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Abstract—The dual normal factor graph and the factor graph
duality theorem have been considered for discrete graphical
models. In this paper, we show an application of the factor graph
duality theorem to continuous graphical models. Specifically,
we propose a method to solve exactly the Gaussian graphical
models defined on the ladder graph if certain conditions on the
local covariance matrices are satisfied. Unlike the conventional
approaches, the efficiency of the method depends on the position
of the zeros in the local covariance matrices. The method and
details of the dualization are illustrated on two toy examples.

I. INTRODUCTION

Graphical models represent the decomposition of multivari-

ate functions into the product of several local factors. Usually,

each local factor depends on a small subset of the variables.

The normal factor graph duality theorem has been previ-

ously applied to computational problems in discrete graphical

models (e.g., discrete spin systems and codes on graphs) [1]–

[4]. In this paper, we consider an application of the duality

theorem to continuous graphical models. Our focus is on

Gaussian graphical models. These models are extremely useful

in many different areas, including spatial statistics [5] and gene

expression studies [6]. Another reason for the significance of

Gaussian graphical models is due to the multivariate central

limit theorem [7, Chapter 3]. For more details on Gaussian

graphical models, see [8], [9], [10, Chapter 5].

A zero-mean real random vector XN×1 has an N -variate

Gaussian distribution if it has the following PDF

p(x) =
1

det(2πΣ)1/2
exp

(

− 1

2
x
⊺
Σ

−1
x
)

, x ∈ R
N (1)

where the symmetric positive-definite matrix Σ
−1 ∈ RN×N is

the precision (information) matrix and Σ is the corresponding

covariance matrix. We will use the notation Σ ≻ 0 to indicate

that Σ is positive-definite, and sometimes denote the sequence

(x1, x2, . . . , xN ) by x
N
1 .

The structure of a Gaussian graphical model is specified

by the precision matrix. Indeed, the nonzero off-diagonal

entries of the precision matrix indicate the presence of an edge

that connects the two corresponding random variables in the

graphical model. Moreover, according to the pairwise Markov

property, two non-adjacent random variables are conditionally

independent given all the other variables in the model [10].

We consider the problem of solving exactly Gaussian graph-

ical models for a specific model (i.e., the ladder graph) if

certain conditions on the local covariance and the local preci-

sion matrices are satisfied. By “exactly solve" we mean that

the method can efficiently compute the normalization constant

in (1), which boils down to an efficient computation of det(Σ).
In our framework, we consider the dual normal factor graph

(NFG) of the Gaussian ladder graph. Our approach relies on

this key property of multivariate Gaussian distributions: in the

Fourier transform of a multivariate Gaussian distribution the

precision matrix is replaced by the covariance matrix in the

exponent [7, Chapter 2].

Contrary to the standard approaches, our method relies on

the position of the zeros of the covariance matrices associated

with the local factors, where the local covariance matrices are

required to have cycle-free graphical representations.

In order to perform exact inference, we first transform

the Gaussian graphical model into a cycle-free NFG via

the Fourier transformation of the local factors. In cycle-free

(Gaussian) graphical models, exact inference can then be

done efficiently via the (Gaussian) belief propagation algo-

rithm [11].

II. THE MODEL

First, we consider the following PDF defined by the product

of L local factors as

p(x) =
1

Zf

L
∏

ℓ=1

fℓ
(

x(ℓ−1)k+1, x(ℓ−1)k+2, . . . , x(ℓ+1)k

)

, (2)

where Zf is the appropriate normalization constant. Each local

factor fℓ
(

x
(ℓ+1)k
(ℓ−1)k+1

)

is given by

fℓ
(

x(ℓ−1)k+1, . . . , x(ℓ+1)k

)

=

exp
(

− 1

2

[

x(ℓ−1)k+1, . . . , x(ℓ+1)k

]

Σ
−1
ℓ







x(ℓ−1)k+1

...

x(ℓ+1)k







)

(3)

for 1 ≤ ℓ ≤ L.

Here, Σ−1
ℓ is the local precision matrix associated with fℓ.

In this setup, each local factor contains 2k variables, and for

1 ≤ ℓ < L two consecutive factors fℓ and fℓ+1 have exactly

k variables x
(ℓ+1)k
ℓk+1 in common. Therefore, the total number

of variables in the model N is given by

N = (L+ 1)k (4)

Clearly p(x) in (2) follows a zero-mean N -variate Gaussian

distribution. Let

Zf = det(2πΣ)1/2, (5)

where Σ is the covariance matrix associated with p(x).
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Fig. 1. The NFG for the ladder graph with factorization in (6). The factors {πℓ, 1 ≤ ℓ ≤ L} are represented by big boxes and the variables {Xi, 1 ≤ i ≤ N}
are represented by edges. The small boxes represent the constant one factors {gi, 1 ≤ i ≤ 2k}.
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X2 X4 X6 X2L X2L+2

Fig. 2. Dependencies among the variables in Fig. 1 for k = 2, where all entries of the local precision matrices {Σ−1

ℓ
, 1 ≤ ℓ ≤ L} are non-zero.

Next, we write the PDF in (2) in a slightly different form

as

π(x) =
1

Z

L
∏

ℓ=1

πℓ

(

x(ℓ−1)k+1, . . . , x(ℓ+1)k

)

, (6)

where Z is the normalization constant, and πℓ

(

x
(ℓ+1)k
(ℓ−1)k+1

)

πℓ

(

x(ℓ−1)k+1, . . . , x(ℓ+1)k

)

=

1

Zℓ
fℓ
(

x(ℓ−1)k+1, . . . , x(ℓ+1)k

)

(7)

has a zero-mean 2k-variate Gaussian distribution for 1 ≤ ℓ ≤
L. Fom (3), the local normalization constant Zℓ is

Zℓ = det(2πΣℓ)
1/2 (8)

The global factorization (6) creates a ladder graph as a

concatenation of L blocks (rungs), in which, each block πℓ

has a zero-mean 2k-variate Gaussian distribution.

The normalization constants Z and Zf are closely related.

It is straightforward to show that

Z =
Zf

∏L
ℓ=1 Zℓ

(9)

=
det(2πΣ)1/2

∏L
ℓ=1 det(2πΣℓ)1/2

(10)

Our aim in this paper is to propose an efficient method

to compute the exact value of det(Σ), which from (10),

boils down to an efficient computation of Z . Although the

problems of computing Zf and Z essentially have the same

computational complexity, it is more convenient to describe

our approach in terms of π(x) in (6) rather than p(x) in (2).

III. ASSUMPTIONS AND GRAPHICAL MODELS

We suppose the following assumptions hold for the local

covariance and the local precision matrices:

I. All local covariance matrices are 2k × 2k symmetric

positive-definite matrices, i.e.,

Σℓ ≻ 0, ∀ℓ, 1 ≤ ℓ ≤ L (11)

II. All local precision matrices {Σ−1
ℓ , 1 ≤ ℓ ≤ L} have

graphical representations with cycles.

III. All local covariance matrices {Σℓ, 1 ≤ ℓ ≤ L} and their

concatenation have cycle-free graphical representations.

We will use NFGs as graphical models [12], [13]. The NFG

for the factorization (6) is illustrated in Fig. 1, in which, the big

boxes represent the factors {πℓ, 1 ≤ ℓ ≤ L} as in (7), the edges

represent the variables {Xi, 1 ≤ i ≤ N}, and the small boxes

represent additional constant one factors {gi, 1 ≤ i ≤ 2k}.

In Fig. 1, we have attached 2k additional univariate constant

one factors {gi, 1 ≤ i ≤ 2k} to the NFG, k such factors to

the leftmost side, and the remaining k factors to the rightmost

side of the ladder. Obviously, these extra factors do not affect

the value of Z , however, including them in the model will

facilitate our analysis in Section IV.

Alternatively, we can illustrate the dependencies among the

variables in Fig. 1 with a more compact graphical representa-

tion. By Assumption II, the local precision matrices

{Σ−1
ℓ , 1 ≤ ℓ ≤ L} (12)

have graphical model representations that contain cycles. Let

k = 2, and assume that all entries of the 4× 4 local precision

matrices are non-zero. Each block (rung) will therefore have

a fully-connected graphical representation (as every pair of

distinct variables is connected by an edge). Concatenation of

these blocks will then form the ladder graph depicted in Fig. 2.
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Fig. 3. The dual NFG of Fig. 1. The big boxes represent the factors {Fπℓ, 1 ≤ ℓ ≤ L} in (16), the edges represent the variables {ωi,ω
′

i, 1 ≤ i ≤ N},
and the small boxes represent the factors {Fgi, 1 ≤ i ≤ 2k} given by (15). The factors denoted by ⊕ transform each edge to a sign-inverting edge.

ω1 ω3 ω5 ω2n−1 ω2n+1

ω2 ω4 ω6 ω2n ω2n+2

Fig. 4. Dependencies among the variables in Fig. 3 for k = 2. The local covariance matrices have cycle-free graphical representations with structure as
in (19).

It is clear from Figs. 1 and 2 that, in general, the graphical

model of (6) may contain many short cycles. Next, we will

consider the dual NFG of the Gaussian ladder graph in Fig. 1.

IV. THE CYCLE-FREE DUAL NFG

Following [14], we can construct the dual of the NFG in

Fig. 1 by employing these three steps

• Replace each variable Xℓ by the dual variable ωℓ.

• Replace each factor by its Fourier transform.

• Replace each edge by a sign-inverting edge.

The Fourier transform of a function f(x) : Rn → C is the

function (Ff)(ωωω) : Rn → C given by

(Ff)(ωωω) =

∫

∞

−∞

f(x)e−iωωω⊺
xdx, (13)

where C is the set of complex numbers, i =
√
−1 denotes the

unit imaginary number, and ωωω = (ω1, ω2, . . . , ωn)
⊺.

The Fourier transform of the constant one factors

{gi, 1 ≤ i ≤ 2k} (14)

are Dirac delta functions up to scale. Indeed

(Fg1)(ω1) = 2πδ(ω1), (15)

and similarly for Fg2,Fg3, . . . ,Fg2k.

The factors Fg1,Fg2, . . . ,Fg2k will replace the factors

g1, g2, . . . , g2k in the dual NFG. Again, k of these factors are

connected to the leftmost side, and the remaining k factors to

the rightmost side of the dual graph.

The Fourier transform of πℓ in (7) is

(Fπℓ)
(

ω(ℓ−1)k+1, . . . , ω(ℓ+1)k

)

=

exp

(

− 1

2

[

ω(ℓ−1)k+1, . . . , ω(ℓ+1)k

]

Σℓ







ω(ℓ−1)k+1

...

ω(ℓ+1)k







)

(16)

Here Σℓ is the covariance matrix associated with πℓ. Each

factor πℓ is then replaced by Fπℓ in the dual NFG. The crucial

property of the Fourier transform of the multivariate Gaussian

distribution is that in Fπℓ the covariance matrix is replaced

by the precision matrix in the exponent.1

Sign-inverting edges are created by inserting a ⊕−factor

in the middle of each edge. The ⊕−factors will impose the

constraint that the addition of their two arguments should be

zero in R. The multiplication of all the ⊕−factors can be

expressed by
N
∏

i=1

δ(ωi + ω′

i), (17)

where N is the total number of variables as in (4).

The dual of the NFG in Fig. 1 is illustrated in Fig. 3, where

the big boxes represent {Fπℓ, 1 ≤ ℓ ≤ L} as in (16), the

edges denote the variables {ωi,ω
′

i, 1 ≤ i ≤ N}, the small

boxes correspond to the additional factors {Fgi, 1 ≤ i ≤ 2k}
given by (15), and the ⊕−factors in the middle of each edge

denote sign-inverters.

The global PDF in the dual domain π′ is given by

π′(ωωω) =

1

Z ′

N
∏

i=1

δ(ωi + ω′

i)

k
∏

i=1

(Fgi)(ωi)

k
∏

i=1

(Fgk+i)(ω
′

Lk+i)·

L
∏

ℓ=1

(Fπℓ)
(

ω′

(ℓ−1)k+1, . . . , ω
′

ℓk, ωℓk+1, . . . , ω(ℓ+1)k

)

, (18)

where Z ′ is the appropriate normalization constant.

In the dual domain, we can again show the dependencies

among the variables using a more compact graphical represen-

1Since πℓ follows a zero-mean multivariate Gaussian distribution, its
Fourier transform Fπℓ is identical to its characteristic function [7].
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Fig. 5. The contrast between the dependency among the variables associated with the local precision matrix Σ
−1

ℓ
in the primal domain (left) and among the

variables associated with the local covariance matrix Σℓ in the dual domain (right), for k = 3.

tation. By Assumption III in Section IV, the local covariance

matrices {Σℓ, 1 ≤ ℓ ≤ L} have cycle-free graphical represen-

tations. Set k = 2, and assume that all the local covariance

matrices have the following structure

Σℓ =









∗ ∗ ∗ 0
∗ ∗ 0 0
∗ 0 ∗ ∗
0 0 ∗ ∗









(19)

where ∗ denotes a non-zero real entry. In the corresponding

graphical model, each block (rung) and their concatenation are

therefore cycle-free – as illustrated in Fig. 4.

The factors {Fgi, 1 ≤ i ≤ 2k} set the value of 2k out

of N independent variables in (18) to zero. Therefore, π′

follows a zero-mean (N − 2k)-variate Gaussian distribution.

Let us denote the covariance matrix associated with π′(x) by

Σ
′. Furthermore, the factors {Fgi, 1 ≤ i ≤ 2k} contribute a

multiplicative factor of (2π)2k to (18).

It follows that

Z ′ = (2π)2kdet(2πΣ′)1/2 (20)

= (2π)k+N/2det(Σ′)1/2 (21)

According to the NFG duality theorem, the normalization

constants Z ′ and Z are equal up to scale. Indeed

Z ′ = (2π)NZ (22)

For more details, see [13], [14].

Proposition 1. The det(Σ) can be expressed in terms of

det(Σ′) and {det(Σℓ), 1 ≤ ℓ ≤ L} as

det(Σ) = det(Σ′)
L
∏

ℓ=1

det(Σℓ) (23)

Proof. The local covariance matrices {Σℓ, 1 ≤ ℓ ≤ L} are of

size 2k × 2k and Σ is of size N × N . Thus, from (4), (10),

and (22) we obtain

Z ′ = (2π)N
det(2πΣ)1/2

∏L
ℓ=1 det(2πΣℓ)1/2

(24)

= (2π)k+N/2 det(Σ)1/2
∏L

ℓ=1 det(Σℓ)1/2
(25)

Combining (21) and (25) completes the proof. �

It is therefore possible to compute Z ′ and det(Σ′) exactly

(e.g., via the Gaussian belief propagation algorithm [11]) in the

cycle-free NFG as in Fig. 3. After this step, we can compute

det(Σ) from (23).

We conclude that computing the exact value of det(Σ) in

ladder graphs is straightforward in the dual factor graph if

all local covariance matrices are “known" to have cycle-free

NFGs. On the contrary, if the local precision matrices have

cycle-free graphical representations, computing det(Σ) is easy

in the primal factor graph. A special case of interest is when

the local precision and covariance matrices are diagonal. In

this case, computing det(Σ) is easy in both domains.

For k = 3, the contrast between the dependency among the

variables in Figs. 2 and 4 is depicted in Fig. 5. By Assumption

II, Fig. 5 (left) has cycles, while, by Assumption III, Fig. 5

(right) is singly-connected.

V. NUMERICAL EXAMPLES

In the first toy example, we set k = 2 and L = 3. For

1 ≤ ℓ ≤ 3, let

Σℓ =









2 1 1 0
1 2 0 0
1 0 2 1
0 0 1 2









(26)

where

Σ
−1
ℓ =









1.2 −0.6 −0.8 0.4
−0.6 0.8 0.4 −0.2
−0.8 0.4 1.2 −0.6
0.4 −0.2 −0.6 0.8









(27)

with det(Σℓ) = 5. Here Σℓ and Σ
−1
ℓ satisfy all the required as-

sumptions discussed in Section III. This toy example consists

of three blocks, where each block has a four-variate Gaussian

distribution with a fully-connected NFG.



From (18) the global PDF in the dual domain π′(ωωω) is given

by

π′(ωωω) =

1

Z ′
Fg1(ω1)Fg2(ω2)Fg3(ω

′

7)Fg4(ω
′

8)

8
∏

i=1

δ(ωi + ω′

i)·

Fπ1(ω
′

1, ω
′

2, ω3, ω4)Fπ2(ω
′

3, ω
′

4, ω5, ω6)Fπ3(ω
′

5, ω
′

6, ω7, ω8)

Thus

Z ′ = (2π)4·
∫

ωωω

δ(ω1)δ(ω2)δ(ω
′

7)δ(ω
′

8)

8
∏

i=1

δ(ωi + ω′

i) · Fπ1Fπ2Fπ3dωωω

which gives

Z ′ = (2π)4
∫

ω3,ω4,ω5,ω6

Fπ1(0, 0, ω3, ω4)

Fπ2(−ω3,−ω4, ω5, ω6)Fπ3(−ω5,−ω6, 0, 0)dω3dω4dω5dω6

which after substituting Σ from (26) yields

Z ′ = (2π)4·

∫

ω3,ω4,ω5,ω6

exp
(

−1

2

[

ω3, ω4, ω5, ω6

]

Σ
′−1









ω3

ω4

ω5

ω6









)

dω3dω4dω5dω6

with

Σ
′−1

=









4 2 −1 0
2 4 0 0
−1 0 4 2
0 0 2 4









(28)

To compute det(Σ′), we can either apply the Gaussian

belief propagation algorithm, or, in this toy example, directly

compute

det(Σ′) = 1/128 (29)

From (23) we have

det(Σ) = 125/128 (30)

where Σ is the 8 × 8 covariance matrix associated with the

eight-variate Gaussian distribution in the primal NFG.

In our second example, we set k = 3 and L = 2. Let

Σ1 =

















3 1 0 2 0 0
1 2 1 0 0 0
0 1 3 0 0 0
2 0 0 3 1 0
0 0 0 1 2 1
0 0 0 0 1 3

















(31)

in the first block, where

Σ
−1
1 =

1

22

















30 −18 6 −25 15 −5
−18 24 −8 15 −9 3
6 −8 10 −5 3 −1

−25 15 −5 30 −18 6
15 −9 3 −18 24 −8
−5 3 −1 6 −8 10

















(32)

and det(Σ1) = 44. In the second block, let

Σ2 =

















4 1 0 −2 0 0
1 3 −1 0 0 0
0 −1 1 0 0 0
−2 0 0 4 1 0
0 0 0 1 3 −1
0 0 0 0 −1 1

















(33)

where

Σ
−1
2 =

1

33

















14 −7 −7 8 −4 −4
−7 20 20 −4 2 2
−7 20 53 −4 2 2
8 −4 −4 14 −7 −7
−4 2 2 −7 20 20
−4 2 2 −7 20 53

















(34)

and det(Σ2) = 33. The covariance matrix Σ is 9 × 9, and

the model consists of two blocks, where each block has a

six-variate Gaussian distribution with a fully-connected NFG.

The global PDF in the dual domain is given by

π′(ωωω) =
1

Z ′

9
∏

i=1

δ(ωi + ω′

i)·

Fg1(ω1)Fg2(ω2)Fg3(ω3)Fg4(ω
′

7)Fg5(ω
′

8)Fg6(ω
′

9)·
Fπ1(ω

′

1, ω
′

2, ω
′

3, ω4, ω5, ω6)Fπ2(ω
′

4, ω
′

5, ω
′

6, ω7, ω8, ω9)

After a little manipulation

Z ′ = (2π)6·
∫

ω4,ω5,ω6

exp
(

− 1

2

(

7ω2
4 +5ω2

5+4ω2
6 +4ω4ω5

)

)

dω4dω5dω6

It is then easy to compute det(Σ′) = 1/132. Therefore, from

(23) we obtain

det(Σ) =
44× 33

132
= 11 (35)

In general, the cycle-free Gaussian NFG of π′(ωωω) in (18)

consists of unary factors (attached to the vertices) and pairwise

factors (placed on the edges). For larger values of N , we

can employ the Gaussian belief propagation algorithm [11]

to compute the exact value of det(Σ′).

VI. FUTURE WORK

Some directions for future work include: i) applying the

method to the multivariate Cauchy distribution (or other multi-

variate distributions) defined on the ladder graph, with assump-

tions made on the local dispersion matrices, ii) extending the

results and using the Gaussian belief propagation in the dual of

Gaussian Markov random fields. According to our assumptions

in Section III, each building block in the dual NFG of the

model is cycle-free, however, arranging these cycle-free blocks

horizontally and vertically will create an NFG with cycles,

and iii) Comparing the method with existing algorithms on

computing the determinant of block-tridiagonal matrices (see,

e.g., [15], [16]). Note that the precision matrices associated

with ladder graphs are block-tridiagonal by construction.



VII. CONCLUSION

We showed an application of the NFG duality theorem to

continuous graphical models. A method was proposed to solve

exactly the Gaussian graphical models defined on the ladder

graph if the local covariance matrices and their concatenation

have cycle-free graphical representations.
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