and D. Gündüz, “Distributed gradient descent
with coded partial gradient computations,” in Proc. of IEEE Intl. Conf.

on Acoustics, Speech and Sig. Proc. (ICASSP), 2019, pp. 3492–3496.
[19] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable

matrices for distributed matrix-vector multiplication,” in Proc. of IEEE

Intl. Symp. on Info. Th., 2019, pp. 1777–1781.
[20] B. Hasırcıoğlu, J. Gómez-Vilardebó, and D. Gündüz, “Bivariate hermi-

tian polynomial coding for efficient distributed matrix multiplication,”
in Proc. of IEEE Glob. Comm. Conf. (GLOBECOM), 2020, pp. 1–6.

[21] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-
aware coded cooperative computation at the edge,” in Proc. of IEEE Intl.

Conf. on Network Protocols (ICNP), 2018, pp. 23–33.
[22] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES : Codes for

coded computation that leverage stragglers,” in Proc. of IEEE Info. Th.

Workshop, 2018, pp. 1–5.

17

[23] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. of IEEE Intl. Symp. on Info. Th., 2017, pp.
2418–2422.

[24] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multi-
plication,” IEEE Trans. on Info. Th., vol. 66, no. 1, pp. 278–301, 2019.

[25] L. Tang, K. Konstantinidis, and A. Ramamoorthy, “Erasure coding for
distributed matrix multiplication for matrices with bounded entries,”
IEEE Comm. Letters, vol. 23, no. 1, pp. 8–11, 2019.

[26] V. Pan, “How Bad Are Vandermonde Matrices?” SIAM Journal on

Matrix Analysis and Applications, vol. 37, no. 2, pp. 676–694, 2016.
[27] A. M. Subramaniam, A. Heidarzadeh, A. K. Pradhan, and K. R.

Narayanan, “Product lagrange coded computing,” in Proc. of IEEE Intl.

Symp. on Info. Th., 2020, pp. 197–202.
[28] X.-D. Zhang, Matrix analysis and applications. Cambridge University

Press, 2017.
[29] Unified Treatment of Partial Stragglers and Sparse Matrices. [Online].

Available: https://github.com/anindyabijoydas/UnifiedTreatment
[30] SuiteSparse Matrix Collection. [Online]. Available:

https://sparse.tamu.edu/
[31] J. Marshall. Hall, Combinatorial theory. John Wiley & Sons, 1986.

https://github.com/anindyabijoydas/UnifiedTreatment
https://sparse.tamu.edu/

	I Introduction
	II Problem Setup, Related Work and Summary of Contributions
	II-A Problem Setup
	II-B Discussion of Related Work
	II-C Summary of Contributions
	II-D Motivating Example

	III Matrix-matrix Multiplication Scheme
	III-A An illustrative example
	III-B Overview of Alg. 1
	III-C Coding for Matrix A
	III-D Coding for Matrix B
	III-E Straggler Resilience and bounds on Q/
	III-F Dealing with sparse input matrices

	IV Numerical Experiments and Comparisons
	V Conclusion
	Appendix
	A Proof of Claim 1
	B Proof of Lemma 1
	C Proof of Corollary 1
	D Proof of Claim 2
	E Proof of Lemma 2
	F Proof of Lemma 3
	G Proof of Claim 3
	H Proof of Theorem 2

	References

