
1

Optimal Policies for Age and Distortion in a

Discrete-Time Model
Yunus İnan, Student Member, IEEE, Reka Inovan, Student Member, IEEE, Emre Telatar, Fellow, IEEE

Abstract

We study a discrete-time model where each packet has a cost of not being sent — this cost might depend on the packet content.

We study the tradeoff between the age and the cost where the sender is confined to packet-based strategies. The optimal tradeoff

is found by an appropriate formulation of the problem as a Markov Decision Process (MDP). We show that the optimal tradeoff

can be attained with finite-memory policies and we devise an efficient policy iteration algorithm to find these optimal policies.

We further study a related problem where the transmitted packets are subject to erasures. We show that the optimal policies for

our problem are also optimal for this new setup. Allowing coding across packets significantly extends the packet-based strategies.

We show that when the packet payloads are small, the performance can be improved by coding.

Index Terms

Age of Information, Distortion, Markov Decision Process, Policy Iteration

I. INTRODUCTION

Timeliness of information is a crucial aspect of communications. Stale data may have highly undesirable effects; think, for

example, of sensor output for self-driving vehicles, position of an airplane, coolant temperature in a power plant, etc. This

aspect of data is nicely captured by the recently studied notion of Age-of-Information (AoI), by shifting the focus from delay to

freshness. At the same time, not all data is equally important. If, in an attempt to reduce staleness our system drops important

pieces of data, the remedy may be worse than the disease. In this work, we study a simple setup where the freshness and

importance aspects may be treated together.

The loss, or misrepresentation of data and assigning higher cost to more important data is well-captured by the tools of

rate-distortion theory. As said above, the question of freshness has been an object of study in the AoI literature initiated by

Kaul et al. [2]. Since the introduction of AoI, there has been various uses of this metric in many applications. In this work, we

quantify the notion of importance by using a distortion metric. We analyze a discrete-time model which allows us to analyze

the tradeoff between timeliness as measured by AoI and the distortion of the data. The tradeoff can be studied by casting it as

a problem of finding the optimal policy of a Markov Decision Process (MDP) which identifies the packets to be dropped. We

show that the optimal policy for this MDP can be achieved by a system with finite memory and we also provide an explicit

The authors are with École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. Emails: {yunus.inan, reka.inovan,
emre.telatar}@epfl.ch.
A short version of this work is presented at IEEE ITW 2021 [1].

ar
X

iv
:2

21
0.

12
08

6v
1

 [
cs

.I
T

]
 2

1
O

ct
 2

02
2

2

algorithm to compute this policy, which also turns out to be an optimal policy of a problem where the sender transmits packets

over an erasure channel with feedback. Lastly, for packets with small payload, we show that one can improve the performance

with variable-to-fixed length coding techniques, such as Tunstall coding.

II. RELATED WORK

Freshness of data is recently recognized as a semantic aspect of communication. Initial work by Kaul et al. introduced

the AoI as a metric to quantify this aspect [2]–[4]. Following Kaul et al., there have been many studies adopting AoI as a

freshness metric. The first strand involved calculation of AoI in simple schemes, e.g. M/M/1 queues [2]. Subsequent extensions

involve more general queues [5]–[8], multiple source streams [9]–[12], various queue management techniques such as the

Last-Come-First-Served (LCFS) protocol [13], and models that allow packet discards [14]–[17] and deadlines [18]. A partial

list of studies that seek to compute or to minimize the age under energy or link constraints is [19]–[34]. For a comprehensive

survey over the AoI literature, see [35]; and for a tutorial, see [36].

Although the works cited above mostly assume error-free transmissions, some others take into account that packets get lost

or erased while passing through the network. In [37], the AoI is studied in a model where transmissions are error-prone. One

may notice that a simple method to combat erasures is to send the packet repeatedly. A more complicated method could send

coded packets, which are then to be conveyed through the erasure channel. A list of works concerning coded transmissions

with feedback is [38]–[45]. An example of a study assuming no feedback is [46], where the authors find the optimal coding

strategy. In Section VI, we will discuss that the optimal strategy for our discrete-time model is also optimal for a model where

communications take place over an erasure channel with feedback.

AoI has also found place in stochastic control literature. For instance, in [47], a tradeoff between the information staleness and

performance of a Linear Quadratic Regulator (LQR) is illustrated. In [48], freshness is taken as basis for an algorithm devised

for distributed tracking of a linear system. These works are aligned in the sense that using the fresh data to track and control a

system might improve the performance. This is because of the Markovian nature of the processes that are tracked — the next

state depends only on the freshest data. However, this may not always be the case as the freshest may not be the most important.

This observation is in line with some further studies. For instance in [49], a problem of generating timely updates in a remote

estimation setting has been proposed. The authors have investigated the Mean-square-optimal and AoI-optimal strategies for the

estimation of a Wiener process through a queue and concluded that they are different; consequently demonstrating a tradeoff

between freshness and importance. In [50], the authors generalized the settings to include an Ornstein–Uhlenbeck process. In

[31], a tradeoff between timeliness and distortion is shown for the case of estimation through a Gaussian channel in a power

constrained setting. There also has been several works on integrating the notion of different data importance and timeliness,

e.g., by introducing non-linear cost to stale data [51], [52], by considering separate data streams of different priorities [53],

[54], or by modeling the distortion as a decreasing function of the service time [55].

Our setup contains flavors from the above approaches, yet it features novel aspects. For instance, the resource constraint

is imposed by an external scheduler, giving the sender turns to speak. Hence, as opposed to the works [49], [50], the sender

cannot decide when to send; but it rather decides what to send. Furthermore, we adopt the view that data is formed into

3

packets of different importance levels, e.g., packets containing abnormal levels of coolant temperature in a nuclear plant could

be classified as important. Consequently, the distortion metric we propose depends on whether the packets are received or not,

and the accumulated importance levels of the missed data constitutes our distortion metric.

III. NOTATION

Random variables are denoted with uppercase letters (e.g., X); and vectors are denoted with boldface letters (e.g., b). Sets

are denoted with script-style letters (e.g., V). l(b) is the length of a vector b, and bi is its ith element. For vectors b and b′,

b‖b′ := [b1, b2, . . . , b
′
1, b
′
2, . . .] is the concatenation of the two vectors. b≥i := [bi, . . . , bl] is segment of b from its ith element

until the end; and bji := [bi, . . . , bj] is the segment between its ith and jth elements, bi := bi1 . b′ is a suffix of b if there

exists an i > 1 such that b′ = b≥i. If b′ = b≥i is suffix of b, then b \ b′ = bi−1. For a, b ∈ R, a ∧ b := min{a, b}, and

a ∨ b := max{a, b}.

IV. PROBLEM DEFINITION

In this section, we describe our discrete-time model in terms of the data to be conveyed, the sender-receiver pair with their

respective communication protocol, and the channel in between.

We assume that the data is formed into packets, and at each time instant t, a new packet arrives to the sender. The packet

payloads originate from a set of finite elements X , and the probability of a payload taking a particular value is time-invariant

and independent of the past. Consequently, the data is an independent and identically distributed (i.i.d.) process {Xt}t∈N. The

sender observes Xt at time t and keeps Xt in its buffer.

The communication protocol is as follows: The sender is allowed to speak at times T1, T2, The process {Ti}i∈N is

independent of the process {Xt}t∈N, and has the property that the interspeaking times Zi := Ti − Ti−1 are i.i.d.. Moreover,

we assume that Zi’s are strictly positive and square integrable, i.e., Pr(Zi > 0) = 1 and E[Z2
i] ≤ ∞. An example of such a

random variable could be a geometric random variable with Pr(Zi = t) = p(1−p)t−1 for t ≥ 1. The speaking process {Ti}i∈N

is inspired by MAC layer protocols where each sender is assigned time slots to speak. When the sender is given a turn to

speak, i.e., at each Ti, it selects a packet from its buffer with timestamp Si ≤ Ti and forwards XSi . Once XSi is forwarded, we

restrict the sender to not send a packet with timestamp less than Si at the subsequent speaking times Ti+1, Ti+2, Note that

such restriction results in Si < Si+1. The increasing sequence {Si}i≥0 =: S is henceforth referred as the ‘selection process’.

Transmissions between the sender and the receiver are noiseless and zero-delay. Hence, by time t, the receiver has observed

XSi
for every i such that Ti < t. We also suppose that the packets are formed to contain timestamps, i.e., the packet containing

XSi
also contains the information that it was generated at time Si. Consequently, at time t, the receiver is able to reconstruct

the data as Yj(t) = Xj if Xj is among its observation up to time t; otherwise it sets Yj(t) = ?.

At this point, we have described our model. Now, we introduce the appropriate distortion and timeliness metrics to study

their tradeoff. Specifically, given d : X × X ∪ {?} → R≥0, with

d(x, x) = 0 and d(x, ?) =: v(x), (1)

4

and given a selection procedure S, define

D
(S)
t :=

1

t

t∑
i=1

d(Xi, Yi(t)) and D(S) := E

[
lim sup
t→∞

D
(S)
t

]
. (2)

With an analogy to rate-distortion theory, observe that D(S)
t quantifies average distortion between the source and its recon-

struction. D(S) is the expected long-term average distortion.

Timeliness of information is quantified with the well-studied AoI metric. Namely, with i(t) := sup{i ≥ 0 : Ti < t},

T0 = S0 = 0; define for all t > 0,

∆
(S)
t := t− Si(t), and ∆(S) := E

[
lim sup
t→∞

1

t

t∑
τ=1

∆(S)
τ

]
. (3)

∆
(S)
t is usually referred as the instantaneous age; and similar to D(S), ∆(S) is the expectation of the long-term average age.

Note that Yi(t) can be either equal to Xi or to ‘?’. Therefore, specifying only d(x, x) and d(x, ?) — which is readily

determined by v(x) — is sufficient to evaluate D(S). As a consequence, the sender may base its selection Si on V Ti , where

Vt := v(Xt). Therefore, the selection Si is a map Si : VTi → {Si−1 + 1, . . . , Ti} with V := {v(x) : x ∈ X}. Intuitively, Vi

represents an importance score for the packet i; high Vi is interpreted as the content having high importance and not sending

it incurs a high penalty — this interpretation is also consistent with a model where some arrivals are prioritized. Observe

that the structure of the problem stays the same if all elements of V are multiplied by a positive constant. If V does not

contain 0, then without loss of generality one can assume that the minimum element in V is 1 and it is an ordered set as

1 = v1 < v2 < . . . < v|V| := vmax <∞.

Now that we have the full description of the setting, we aim to characterize the achievable region of (∆(S), D(S)) pairs.

We attempt to characterize this region in the sequel and conclude this section with a few remarks.

(i) The model we propose is reminiscent of a remote estimation problem of a discrete-time stochastic process through a

discrete-time queue. However, we require that the sender sends a packet exactly at speaking times, which is equivalent

to force the sender to send as soon as the queue is idle in a discrete-time queueing setting. In [56] and [49], it is shown

that the optimal policies need not be of this type. This makes our problem different and allows us to make the relaxation

that Si need not be stopping times.

(ii) If 0 ∈ V , there are multiple interpretations. Vt = 0 can be interpreted as either the data is totally trivial (need not be

reconstructed), or interpreted as the source having not generated data at time t. The second interpretation allows us to

model a source which generates data sporadically. Now there is the question of allowing Xt to be sent or not. Our model

allows sending of Xt, i.e., in the second interpretation, informs the receiver that there has not been any data generated

by the source, and ∆t decreases accordingly. The reduction of ∆t can be avoided by appropriate reformulation — to be

discussed in Remark 1.

5

V. THE AGE-DISTORTION TRADEOFF

A. Markov Decision Problem Formulation as a Lower Bound

To study the age-distortion tradeoff, we study the family of weighted costs η∆(S) + D(S) for η > 0. It is known that the

boundary of the achievable (∆(S), D(S)) region can be characterized by studying this family. We seek to obtain a tractable

lower bound for η∆(S) +D(S), and then we further optimize this lower bound over S. First, we derive a simpler expression

for ∆(S). Observe that

lim sup
t→∞

1

t

t∑
τ=1

∆(S)
τ = lim sup

i→∞

∑i
j=1Q

(S)
j∑i

j=1 Zj
(4)

where

Q
(S)
j := (Tj − Sj)Zj+1 +

Zj+1(Zj+1 + 1)

2
. (5)

Since lim
i→∞

1
i

∑i
j=1

Zj+1(Zj+1+1)
2 = 1

2E[Z1(Z1 + 1)] =: ν and limi→∞
1
i

∑i
j=1 Zj = E[Z1] =: µ with probability 1 by the

law of large numbers, we obtain

∆(S) = E

[
1

µ
lim sup
i→∞

1

i

i∑
j=1

(Tj − Sj)Zj+1 +
ν

µ

]
. (6)

Note that ∆(S) cannot be smaller than ν/µ. We subtract ν/µ to obtain the excess age, given by

∆(S)
e := E

[
1

µ
lim sup
i→∞

1

i

i∑
j=1

(Tj − Sj)Zj+1

]
(7)

and determine the feasible (∆
(S)
e , D(S)) pairs. With the same reasoning as above, we study the family η∆

(S)
e +D(S). When

the selection process S satisfies a certain square-integrability condition, we can find alternative expressions for ∆
(S)
e and D(S).

Theorem 1. Let S2 be the set of selection processes S with supiE[(Ti − Si)2] <∞. Then for any S ∈ S2,

∆(S)
e = E

[
lim sup
i→∞

1

i

i∑
j=1

(Tj − Sj)
]
, (8)

D(S) =
1

µ
E

[
lim sup
i→∞

1

i

i∑
j=1

D(V Tj , Sj−1, Sj)

]
, (9)

where

D(V Tj , Sj−1, Sj) :=

Sj−1∑
j′=Sj−1+1

Vj′ (10)

is the penalty incurred by skipping the portion [VSj−1+1, . . . , VSj−1] of V Tj .

Proof. See Appendix A.

At this point, we would like to eliminate some of the non-optimal selection processes. More specifically, we show that if a

packet with importance value vmin and with timestamp less than Ti is selected at time Ti, then one can find another selection

process which performs at least as well.

6

Lemma 1. Consider a selection process S with Si0 < Ti0 and VSi0
= vmin for some i0. Then one can find another process

S̃ with VS̃i0
> vmin and such that ∆

(S̃)
e ≤ ∆

(S)
e and D(S̃) ≤ D(S).

Proof. See Appendix B.

Lemma 1 helps restrict the search space for possibly optimal selection processes. The processes we study in the sequel will

not select a minimum-importance packet if it has not arrived exactly at the speaking time. Let us denote the class of such

selection processes as S ′2.

A search for an optimal strategy based on the expressions in Theorem 1 seems to be a complex task. We aim to obtain a

further lower bound for η∆
(S)
e +D(S) which turns out to be an entity that is amenable for analysis. This lower bound is given

in

Theorem 2. Define

Ji(η)(S
Ti
1) := E

[i∑
j=1

1

µ
D(V Tj , Sj−1, Sj) + η(Tj − Sj)

]
(11)

and

J(η)(S) := lim sup
i→∞

1

i
Ji(η)(S

Ti
1). (12)

Then, for any S ∈ S ′2, J(η)(S) ≤ D(S) + η∆
(S)
e .

Proof. See Appendix A.

A straightforward implication is

J∗(η) := inf
S∈S′2

J(η)(S) ≤ inf
S∈S′2

(
D(S) + η∆(S)

e

)
. (13)

As we shall see later in Section V-C, it turns out that the inequality (13) is indeed an equality. The key reason to introduce

J(η)(S) is that its infimization can be formulated as a MDP, which we do next. This requires identifying the states and the

actions of the MDP and verifying that (i) the distribution of the next state and (ii) the one-step cost depend only on the current

state-action pair. We claim that the buffer content at the ith speaking time

Bi := V Ti

Si−1+1, (14)

and the number of packets to be dropped Ai := Si − Si−1 constitutes this state-action pair. To see this, note that given Bi

and Ai, (i) the next buffer content is independent of the past; and (ii) the one-step cost

1

µ
D(V Ti , Si−1, Si) + η(Ti − Si) (15)

is a function only of Bi and Ai. This is because the above is equal to

1

µ

s−1∑
k=1

bk + η(l(b)− s); (16)

7

with b = Bi and s = Ai. Since (i) and (ii) are satisfied, the problem is indeed an MDP whose state at instant i is the buffer

content Bi; and whose action at instant i is Ai. The assumption S0 = 0 allows us to choose B0 as an empty buffer.

The formulation above is an infinite-horizon average-cost MDP [57] with states b ∈ V∗ := ∪∞k=1Vk; and the set of possible

actions for a state b is given by s ∈ {1, . . . , l(b)}, where l(b) is the length of the buffer b. Consequently, the sender chooses

the packet with timestamp Si = Ti + s − l(b) at time Ti. Observe that setting s = l(b) corresponds to the selection of the

freshest packet whereas setting s = 1 corresponds to the selection of the oldest packet in the buffer. Furthermore, since we

are interested in the selection procedures in S ′2, s 6= l(b) only if bs > vmin.

In general, the optimal policies of an MDP need not be stationary (the current action is a deterministic function of the

current state). We will show in Section V-C that for our problem, the optimal policy is indeed stationary. When we consider

a stationary selection process S, we explicitly write the argument (b). Let us recall

Definition 1 (Unichain policy, [57]). If a stationary policy s(b) induces a Markov chain with a single recurrent class and a

possibly empty set of transient states, it is called unichain.

In an average-cost dynamic programming setting, we evaluate a unichain policy s(b), b ∈ V∗ by solving the linear system

with unknowns h(b), b ∈ V∗ and λ; given by

h(b) + λ =
1

µ

s(b)−1∑
k=1

bk + η(l(b)− s(b)) + E[h(b≥s(b)+1‖V Z)], (17)

where Z is the next interspeaking time, V Z is a vector of i.i.d. V ’s of length Z, h(b) is called the relative value of state b,

and λ is the average cost induced by this policy. Since (17) determines h(b) up to an additive constant, we take a reference

state — see [57, Chapter 4] — as one of the b ∈ V∗ and we set h(b) = 0. We also note that for a unichain policy, the linear

system given by (17) has a unique solution [57].

Remark 1. To cover the case where v = 0 is interpreted as the source having not generated any data and ∆t should not

decrease upon the sending of v = 0; one can proceed as follows: The set of possible actions for a state b is extended to

{0, 1, . . . , l(b)}, and s > 0 only if bs > 0. That is, the sender is allowed to choose only the packets with v > 0. Also note

that for the all-zero buffer, the only possible action is to set s = 0, i.e., nothing has arrived since the last selection and hence

there is nothing to send. Observe that in this case ∆t does not drop.

Although we have characterized a lower bound based on a MDP formulation, the formulated problem has a countably infinite

state space, V∗. It is known that for this class of problems, analysis of optimal policies become formidably complex in general.

Moreover, it is not certain that a stationary policy attains the infimum in (13). The complexity of this problem leads us to

consider a finite-state modification of the problem; and the next section is devoted for this modified version.

8

B. Policy Iteration with a Truncated State Space

We now consider a finite-state version of the problem where the sender forgets the packets that have arrived more than K

time slots ago. That is, the current buffer content at time Ti becomes

Bi := V Ti

(Si−1+1)∨(Ti−K+1). (18)

Consequently, the buffer length is limited to at most K, and the state space becomes finite. Denote this finite state space by

V≤K := ∪l≤KV l. One may notice that by restricting the state space, we might not attain the infimal value J∗(η). However,

as we shall see later in V-C, the optimal policy of the original infinite state space problem will base its decisions only on a

bounded buffer. Thus, we do not lose optimality provided that K is large enough.

A slight modification of (17) is enough to obtain the linear system whose solution yields the relative values and the average

cost. First, observe that if the buffer state b has length more than K, i.e., if l(b) > K, then h(b) can be replaced with

l(b)−K∑
k=1

bk + h(b≥l(b)−K+1). (19)

as the first l(b) −K terms will be forgotten in the truncated problem. Let pi := Pr(Z = i) and qi := Pr(Z ≥ i). Then the

linear system of equations to evaluate a unichain stationary policy s(b), b ∈ V≤K becomes

h(b) + λ =
1

µ

s(b)−1∑
k=1

bk + η(l(b)− s(b)) +
1

µ

l∑
k=s(b)+1

bkqK+k−l +
E[V]

µ
E[(Z −K)+]

+

K−l+s(b)∑
k=1

pkE[h(b≥s(b)+1‖V k)] +

K−1∑
k=K−l+s(b)+1

pkE[h(b≥k−(K−l)+1‖V k)] + qKE[h(V K)] (20)

=: Ch(b, s(b)), (21)

with h(vmin) = 0. This choice of the reference state also sets h(b) = 0 for b ∈ V . Namely, for buffers that contain only one

packet, the relative value will be equal to zero.

At this point, we have obtained the policy evaluation method for our finite-state problem. A first attempt could be to find

the optimal policies numerically. We consider the well-known policy iteration algorithm [57]. A brief description is given in

Algorithm 1.

Algorithm 1: Policy iteration

1 Start with the stationary policy s(0)(b) = l(b).
2 Evaluate s(i)(b) according to (20) to find h(i)(b), b ∈ V≤K and λ(i).
3 For all b ∈ V≤K , set

s(i+1)(b) = arg min
s:s≤l(b)

bs 6=vmin if s<l(b)

Ch(i)(b, s)

4 If s(i+1)(b) = s(i)(b) for all b ∈ V≤K , terminate. Else go to step 2.

Although the number of states is now finite, it is not clear that the policy iteration algorithm yields a unichain policy. We

shall show this in the following lemma.

9

Lemma 2. If the buffer size is limited to K, the policy iteration terminates with an optimal unichain policy in S ′2.

Proof. Consider all truncated policies, e.g., non-stationary, history dependent but can only choose the most recent K packets

in the buffer. Since {Vi}i≥0 is an i.i.d. process, any policy eventually reaches a state consisting of only vmin’s and must choose

the most recent packet. Hence, the buffer must be eventually renewed for any policy in S ′2 and as a result, there must be a

single recurrent class. Therefore, there exists an optimal stationary and deterministic strategy that is unichain and this policy

can be found with the policy iteration algorithm [57].

Remark 2. Intuitively, step 3 of the above algorithm modifies s(i)(b) in the following way: Consider two processes starting at

the state b. The first one is iterated with respect to s(i), whereas the second one is iterated with a different action s̃(b) at the

first step and with s(i) subsequently. Now consider the expected accumulated costs of these two processes until they reach the

same state. If the second process has a smaller expected accumulated cost, changing all s(i)(b) to s̃(b) = s(i+1)(b) results in

a better policy; otherwise try another s̃(b).

C. The Exact Buffer Size for an Optimal Policy

Truncating the state space restricts the actions that may be taken. Therefore, in general, the infimum in (13) may not be

attained with a truncated buffer. As we have said in the previous section, it turns out that this is not the case for our problem

and the infimum is indeed attained with a finite buffer size. In this section we quantify this buffer size.

First, consider the policy s(b) = l(b) for all b ∈ V≤K , i.e., always send the most recent packet in the buffer. One can

observe that this policy induces a Markov chain with only |V| = 2 states regardless of K. We shall now show that this policy

is optimal for η above some threshold ηmax.

Lemma 3. For η ≥ ηmax := 1
µ (vmax − vmin) and for any M ≥ 1, the optimal policy among V≤M is s(b) = l(b); which can

be implemented with a buffer size of 1.

Proof. We show that the policy s(b) = l(b) remains unchanged under policy iteration. Start the policy iteration with s(0)(b) =

l(b). Recalling Remark 2, we will show that perturbing the policy at initial step cannot decrease the expected accumulated

cost until the original and perturbed processes coincide. Assume the perturbed action is s̃(b) = l(b) − k for a k > 0.

Notice that the two processes will coincide immediately at the next step and the difference of the accumulated costs will be

kη − 1
µ (bl(b)−k − bl(b)) ≥ η − 1

µ (vmax − vmin) ≥ 0. Hence the policy remains unchanged.

Considering the truncated state space V≤K , we give some properties of optimal policies.

Property 1. For an optimal stationary policy s∗(b), and optimal relative values h∗(b), the following hold:

(i) For any state b‖b′, either s∗(b‖b′) = l(b) + s∗(b′) or s∗(b‖b′) ≤ l(b).

(ii) h∗(b′) ≤ h∗(b‖b′) ≤ 1
µ (b1 + . . .+ bl(b)) + h∗(b′) for b, b′ ∈ V≤K .

Proof. See Appendix C.

To get a sense of how far can the optimal policy go back in time, i.e., to measure how large Ti − Si can be, it may be

informative to consider the following extreme case, which yields a lower bound on the maximal possible value of Ti − Si.

10

Lemma 4. For the state b = [vmax, vmin, . . . , vmin︸ ︷︷ ︸
L−1

],

s∗(b) =

1, η ≤ 1

µ
(vmax−vmin)

L−1

L, η > 1
µ

(vmax−vmin)
L−1

. (22)

Proof. Since we work with policies in S ′2, the two possible actions for this state are either choosing the vmax at the beginning

or choosing the vmin at the end. Referring to Remark 2, suppose at iteration i we have s(i)(b) = l(b) and s̃(b) = 1; and

we aim to find the difference of accumulated costs until the original and the perturbed processes coincide. Observe that these

processes coincide immediately after the first step and the difference will be η(L− 1) + 1
µ (vmin− vmax). Then, s(i+1)(b) = 1

if η(L − 1) ≤ 1
µ (vmax − vmin); otherwise s(i+1)(b) = l(b). Note that the difference does not depend on i and hence the

statement for s(i+1)(b) is also true for s∗(b).

The above lemma therefore gives a necessary buffer size for a possibly optimal policy as it tells that at η = 1
µ

(vmax−vmin)
L−1 ,

the first packet in the buffer given in Lemma 4 is chosen by the optimal policy. Hence, attaining the optimal policy requires a

buffer size of at least d 1
µ

(vmax−vmin)
η e. Observe that this does not imply that the optimal policy is reached within this particular

finite buffer size. Nevertheless, we can prove that this is indeed the case.

Theorem 3. For M ≥ K(η) := d 1
µ

(vmax−vmin)
η e, the optimal policy among V≤M is attained by a policy with buffer size K(η).

Furthermore, if bs∗(b) = vi, then l(b)− s∗(b) < Ki(η) := d 1
µ

(vi−vmin)
η e for all 1 ≤ i ≤ |V|.

Proof. See Appendix D.

Theorem 3 implies that when the policy iteration terminates, the policy it outputs not only solves the Bellman equation for

the state space V≤M for every M ≥ K(η), but it also solves the Bellman equation for the countable state space V∗. Since

h∗(b) is finite and s∗(b) is attained for every b, a straightforward extension of Proposition 2.1 in [57, Chapter 4] concludes

that s∗(b) is indeed the optimal policy that attains J∗(η). Let S∗ = {s∗(Bi)}i≥0 be the random sequence of the actions taken

by the stationary and deterministic policy s∗(b). Recall the inequality

J∗(η) ≤ D(S∗) + η∆(S∗)
e (23)

given in Theorem 2. Furthermore, observe that the buffer state process {Bi} controlled by S∗ is a renewal process — this

follows from Lemma 2. Hence, by the renewal reward theorem [58, Theorem 3.6.1] we have

∆(S∗)
e = E

[
lim sup
i→∞

1

i

i∑
j=1

(Tj − Sj)
]
,

= E

[
lim
i→∞

1

i

i∑
j=1

(Tj − Sj)
]

= lim
i→∞

1

i

i∑
j=1

E
[
Tj − Sj

]
(24)

11

and similarly

D(S∗) =
1

µ
lim
i→∞

1

i

i∑
j=1

E
[
D(V Tj , Sj−1, Sj)

]
. (25)

The above shows that in fact the inequality (23) is an equality. Therefore, the optimal policies for the MDP give the tangent

lines to the exact boundary curve of the achievable (∆e, D) region. Consequently, by varying η, this curve can be found. We

end this section with the following corollary that summarizes the above results.

Corollary 1. The optimal policy among untruncated state space policies is attained with a buffer size K(η) and can be found

with the policy iteration algorithm run over the state space V≤K(η), which returns J∗(η). Furthermore, the least upper bound

to the family of straight lines D + η∆e = J∗(η), η > 0 gives the boundary of the achievable (∆e, D) region.

D. An Efficient Algorithm to Find the (∆e, D) Region

Although one can run the generic policy iteration algorithm to find the tangent lines to the achievable (∆e, D) region, this

turns out to be highly inefficient. In this section, we provide an efficient modification of the policy iteration algorithm. The

main idea is to exploit the following property. We omit its proof as it is a straightforward extension of Property 1(i).

Property 2. Consider the policy iteration algorithm (Algorithm 1). For any b, the policy s(i)(b) is either equal to s(i)(b≥2)+1,

or to 1. Furthermore, if s(i)(b) = s(i)(b≥2) + 1, then h(i)(b) = b1/µ+ h(i)(b≥2).

Property 2 implies that if s(i)(b) 6= 1, then there must exist a b′, which is a suffix of b, and with s(i)(b′) = 1. Consequently,

h(i)(b) = h(i)(b′) +
∑
b∈b\b′

b/µ. (26)

The above observation leads to an improvement in the policy evaluation stage of the algorithm as we shall see shortly. Denote

the set of states b′ with s(i)(b′) = 1 as B1. In light of (26), we see that since the relative values for the other states b /∈ B1

can be determined based on the states in B1, it is sufficient for the linear system in the policy evaluation step to include the

states in B1. We observed empirically that |B1| is much smaller compared |V≤K |. As solving a linear system with n variables

has O(n3) complexity, reducing the set of variables to B1 results in a significant improvement.

If the algorithm is modified as suggested above, the policy evaluation step gives h(i)(b′), b′ ∈ B1, and the average cost λ(i). To

find other h(i)(b)’s, we refer to equation (26), which suggests that the appropriate data structure to represent the states is a tree

structure, denoted as T , where a state b has children {b‖b}b∈V . That is, b≥2 is the parent of b, denoted by parent(b), and every

suffix of b is its ancestor. Then the final statement of Property 2 translates into the recursion h(i)(b) = b1/µ+h(i)(parent(b))

for b /∈ B1.

Along with Property 2, Theorem 3 also provides simplifications for the search of an optimal policy. Namely, for a state b,

and for any iteration j, s(j)(b) 6= s for an s < l(b)−Kbs(η), where Kbs(η) = Ki(η) if bs = vi. Using the above facts, we are

ready to provide a more efficient version of the policy iteration algorithm, Algorithm 2, which is tuned for our problem. The

for loops over the tree T (lines 9 and 12) are in breadth-first manner. Recall that h(i)(b) = 0 for b ∈ V and we set h(i)(δ) = 0

where δ denotes the empty string.

12

Algorithm 2: Efficient Policy Iteration v1(η)
Input: η
Output: J∗(η)

1 Initialize
2 K ← K(η);
3 s(0)(b)← l(b);
4 B1 ← {vmin};
5 Set δ as the root of T and add the children {b‖b}b∈V for every buffer b ∈ T such that l(b) < K;
6 i← 0;

7 repeat
/* Policy evaluation */

8 Find λ(i), h(i)(b′), b′ ∈ B1 by solving (20);
9 for b ∈ T \ B1 with l(b) > 1 do

10 h(i)(b)← h(i)(parent(b)) + b1/µ;

/* Policy update */
11 B1 ← {vmin};
12 for b ∈ T with l(b) > 1 do
13 if l(b) < Kb1(η) and Ch(i)(b, 1) < Ch(i)(parent(b), s(i+1)(parent(b))) + b1/µ then
14 s(i+1)(b)← 1;
15 Add b to B1;

16 else
17 s(i+1)(b)← s(i+1)(parent(b)) + 1;

18 i← i+ 1.
19 until s(i+1) = s(i);
20 return λ(i)

Although Algorithm 2 is much more efficient compared to the generic policy iteration, one needs to evaluate Ch(i)(b, s)’s —

defined in (21) — for both policy evaluation and update stages. Observe that calculating one of these quantities takes exactly

|V≤K | = O(|VK |) iterations. We can allocate some memory to store these quantities and reduce the time complexity. First,

let parentB1(b) be the longest ancestor of b that is in B1. Then, parentB1(b) = parentB1(parent(b)) and parentB1(b′) = b′

for b′ ∈ B1. Moreover, let the cost of an edge between b and its parent be b1/µ and let cost(i)(b) denote the cost of going

from b to parentB1
(b). Obviously, cost(i)(b′) = 0 for b′ ∈ B1 ∪ {δ}.

Now, observe that the linear system of equations in (20) can be written as

h(i)(b′) + λ = η(l(b′)− 1) + E[h(i)(parent(b′)‖V Z)]

= η(l(b′)− 1) + E

[
cost(i)(parent(b′)‖V Z) + h(parentB1(parent(b′)‖V Z))

]
. (27)

The policy iteration algorithm starts with s(0)(b) = l(b). Therefore, h(0)(b) = cost(0)(b) =
∑
i<l(b) bi and one can also

set parentB1(b) = vmin. We will initialize the procedure accordingly so that the policy evaluation step makes use of these

quantities at the first iteration. We aim to update cost(i)(b) and parentB1
(b) in the policy update step. To this end, we need

the temporary variable

temp(i)(b) = min
s≤l(b)

Ch(i)(b, s). (28)

Then the condition for the policy update becomes Ch(i)(b, 1) < temp(i)(parent(b)) + b1/µ; and temp(i)(b) will be updated

13

accordingly. Note that for b ∈ V , temp(i)(b) = λ(i). The modified version is given in Algorithm 3.

Algorithm 3: Efficient Policy Iteration v2(η)
Input: η
Output: J∗(η)

1 Initialize
2 K ← K(η);
3 s(0)(b)← l(b);
4 B1 ← {vmin};
5 Set δ as the root of T and add the children {b‖b}b∈V for every buffer b ∈ T such that l(b) < K;
6 For all b, cost(b)←

∑
i<l(b) bi and parentB1

(0)(b)← vmin;
7 i← 0;

8 repeat
/* Policy evaluation */

9 Find λ(i), h(i)(b′), b′ ∈ B1 by solving (27);
10 for b ∈ T \ B1 with l(b) > 1 do
11 h(i)(b)← h(i)(parent(b)) + b1/µ if b /∈ B1;

/* Policy update */
12 B1 ← {vmin};
13 for b ∈ {vmin, . . . , vmax} do
14 temp(i)(b)← λ(i).

15 for b ∈ T with l(b) > 1 do
16 if l(b) < Kb1(η) and Ch(i)(b, 1) < temp(i)(parent(b)) + b1/µ then
17 s(i+1)(b)← 1;
18 Add b to B1;
19 temp(i)(b)← Ch(i)(b, 1);
20 cost(i)(b)← 0;
21 parentB1

(i)(b)← b;

22 else
23 s(i+1)(b) = s(i+1)(parent(b)) + 1;
24 temp(i)(b(i))← temp(i)(parent(b)) + b1/µ;
25 cost(i)(b)← cost(i)(parent(b)) + b1/µ;
26 parentB1

(i)(b)← parentB1
(i)(parent(b));

27 i← i+ 1.
28 until s(i+1) = s(i);
29 return λ(i)

Recall that the number of elements in T is O(|V|K). The complexity of a single iteration in Algorithm 3 is found as follows:

(i) In the policy evaluation, the equation system (27) is constructed in O(|B1||V|K) time, and solved in O(|B1|3).

(ii) The policy update runs over all states. Furthermore, for each state b, calculation of Ch(i)(b, 1) also requires iterations

over all states. Hence, it has O(|V|2K) time complexity.

As we stated before, |B1| is usually very small compared to |V|K . The bottleneck then seems to be the policy update stage,

which requires O(|V|2K) steps. However, the policy update stage can be further improved such that the complexity decreases

to O(K|V|K). This modification is given in Appendix E.

Now that we have an efficient algorithm yielding J∗(η), and with help of Corollary 1, we should be able to find the

boundary curve by varying η. One may notice that initializing the trees and policies for every η can be avoided with a minor

modification. The idea is as follows: Choose a decreasing sequence η1 > η2 > . . . > ηn with η1 = ηmax = 1
µ (vmax − vmin).

14

Note that K(η1) = 1. Run the algorithm in the order of ηm’s and when K(ηm+1) > K(ηm), append new states to the tree

T . At (m+ 1)th run, one can also start with the optimal policy found for ηm. If η1, . . . , ηn are chosen densely, the boundary

curve can be well-approximated.

However, finding the boundary region everywhere would be optimistic. Theorem 3 implies that the necessary buffer size

scales with 1
η . This suggests that even though the algorithm gives the almost exact curve, it is impractical to do so. To overcome

this difficulty, one may rely on approximate dynamic programming algorithms; or resort to Monte Carlo estimations for the

policy evaluation [57].

Note that any straight line D + η∆e = J∗(η) in the (∆e, D) plane is a lower bound to the feasible region. Hence, any

family of straight lines obtained in such manner gives a lower bound in general — and if we were able to run the algorithm for

every η > 0, this would give the exact boundary curve. As before, let η1 > η2 > . . . > ηn be a densely chosen sequence for

which the algorithm is run. Let ∆
(n−1,n)
e be the abscissa of the point where the last two lines D + ηn−1∆e = J∗(ηn−1) and

D+ηn∆e = J∗(ηn) intersect. Then, one can see that the supremum of the straight lines obtained for η1, . . . , ηn approximately

gives the tradeoff curve for ∆e ≤ ∆
(n−1,n)
e , while it gives a lower bound for ∆e > ∆

(n−1,n)
e . This is because all intersection

points that lie on the supremum, and the line segments connecting them are achievable. This straight-line converse bound is

referred as ‘PI converse’ in the numerical examples.

We end this section with some numerical examples. We have calculated the optimal policies with Algorithm 3, and

unfortunately we have not observed any simple structure for optimal policies for |V| = 2. We also evaluated some simple

policies described below and compared their performances with the family of straight lines generated by Algorithm 3, referred

as ‘PI’ in Figures 1 and 2. These simple policies are:

(S1) Send the oldest important data within a maximum buffer size K.

(S2) Send the newest important data within a maximum buffer size K.

(S3) Send the newest important data that has arrived more than K slots ago. If there is no such data, send the oldest important

one.

Each strategy above induces a finite-state Markov chain. Moreover, when Z is geometrically distributed, all the Markov

chains induced by these strategies have closed-form stationary distributions. ∆e and D pertaining to these strategies will

accordingly have closed-form expressions. We provide these expressions in Appendix F.

To compare these strategies, we also give a simple converse bound and observe their approach towards this bound for large

∆e.

Lemma 5. Suppose V = vi with probability αi. Let j∗ be the maximum index such that
∑|V|
i=j∗ αi ≥

1
µ . Then for any ∆

(S)
e ,

D(S) ≥ Dmin =
∑j∗−1
i=1 αivi +

(∑|V|
i=j∗ αi −

1
µ

)
vj∗ .

Proof Sketch. The sender can send at most 1
µ fraction of the data. We then optimize over its selection of data to obtain the

result.

In the first numerical example, provided in Figure 1, Pr(Z = 1) = 0.2 and V = {1, 20} with Pr(V = 1) = 0.7. The blue

family of straight lines correspond to the lines D + η∆e = J∗(η), obtained for different η values. We could calculate until

15

η = vmax−vmin

17µ , which indicates that we used a maximum buffer size of 17. The region lying under this family of lines is

unachievable, and the supremum of this family gives the boundary of the feasible region until the red solid line, which is

the straight-line converse bound described above. The curves corresponding to strategies S1, S2 and S3 are red dashed, green

dashed and cyan dotted curves, and plotted for K ≤ 20. The simple lower bound Dmin = 2.7 is drawn as the solid black line.

One can see that S2 nearly coincides with PI. Note that we observe an asymptotic behavior as the sender will never be able

to allocate all of its resources to send all of the important packets.

0 2 4 6 8 10 12

3

4

5

∆e

D
S1
S2
S3

Dmin

PI
PI converse

Fig. 1. Comparison of the strategies for V = {1, 20} and Pr(V = 1) = 0.7. Z is taken as a Geometric random variable with success probability 0.2. (S2
almost coincides with PI)

The second numerical example differs from the first one with Pr(Z = 1) = 0.3 and Pr(V = 1) = 0.8. The simple

strategies calculated for K ≤ 40 together with the policy iteration results obtained until a buffer size of 17 are plotted in

Figure 2. Here, Dmin = 0.7 could be achieved in finite-age as the sender can send all the important packets while keeping

supiE[(Si − Ti)2] <∞.

0 1 2 3 4 5

1

2

3

∆e

D

S1
S2
S3

Dmin

PI
PI converse

Fig. 2. Comparison of the strategies for V = {1, 20} and Pr(V = 1) = 0.8. Z is taken as a Geometric random variable with success probability 0.3.

16

VI. RELATION TO AN ERASURE CHANNEL WITH FEEDBACK

We have observed that the model discussed primarily in this work is similar to transmitting a stream of packets over an

erasure channel with feedback. Recall that the setting for transmission over discrete memoryless channels with feedback requires

the feedback for the data transmitted at time t to be revealed just after time t. For an erasure channel, the knowledge of an

erasure event indicator at time t, i.e., 1{Xt is erased} is sufficient for a perfect feedback.

We note that the main difference between our model and a feedback erasure channel stems from the restriction that the

feedback for data t is revealed just after time t. If we assume that the sender knows about a possible erasure event just before

time t; it may send the data t, or it may keep data t in its buffer for a later transmission. This relaxation exactly gives the

model we described with interspeaking times distributed according to a geometric distribution, i.e., Pr(Zi = z) = (1− p)pz−1

where p is the erasure probability for a discrete memoryless erasure channel. Also note that one can model some erasure

channels with memory by varying the distribution of Z.

Consider a modification of our model which requires that the constituent feedback is revealed just after the transmission.

Now, we formalize the modified setting. Just before time t, the sender commits to a packet with timestamp Ct ≤ t. Then, at time

t, the committed packet XCt
is transmitted through the erasure channel. If the packet is erased, the sender commits to packet

with timestamp Ct+1 just before time t+ 1 — which is not necessarily equal to Ct — and the procedure is repeated until the

committed data is sent. If the committed data XCt
is sent successfully, then Si(t)+1 = Ct where i(t) = sup{i ≥ 0 : Ti < t};

and the past of Si(t)+1 contributes to the distortion and cannot be modified later. The age and distortion metrics are defined

similar to the ones in Section IV.

Observe that for any sequence of commitments {Ct}t>0 =: C, there must exist a selection procedure S in the original

problem such that

D(C) + η∆(C) ≥ D(S) + η∆(S). (29)

This is because in the original problem, selections are made with more information — the erasure event is known beforehand.

Conversely, for any stationary policy S in the original problem, there exists a C in the latter problem where the sender commits

to Ct = t+ s(Bt)− l(Bt) where Bt := V tSi(t)+1. As a consequence, the sender with no erasure information beforehand can

also attain the infimal value J∗(η), as we know from Corollary 1 that the optimal policy for the original problem is stationary.

Together with the inequality (29), we conclude that for both problems the tradeoff curve is the same. In brief, whether erasures

are revealed just before or after transmissions do not change the tradeoff between age and distortion.

VII. WHEN TIMESTAMPS BECOME SIGNIFICANT

We have shown that the optimal value for an η > 0 is attained with a bounded buffer policy, say of K. In the model so

far, packets contain the timestamps as part of their headers. Consequently, there was no need to send additional information

to the receiver to tell it which packet among the K packets in the buffer is being sent. If the packets do not have headers, this

additional information must be included. If K is much smaller compared to |X |, this additional information is insignificant. In

this section, we treat the case of headerless packets when K is comparable to |X |. We take binary X = {0, 1} and V = {1, v}

17

with 1 being the important packet. We study the setting described in Section IV but with the difference that the sender is

allowed to send N bits at each speaking time. We assume that Z is distributed geometrically with success probability p, i.e.

Pr(Z = 1) = p.

Consider the optimal policy to attain J∗(η) in (13), which is of bounded buffer size K(η). Recall that at each speaking

time, the sender is able to send one packet. If X is binary, then without any coding, the optimal policy is feasible only if

N ≥ 1+dlog(K(η))e; otherwise it is not able to describe the timestamps of selected data, e.g., for a state b with l(b) = K(η), the

timestamps must be of length dlog(K(η))e and the remaining one bit corresponds to the data. However, it seems unreasonable

to use almost all of the N bits for timestamp description. Can one come up with methods that do not require explicit timing

information to be sent and allocate more bits to describe the data itself? The rest of this section elaborates on some possible

tradeoffs with this point of view.

A. Buffer Ignorant Strategies

Think of the following strategy: Always send the most recent N = log(K(η)) bits. In this case, it is easy to see ∆e = 0

and D = µV (1− p)N = µVK(η)log(1−p) ' µV
(
v−1
η

)log(1−p)
, where µV := E[V] = (1− q) + vq, and q = Pr(V = v). We

know that for the optimal policies described in Section V, Dmin given in Lemma 5 yields a lower bound for distortion. For a

binary X , and thus V , one can obtain

Dmin =

1− p, p ≥ q

µV − pv p < q

. (30)

If η ≥ 1
v−1

(
µV

Dmin

) 1
log(1−p) then D ≤ Dmin, implying that the perfect timing information strategies are beaten by the timing

ignorant strategy described as sending the most recent N bits. In other words, one does better by sending N bits of most

recent data instead of sending one bit together with its timestamp.

The above arguments motivate the following question: What are the limits of these timing ignorant strategies? Note that

both the sender and receiver know the speaking times Ti. Suppose for a moment that the receiver knows the selection times

Si as well. With this assumption, the receiver has the perfect knowledge of the buffer length at time Ti, which is Ti − Si−1.

Hence, if the sender bases his strategies solely on its buffer size, ignoring the buffer content, it does not have to include any

timing information and is able to use all its N -bit budget for sending data. An example could be as follows: Suppose N = 3.

Then the sender could send 1, 3, 5th bits whenever the buffer size is 5. Since the receiver knows the buffer size and the sender’s

strategy, it will know upon its reception of 3 bits that they correspond to 1, 3, 5th bits. Although we have previously coined

the term ‘timing ignorant’ for such strategies, a more suitable term could be ‘buffer ignorant’; as the sender ignores what is

in its buffer.

Remark 3. One may notice that this procedure is a simple online compression algorithm for the binary source {Xi}, with the

restriction that the sender can only send N bits at each speaking time. Together with the unsophisticated receiver that only

constructs the N bits it receives at each speaking time, this scheme operates at ∆e = 0 and D = µV (1− p)N .

18

Let us study the ‘buffer ignorant’ strategies further. Since the transmitter does not use the buffer content and has to choose

N bits among them, a simple choice could be in size-N bit contiguous chunks. Adopting the terminology from Section V,

such strategies correspond to sending XSi

Si−N+1 at time Ti from a buffer of size Li := Ti − Si−1. Nothing from the past XSi

can be sent after time Ti and therefore with similar arguments we have previously done, one can formulate the problem of

finding optimal selection times as a MDP. The corresponding MDP will have the buffer lengths as its states, which implies

that we encounter another countable state-space problem with its state-space being Z+. When the buffer length is l, and the

selection index is s, the one-step cost can be written as

g(l, s) = µV p(s−N)+ + η(l − s). (31)

The corresponding Bellman equation is given by

h(l) + λ = min
s≤l

{
µV p(s−N)+ + η(l − s) + E[h(l − s+ Z)]

}
(32)

for l > 1 and with h(1) = 0, where the buffer of length one is chosen as the reference state. It is not difficult to see that this

choice also implies h(l) = 0 for l ≤ N , as the sender can immediately empty the buffer for such states.

Similar to Property 2, we must have either s∗(l) = N or s∗(l) = s∗(l − 1) + 1 for the optimal policy. Therefore as l

increases, the optimal policy tends to leave more bits at the end. Although this observation suggests that the optimal policy

may be attained with an unbounded buffer, one can show that this is not the case. Similar coupling arguments as we did in

the proof of Theorem 3 lead to the conclusion that the optimal policy cannot leave more than NµV

η bits at the end. Thus, a

simple policy iteration algorithm run for a sufficiently large state-space also solves the Bellman equation for the infinite-state

problem.

The optimal policies may not be simple-to-describe. However, when Z is geometrically distributed, the numerical simulations

indicate that single-threshold policies are optimal. These policies are characterized as

s(l) = min{max{l − τ,N}, l} (33)

for some τ ≥ 0. In other words, the sender always keeps τ unsent bits in the buffer if possible. We do not have an analytical

proof for this result, but it is not unreasonable to believe that these simple policies are optimal because of the memorylessness

property of Z. Recall that the states of Markov chains incurred by such strategies are described with the buffer length l.

Denote the stationary probabilities as πl. In this special case, the stationary probabilities (and consequently the average age

and distortion) incurred by such strategies have closed-form expressions.

Corollary 2. The (∆e, D) curve attained by single-threshold strategies has a parametric description that is available in

closed-form. Let p̄ := 1 − p, S(0)
j := (1 + jp) and S

(n)
j :=

∑j
k=0 S

(n−1)
k for n ≥ 1. Also let S(n)

j = 0 for j < 0. For

0 ≤ j ≤ τ − 1, the stationary probabilities are given by

πτ−j = πτ+1

1 +
∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1
(34)

19

with

πτ+1 =

[τ−1∑
j=0

1 +
∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1
+

1

p

]−1

. (35)

and πτ+1+j = p̄jπτ+1 for j > 0. The (∆e, D) curve therefore has a parametric description (∆e(τ), D(τ)) given by

∆e(τ) =

τ−1∑
j=1

jπN+j +
τπτ+1p̄

N−1

p
. (36)

and

D(τ) =
µV πτ+1p̄

N

p2
. (37)

Remark 4. If the bits sent are equal in terms of their importance, i.e., v1 = v2, then buffer ignorant strategies are optimal

among the strategies without timestamp coding. This is because strategies as such already assume that 1 and 0 are of equal

importance and there is no need to indicate which bit is more important. Consequently, for the binary erasure channel, i.e.,

N = 1; the only optimal buffer ignorant strategy is to send the last bit if the bits are equally important.

Until now, we have only considered integer N . However, the erasure channel between the sender and receiver could admit

K inputs, where K is not necessarily a power of 2. This would imply a non-integer N = logK. Studying such N requires

strategies with some knowledge of the buffer content and possibly requires some coding. We will elaborate on how to handle

these cases in the next section.

B. Revealing Partial Buffer Content

The previous section was devoted to buffer ignorant strategies. Now, we allow some knowledge of the buffer content to

improve buffer ignorant strategies and also to cover the case of a non-integer N .

Let us first show the improvement by coding over the buffer ignorant strategies for an integer N . Take the single-threshold

strategy s(l) described in (33) together with the threshold τ . Consider the state l > τ +N , where the dictated action is to keep

τ bits for future and send N of the remaining bits. Then l − τ −N bits will never be sent and hence the distortion penalty

will be µV (l − τ − N). We aim to show that the distortion penalty can be decreased with some coding while preserving or

decreasing the age penalty.

To that end, consider an alternative way of describing the buffer ignorant strategy above: the sender sends the first N bits of

the sequence xl−τ , xl−τ−1, . . . , x1 regardless of the content. It is therefore reasonable to think that a parser with a dictionary

of size 2N which sends the identity of the first parsed word in the same sequence could result in an improvement. One

could resort to some variable-to-fixed length source coding techniques, such as Tunstall coding. Tunstall coding is known to

maximize the expected number of bits parsed among prefix-free and variable-to-fixed length dictionaries. Let E[LTun] be the

expected number of bits parsed. With Tunstall coding, the expected number of unsent bits will be l − τ − E[LTun] and since

E[LTun] ≥ N , the distortion cost decreases. Thus, Tunstall algorithm improves the buffer ignorant strategies. Also note that

for non-integer N , Tunstall algorithm can be used to determine parsing methods.

20

0 2 4 6 8 10 12
0

2

4

6

∆e

D

Dmin

PI
PI converse
BI, N = 3

BIT, N = 3
BI, N = 6

BIT, N = 6

Fig. 3. For the same setting in Figure 1, the curves pertaining to optimal buffer ignorant strategies (BI, colored in red) together with their improved versions
with Tunstall coding (BIT, colored in cyan) are plotted for the same source in Figure 1. The curves corresponding to N = 3 are dashed, and the curves
corresponding to N = 6 are dotted.

We end this section by presenting some numerical results that illustrate the improvement with buffer ignorant strategies

and Tunstall coding. We use the same source and interspeaking time distribution as in Figure 1, i.e., V = {1, 20} with

Pr(V = 1) = 0.7 and Pr(Z = 1) = 0.2. Recall that we were able to find the optimal policies with Algorithm 3 up to a buffer

size of 17. This suggests that the sender describes the timing information with dlog 17e = 5 bits and with an additional bit to

describe the content, which implies that the left end of the PI converse line segment can be attained with sending N = 6 bits —

note that this converse bound is valid only for strategies of Section V, and not for buffer ignorant strategies. As we suggested,

the timing information can be sacrificed to allocate the whole budget for the data description in an attempt to improve the

performance. This improvement is evident even for N = 3, where the optimal buffer ignorant strategy (BI, N = 3) and its

improved version with Tunstall coding (BIT, N = 3) perform better than the optimal PI curve as seen in Figure 3. For N = 6,

there is drastical improvement and one can approach zero distortion with finite age — see BI and BIT, N = 6 in Figure 3.

C. Discussion about other possible coding strategies

The buffer ignorant strategies discussed in the previous section only depend on the buffer size and we have shown that

these strategies can be improved by revealing some buffer content. One can argue that these coding strategies might be far

from optimal, as they use partial knowledge. The sender could base its strategies on all past speaking times and the past buffer

content. Calculating the tightest (∆e, D) curve corresponding to this broad class of strategies seems to be formidably complex.

Even with the sole knowledge of the current buffer content, the problem becomes difficult. We illustrate this with an example.

Suppose the current buffer content is b = [v, v, 1, 1, v, v, v, 1, 1, 1, v, v, v, 1] and the sender could only send N = 3 bits. The

single-threshold strategy with τ = 4 will choose the index s(b) = 10 and send (1, 1, 1), which does not contain any important

data. If the index s = 13 is chosen, (v, v, v) will be sent and this might be a better strategy; however, the description of s = 13

21

must be somehow included in the N = 3 bits and all three important data might not be sent. Encoding both the data and their

indices into a fixed number of bits complicates the possible actions and thus the problem appears to be very hard. We also

observe an interesting tradeoff in this situation. In our MDP, sacrificing perfect state information results in a smaller policy

space with policies of lower penalties, i.e., if k bits are allocated for timestamp description, N − k information bits can be

sent and when k decreases, the number of possible actions also decreases but their one step costs can possibly be smaller.

VIII. DISCUSSION

In this work, we have studied a discrete-time model where the sender is only allowed to speak at time slots assigned by an

external scheduler. In the absence of a distortion measure, it is clear that the optimal strategy is to send the freshest packet in

the buffer at each speaking time as this will minimize the age. However, if this freshest packet has low importance, it may be

beneficial to send a packet of higher importance instead, sacrificing freshness for lowering distortion. Hence, it is immediate that

a tradeoff between the age and the distortion exists. It turns out that the optimal tradeoff can be attained with bounded buffer

policies, and these policies can be found with numerical methods. Unfortunately, they turn out to be not simple-to-describe.

We observed that the usual policy iteration methods were inefficient for our specific problem, and we devised an algorithm

based on appropriate data structures and problem-specific simplifications. The new algorithm performs significantly better —

the time complexity decreases from O(|V|3K) to O(K|V|K), where K is the exact buffer size needed for attaining the optimal

tradeoff. However, at the high-age regime, K is large and in turn, the optimal tradeoff cannot be computed. One could try to

find simple-to-describe policies that are not too far from the optimal tradeoff at this regime.

The main results of this work also apply when the process of importance levels {Vi}i≥0 is an ergodic Markov chain — one

can verify the conditions (i) and (ii) with the same state and action spaces defined in Section V-A. Consequently, the necessary

buffer size will be the same and one is able to find the optimal curve as in the i.i.d. case.

The problem we formulated in the first place turns out to be closely related to a problem of transmitting packets over an

erasure channel with perfect feedback. The difference is that in our setting, erasure events are revealed before transmissions.

Nevertheless, we have shown that for both problems, the optimal tradeoff is the same.

Until Section VII, we assumed that the timing information is contained in the header of a packet, which is much smaller

in size compared to the payload. In Section VII, we studied the case where the packets need not contain perfect timing

information, and consist of at most N bits. As a consequence, if one decides to sacrifice age for lowering distortion, some

additional information must be included in the N bits in order to tell the receiver to which time the information bits pertain.

Therefore, if the sender decides not to send the freshest data, it not only sacrifices age but may also decrease the amount of

information bits to be sent. We have studied some simple policies, called buffer ignorant, where the sender ignores what is in

the buffer and allocates all its N -bit budget for the information bits. When the timing information dominates the payload, buffer

ignorant policies improve drastically over the optimal policies found in Section V, which include the timing information. Later,

we have shown that buffer ignorant policies can be further improved by revealing some buffer content and using variable-to-

fixed length coding. However, it seems very challenging to find the optimal tradeoff when any strategy that sends N bits at a

time is allowed.

22

REFERENCES

[1] Y. İnan, R. Inovan, and E. Telatar, “Optimal policies for age and distortion in a discrete-time model,” in 2021 IEEE Information Theory Workshop (ITW),

2021, pp. 1–6.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2731–2735.

[3] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of information in vehicular networks,” in 2011 8th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2011, pp. 350–358.

[4] S. Kaul, R. Yates, and M. Gruteser, “On piggybacking in vehicular networks,” in 2011 IEEE Global Telecommunications Conference - GLOBECOM

2011, 2011, pp. 1–5.

[5] J. P. Champati, H. Al-Zubaidy, and J. Gross, “Statistical guarantee optimization for age of information for the d/g/1 queue,” in IEEE INFOCOM 2018

- IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2018, pp. 130–135.

[6] A. Soysal and S. Ulukus, “Age of information in g/g/1/1 systems,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp.

2022–2027.

[7] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for the stationary distribution of the age of information and its application to

single-server queues,” IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8305–8324, 2019.

[8] C. Kam, S. Kompella, and A. Ephremides, “Age of information under random updates,” in 2013 IEEE International Symposium on Information Theory,

2013, pp. 66–70.

[9] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,” in 2012 IEEE International Symposium on Information Theory Proceedings,

2012, pp. 2666–2670.

[10] M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information in multi-source queueing models,” IEEE Transactions on Communications,

vol. 68, no. 8, pp. 5003–5017, 2020.

[11] E. Najm and E. Telatar, “Status updates in a multi-stream m/g/1/1 preemptive queue,” in IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2018, pp. 124–129.

[12] V. Tripathi and S. Moharir, “Age of information in multi-source systems,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017,

pp. 1–6.

[13] S. K. Kaul, R. D. Yates, and M. Gruteser, “Status updates through queues,” in 2012 46th Annual Conference on Information Sciences and Systems

(CISS), 2012, pp. 1–6.

[14] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information in status update systems with packet management,” IEEE Transactions on

Information Theory, vol. 62, no. 4, pp. 1897–1910, 2016.

[15] R. D. Yates, “The age of gossip in networks,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 2984–2989.

[16] ——, “Age of information in a network of preemptive servers,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), 2018, pp. 118–123.

[17] R. Nasser, I. Issa, and I. Abou-Faycal, “Age distribution in arbitrary preemptive memoryless networks,” in 2022 IEEE International Symposium on

Information Theory (ISIT) (ISIT 2022), Espoo, Finland, Jun. 2022.

[18] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides, “Age of information with a packet deadline,” in 2016 IEEE International

Symposium on Information Theory (ISIT), 2016, pp. 2564–2568.

[19] X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information minimization with an energy harvesting source,” IEEE Transactions on Green

Communications and Networking, vol. 2, no. 1, pp. 193–204, 2018.

[20] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting source,” in 2015 IEEE International Symposium on Information Theory (ISIT),

2015, pp. 3008–3012.

[21] S. Farazi, A. G. Klein, and D. R. Brown, “Age of information in energy harvesting status update systems: When to preempt in service?” in 2018 IEEE

International Symposium on Information Theory (ISIT), 2018, pp. 2436–2440.

[22] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of information under energy replenishment constraints,” in 2015 Information Theory and

Applications Workshop (ITA), 2015, pp. 25–31.

[23] A. Arafa and S. Ulukus, “Age-minimal transmission in energy harvesting two-hop networks,” in GLOBECOM 2017 - 2017 IEEE Global Communications

Conference, 2017, pp. 1–6.

23

[24] ——, “Timely updates in energy harvesting two-hop networks: Offline and online policies,” IEEE Transactions on Wireless Communications, vol. 18,

no. 8, pp. 4017–4030, 2019.

[25] ——, “Age minimization in energy harvesting communications: Energy-controlled delays,” in 2017 51st Asilomar Conference on Signals, Systems, and

Computers, 2017, pp. 1801–1805.

[26] B. T. Bacinoglu and E. Uysal-Biyikoglu, “Scheduling status updates to minimize age of information with an energy harvesting sensor,” in 2017 IEEE

International Symposium on Information Theory (ISIT), 2017, pp. 1122–1126.

[27] S. Feng and J. Yang, “Minimizing age of information for an energy harvesting source with updating failures,” in 2018 IEEE International Symposium

on Information Theory (ISIT), 2018, pp. 2431–2435.

[28] ——, “Optimal status updating for an energy harvesting sensor with a noisy channel,” in IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2018, pp. 348–353.

[29] A. Arafa, J. Yang, and S. Ulukus, “Age-minimal online policies for energy harvesting sensors with random battery recharges,” in 2018 IEEE International

Conference on Communications (ICC), 2018, pp. 1–6.

[30] B. T. Bacinoglu, Y. Sun, E. Uysal–Bivikoglu, and V. Mutlu, “Achieving the age-energy tradeoff with a finite-battery energy harvesting source,” in 2018

IEEE International Symposium on Information Theory (ISIT), 2018, pp. 876–880.

[31] Y. Dong, P. Fan, and K. B. Letaief, “Energy harvesting powered sensing in iot: Timeliness versus distortion,” IEEE Internet of Things Journal, vol. 7,

no. 11, pp. 10 897–10 911, 2020.

[32] E. T. Ceran, D. Gündüz, and A. György, “Average age of information with hybrid arq under a resource constraint,” in 2018 IEEE Wireless Communications

and Networking Conference (WCNC), 2018, pp. 1–6.

[33] B. Wang, S. Feng, and J. Yang, “To skip or to switch? minimizing age of information under link capacity constraint,” in 2018 IEEE 19th International

Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5.

[34] Y. Inan and E. Telatar, “Age-Optimal causal labeling of memoryless processes,” in 2022 IEEE International Symposium on Information Theory (ISIT)

(ISIT 2022), Espoo, Finland, Jun. 2022.

[35] R. D. Yates, Y. Sun, D. R. Brown III, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” 2020.

[36] A. Kosta, N. Pappas, and V. Angelakis, Age of Information: A New Concept, Metric, and Tool, 2017.

[37] K. Chen and L. Huang, “Age-of-information in the presence of error,” in 2016 IEEE International Symposium on Information Theory (ISIT), 2016, pp.

2579–2583.

[38] S. Feng and J. Yang, “Age-optimal transmission of rateless codes in an erasure channel,” in ICC 2019 - 2019 IEEE International Conference on

Communications (ICC), 2019, pp. 1–6.

[39] A. Baknina and S. Ulukus, “Coded status updates in an energy harvesting erasure channel,” in 2018 52nd Annual Conference on Information Sciences

and Systems (CISS), 2018, pp. 1–6.

[40] S. Feng and J. Yang, “Age of information minimization for an energy harvesting source with updating erasures: Without and with feedback,” IEEE

Transactions on Communications, vol. 69, no. 8, pp. 5091–5105, 2021.

[41] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Using erasure feedback for online timely updating with an energy harvesting sensor,” in 2019 IEEE

International Symposium on Information Theory (ISIT), 2019, pp. 607–611.

[42] P. Parag, A. Taghavi, and J.-F. Chamberland, “On real-time status updates over symbol erasure channels,” in 2017 IEEE Wireless Communications and

Networking Conference (WCNC), 2017, pp. 1–6.

[43] R. D. Yates, E. Najm, E. Soljanin, and J. Zhong, “Timely updates over an erasure channel,” in 2017 IEEE International Symposium on Information

Theory (ISIT), 2017, pp. 316–320.

[44] H. Sac, T. Bacinoglu, E. Uysal-Biyikoglu, and G. Durisi, “Age-optimal channel coding blocklength for an m/g/1 queue with harq,” in 2018 IEEE 19th

International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5.

[45] E. Najm, R. Yates, and E. Soljanin, “Status updates through m/g/1/1 queues with harq,” in 2017 IEEE International Symposium on Information Theory

(ISIT), 2017, pp. 131–135.

[46] E. Najm, E. Telatar, and R. Nasser, “Optimal age over erasure channels,” IEEE Transactions on Information Theory, pp. 1–1, 2022.

[47] T. Soleymani, J. S. Baras, and K. H. Johansson, “Stochastic control with stale information–part i: Fully observable systems,” in 2019 IEEE 58th

Conference on Decision and Control (CDC), 2019, pp. 4178–4182.

24

[48] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Finite-time distributed state estimation over time-varying graphs: Exploiting the age-of-

information,” in 2019 American Control Conference (ACC), 2019, pp. 4006–4011.

[49] Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the wiener process for remote estimation over a channel with random delay,” IEEE Transactions on

Information Theory, vol. 66, no. 2, pp. 1118–1135, 2020.

[50] T. Z. Ornee and Y. Sun, “Sampling and remote estimation for the ornstein-uhlenbeck process through queues: Age of information and beyond,” IEEE/ACM

Transactions on Networking, vol. 29, no. 5, pp. 1962–1975, 2021.

[51] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age and value of information: Non-linear age case,” in 2017 IEEE International Symposium

on Information Theory (ISIT), 2017, pp. 326–330.

[52] ——, “The cost of delay in status updates and their value: Non-linear ageing,” IEEE Transactions on Communications, vol. 68, no. 8, pp. 4905–4918,

2020.

[53] S. K. Kaul and R. D. Yates, “Age of information: Updates with priority,” in 2018 IEEE International Symposium on Information Theory (ISIT), 2018,

pp. 2644–2648.

[54] E. Najm, R. Nasser, and E. Telatar, “Content based status updates,” IEEE Transactions on Information Theory, vol. 66, no. 6, pp. 3846–3863, 2020.

[55] M. Bastopcu and S. Ulukus, “Age of information for updates with distortion,” in 2019 IEEE Information Theory Workshop (ITW), 2019, pp. 1–5.

[56] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or wait: How to keep your data fresh,” IEEE Transactions on

Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[57] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II, 3rd ed. Athena Scientific, 2007.

[58] S. Ross, Stochastic processes, ser. Wiley series in probability and statistics: Probability and statistics. Wiley, 1996.

[59] D. Williams, Probability with Martingales, ser. Cambridge mathematical textbooks. Cambridge University Press, 1991.

[60] S. Resnick, A Probability Path, ser. Modern Birkhäuser Classics. Birkhäuser Boston, 2003.

APPENDIX

A. Proofs of Theorems 1 and 2

Define Wj := Tj − Sj for the rest of the proof and denote ‘almost surely’ by a.s..

1) Proof of Theorem 1: We first prove a convergence result in Lemma 6 below, from which the equation (8) follows as a

corollary.

Lemma 6. 1
i

∑i
j=1Wj(Zj+1 − µ)→ 0 a.s. if supj E[W 2

j] <∞.

Proof. We use the result that if
∑
i bi/i converges, then 1

i

∑
j≤i bj → 0 — known as Kronecker’s Lemma [59]. Therefore, it

is sufficient to show
∑
iWi(Zi+1 − µ)/i converges a.s.. We now show that Mn :=

∑n
i=2Wi−1(Zi − µ)/(i− 1), M1 := 0 is

a martingale with respect to the filtration Fn := σ(Z1, . . . , Zn,X
Tn
1).

Observe that E[Mn|Fn−1] = Mn−1 +E[Wn−1(Zn − µ)|Fn−1]/(n− 1) = Mn−1 as Wn−1 is Fn−1-measurable and Zn is

independent of Fn−1 with E[Zn] = µ. Since Mn consists of uncorrelated increments, one can write

E[M2
n] =

n∑
i=2

E[W 2
i−1]Var(Z)

(i− 1)2
. (38)

Note that we assumed E[Z2] <∞, hence Var(Z) <∞. Moreover, since supj E[W 2
j] <∞,

∑
i
E[W 2

i]
i2 <∞. As a consequence,

supnE[M2
n] <∞ and the a.s. convergence of Mn follows from the martingale convergence theorem.

25

Now we prove (9) and complete the proof of Theorem 1. Define

Yj =

Xj , j ∈ S

?, else.
(39)

Given t, define i = i(t) := sup{j ≥ 0 : Tj ≤ t}. Observe that for j ≤ i, Yj(t) = Yj . Thus,

D
(S)
t =

1

t

∑
j≤Si

d(Xj , Yj) +
1

t

t∑
j=Si+1

d(Xj , Yj(t)). (40)

Upper bound D(S)
t as

D
(S)
t ≤ 1

t

∑
j≤Si

d(Xj , Yj) +
1

t
(Ti+1 − Si)vmax

≤ 1

Ti

∑
j≤Si

d(Xj , Yj) +
1

t
(Zi+1 +Wi)vmax.

(41)

Since supj E[W 2
j] <∞, Wi is a.s. finite for all i and hence Zi+1 +Wi is a.s. finite. Thus 1

t (Zi+1 +Wi)vmax → 0 a.s. Then,

we obtain

lim sup
t→∞

D
(S)
t ≤ lim sup

i→∞

1

Ti

∑
j≤Si

d(Xj , Yj). (42)

Now, we lower bound D(S)
t as

D
(S)
t ≥ 1

t

∑
j≤Si

d(Xj , Yj) ≥
1

Ti+1

∑
j≤Si

d(Xj , Yj) =
1

Ti + Zi+1

∑
j≤Si

d(Xj , Yj) (43)

and take lim sup on both sides to obtain

lim sup
t→∞

D
(S)
t ≥ lim sup

i→∞

1

Ti + Zi+1

∑
j≤Si

d(Xj , Yj). (44)

Finally, observe that Ti

i → µ and Zi+1

i → 0 a.s. Hence,

lim sup
t→∞

D
(S)
t =

1

µ
lim sup
i→∞

1

i

∑
j≤Si

d(Xj , Yj)

=
1

µ
lim sup
i→∞

1

i

i∑
j=1

D(V Tj , Sj , Sj−1),

(45)

which ends the proof of Theorem 1.

2) Proof of Theorem 2: Since supj E[W 2
j] <∞, it follows that supiE[(1

i

∑i
j=1Wj)

2] <∞. Thus, the family (1
i

∑i
j=1Wj)i∈N

is uniformly integrable [59, Chapter 13]. One can then use the reverse Fatou’s lemma for uniformly integrable families [60]

to obtain

∆(S)
e = E

[
lim sup
i→∞

1

i

i∑
j=1

Wj

]
≥ lim sup

i→∞
E

[
1

i

i∑
j=1

Wj

]
. (46)

26

A similar reasoning for D(S) follows from the fact that each D(V Tj , Sj , Sj−1) is smaller than vmax(Wj−1 +Zj). Therefore,

{D(V Ti , Si, Si−1)}i≥0 is a uniformly integrable family, and one proceeds in a similar way as above to obtain

D(S) ≥ lim sup
i→∞

1

µ
E

[
1

i

i∑
j=1

D(V Tj , Sj , Sj−1)

]
. (47)

As lim supn an + lim supn bn ≥ lim supn(an + bn), the inequality J(η)(S) ≤ D(S) + η∆
(S)
e holds. This completes the proof.

B. Proof of Lemma 1

We construct {S̃i} iteratively as follows:

S̃i =

Si, i < i0

min{s > Si0 : Vs > vmin} ∧ Ti0 , i = i0

S̃i−1 + 1, Si ≤ S̃i−1, i > i0

Si, Si > S̃i−1, i > i0

. (48)

Verbally, at time i0, S̃ takes the next packet whose importance value is more than vmin (if no such packet, selects the freshest

one) and then selects consecutive packets irrespective of their importance values while it cannot choose anything that S chooses.

If S̃ can choose the packet that S chooses at some time instant after i0, it does so forever. Since S̃j ≥ Sj for all j, we have

for all i
1

i

i∑
j=1

(Tj − S̃j) ≤
1

i

i∑
j=1

(Tj − Sj), (49)

and consequently ∆
(S̃)
e ≤ ∆

(S)
e . For i > i0, if Si = S̃i, then

1

i

i∑
j=1

D(V Tj , S̃j−1, S̃j) ≤
1

i

i∑
j=1

D(V Tj , Sj−1, Sj). (50)

This is because Vs ≤ Vs̃ for every s ∈ {S1, . . . , Si} and s̃ ∈ {S̃1, . . . , S̃i}. If Si < S̃i at i > i0, then S̃ must have skipped at

most S̃i0 − Si0 packets with minimum importance. Then we have

1

i

i∑
j=1

D(V Tj , S̃j−1, S̃j) ≤
1

i

i∑
j=1

D(V Tj , Sj−1, Sj) +
1

i
vmin(S̃i0 − Si0) ≤ 1

i

i∑
j=1

D(V Tj , Sj−1, Sj) +
1

i
vmin(Ti0 − Si0).

(51)

Since Ti0 − Si0 is almost surely finite, 1
i (Ti0 − Si0)→ 0. Therefore

lim sup
i→∞

1

i

i∑
j=1

D(V Tj , S̃j−1, S̃j) ≤ lim sup
i→∞

1

i

i∑
j=1

D(V Tj , Sj−1, Sj) (52)

and consequently D(S̃) ≤ D(S).

27

C. Proof of Property 1

In the following proofs, g(b, s) refers to the one step costs of the MDP and Eb,s[h(B′)] refers to the expected relative value

of the next state accessed under the action s, i.e., g(b, s) =
∑s−1
k=1 bk + η(l(b)− s) and Eb,s[h(B′)] = E[h(b≥s+1‖V Z)].

(i) Let q := b‖b′. Suppose s∗(q) 6= l(b)+s∗(b′) and s∗(q) > l(b). Then by the optimality condition, s∗(q) = arg mins≤l(q) g(q, s)+

Eq,s[h(B′)] = l(b) + arg mins≤l(b′) g(b′, s) + Eb′,s[h(B′)] = l(b) + s∗(b′), which contradicts the statement. Therefore,

if s∗(q) > l(b), then s∗(q) = l(b) + s∗(b′).

(ii) We use u instead of b′ for notational convenience and let q := b‖u. The second upper bound is easy to show as the

policy is restricted to s > l(b). To prove h∗(u) ≤ h∗(q), we will find a lower bound for h∗(q)− h∗(u) and show that it

is non-negative. Observe that

h∗(q)− h∗(u) = h∗(q)−min
s
Eu,s[g(s,u) + h∗(U ′)− λ∗]

≥ h∗(q)− Eu,s[g(s,u) + h∗(U ′)− λ∗]

= Eq,s∗(q)[g(s, q) + h∗(Q′)]− Eu,s[g(s,u) + h∗(U ′)]

(53)

for any s. Therefore, changing the actions that govern the Markov chain {U i} leads to further lower bounds. Now, we

will use a similar coupling idea as done in the proof of Lemma 1. Consider the two Markov chains above where the first

one starts from q and the other from u. Assume the two processes are coupled with having the same future arrivals for

the consequent buffer states. Moreover, the former chain is controlled with its respective optimal policy s∗, whereas the

latter is controlled as follows: If possible, choose the data chosen by the first process; otherwise choose the oldest data

possible. Denote this policy as s̃ and let {Qi} be the Markov chain pertaining to the former process. Then these two

processes will follow the paths

q = Q0

s∗(Q0)→ Q1

s∗(Q1)→ Q2 → . . .→ Qτ

u = U0
s̃(U0)→ U1

s̃(U1)→ U2 → . . .→ U τ

(54)

and eventually end in the same state Qτ = U τ after a random time τ . This is because all possible policies induce the

same recurrent class as mentioned in Lemma 2. Replacing h∗(Q′), h∗(U ′) in (53) several times, we obtain

h∗(q)− h∗(u) ≥ E
[τ∑
i=0

g(Qi, s
∗(Qi))− g(U i, s̃(U i))

]
. (55)

Observe that the right-hand side is equal to the expectation of the difference of accumulated costs incurred by the two

processes until they reach the same state. Note that U i is a suffix of Qi for all i. Therefore, the age penalty of the

former process will be greater. Furthermore, the latter process chooses every data that can be chosen by the former one,

except the ones in the first portion b, whose miss do not contribute to the distortion penalty of the latter process. Since

both accumulated age and distortion penalties of the former process {Qi} cannot be smaller than those of {U i}, the

expectation in (55) is non-negative. Hence the proof is complete.

28

D. Proof of Theorem 3

For simplicity, we prove the case with |V| = 3 and we set vmin = 1 without loss of generality. The same proof technique

may be extended to larger |V|, e.g., with induction.

Assume the policy iteration algorithm is executed with a sufficiently large buffer size M . We first show that packets of

importance v2 are never chosen by the optimal policy if choosing them incurs an age penalty greater than K2 := d v2−1
ηµ e, i.e.,

they must not be generated more than K2 time slots ago. We use the same coupling idea of two controlled Markov chains

with different policies, as we have done in the proofs of Lemma 1 and Property 1(ii).

Take a state b ∈ V≤M with length greater than K2, with b1 = v2 (this equality is without loss of generality) and suppose

s∗(b) = 1. We will show that there is a better strategy than s∗(b) = 1, which contradicts the optimality of s∗. Consider now

s̃(b) = min{k > 1 : bk > 1}, i.e, the index of first non-1 data (whose importance is greater than 1) in the remaining buffer.

Optimality of s∗ requires the following inequality to hold (the argument b of s̃(b) is omitted), otherwise the policy iteration

would not have converged.

E
[
η(s̃− 1) + h∗(bl2‖V

Z)− h∗(bls̃+1‖V
Z)
]
− 1

µ
v2 ≤ 0 (56)

Now, consider two coupled processes {Qi}, {U i} with Q0 := (bl2‖V
Z), U0 := (bls̃+1‖V

Z) where the actions of {U i} are

modified. The modification will be the same as in the proof of Property 1(ii): Choose the packet chosen by the first process

if possible; otherwise choose the oldest possible. As shown in the proof of Property 1(ii), altering the policy increases the

expected relative value. Consequently, we obtain a lower bound to the expectation in (56). Again, as every policy has the same

recurrent class, the two processes coincide with probability one. When they coincide, one of the following occurs:

(i) {Qi} misses a non-1 data that is taken by {U i}. Then the accumulated cost is greater than 1
µv2.

(ii) {U i} takes a packet of importance 1 at the end. Then the accumulated penalty incurred by age will be greater than ηl(b)

(using the fact that {U i} remains a suffix of {Qi} for all i) and the accumulated cost from distortion will be greater than

1
µ (since {U i} takes an extra packet of importance 1). The total cost will be greater than ηl(b)+ 1

µ ≥ ηK2(η)+ 1
µ ≥

1
µv2.

Therefore, we conclude that 1
µv2 is a lower bound to the expectation in (56). Hence the left-hand side of (56) can never be

negative and s∗ cannot be optimal — if it is equal to zero, then s∗ and s̃ are indifferent, so one can drive the process with s̃.

Now we proceed in a similar fashion to prove the case for v3. Consider a state b with l(b) > K3 := d v3−1
ηµ e, b1 = v3 and

suppose s∗(b) = 1. Choose s̃(b) = min{k > 1 : bk > 1, l(b) − k < K2 if bk = v2}, i.e., take the first non-1 data but with

the constraint that if it has importance v2, it must be generated within the most recent K2 time slots.

Define {Qi} and {U i} in a similar fashion. The modification done to the actions on {U i} will have a minor difference

compared to the previous case. Again, if U i cannot choose a data that is chosen by Qi, it chooses the first non-1 data but

with the following extra condition: If its importance is v2, take it if has been generated less than K2 time slots ago; otherwise

skip it and do the same for the next non-1 data. This modification ensures that U i will choose every possible data that may

be chosen by Qi. When the two processes coincide, one of the following occurs:

(i) {Qi} misses v3 that is taken by {U i}. Then the accumulated cost is greater than 1
µv3.

29

(ii) {Qi} misses v2 that is taken by {U i}. Then the accumulated cost incurred by age will be greater than η(l(b)−K2) (as

{U i} has remained a suffix of {Qi} and has taken this v2, whose index must be greater than l(b)−K2). The accumulated

cost from distortion will be greater than 1
µv2. Consequently, the total cost will be greater than η(l(b) − K2) + 1

µv2 ≥
v3−1
µ − v2−1

µ + 1
µv2 = 1

µv3.

(iii) {U i} takes a 1 at the end. Then the accumulated cost incurred by age will be greater than ηl(b) (again, using the fact

that {U i} remains a suffix of {Qi}) and the accumulated cost from distortion will be greater than 1
µ (since {U i} takes

an extra 1). The total cost will be greater than ηl(b) + 1
µ ≥

1
µv3.

Similar to the case of v2, the expectation (56) can never be negative and hence s∗ cannot be optimal.

All in all, we have shown that starting the policy iteration algorithm with a buffer size M > K3, the algorithm terminates

with an optimal policy that does not use more than a buffer size of K3. This implies that the solution of the Bellman equation

lies within buffers of size at most K3.

E. Policy Update Improvement

As discussed before, the policy update stage of Algorithm 3 can be improved to run in O(K|V|K) time. Our aim is to

improve the calculation of Ch(i)(b, 1) at step 16 of Algorithm 3. Recall that pz := Pr(Z = z), and qz := Pr(Z ≥ z). We

omit the argument of l(b) for brevity. Let us rewrite Ch(i)(b, 1) by first conditioning on Z = z as

Ch(i)(b, 1) = η(l − 1) +

∞∑
z=1

pzE[h(i)(b≥2‖V z)]

= η(l − 1) +

K−l∑
z=1

pzE[h(i)(b≥2‖V z)] + pK−l+1E[h(i)(b≥2‖V K−l+1)] (57)

+

∞∑
z=K−l+2

pzE[h(i)(b≥2‖V z)] (58)

and note that for z > K − l+ 1, h(i)(b≥2‖V z) = b2/µ+ h(i)(b≥3‖V z) since the length of b≥2‖V z exceeds K. In line with

this result, we rewrite the summation of (57) and (58) as

κ(i)(b≥2,K) := pK−l+1E[h(i)(b≥2‖V K−l+1)] + qK−l+2b2/µ+

∞∑
z=K−l+2

pzE[h(i)(b≥3‖V z)]

= pK−l(b≥2)E[h(i)(b≥2‖V K−l(b≥2))] + qK−l(b≥2)+1b2/µ+

∞∑
z=K−l(b≥2)+1

pzE[h(i)(b≥3‖V z)] (59)

The key observation here is that the last term is equal to κ(i)(b≥3,K) = κ(i)(parent(b≥2),K). Therefore, we have the

recursive relation

κ(i)(b,K) := pK−l(b)E[h(i)(b‖V K−l(b))] + qK−l(b)+1b1/µ+ κ(i)(parent(b),K) (60)

with the initial condition

κ(i)(δ,K) := qKE[h(i)(V K)] +
E[V]

µ
E[(Z −K)+]. (61)

30

The recursive relation (60) can be implemented exactly the same as the other updates that take place in lines 17-26 of Algorithm

3. Finally, we have

Ch(i)(b, 1) = η(l − 1) +

K−l∑
z=1

pzE[h(i)(b≥2‖V z)] + κ(i)(parent(b),K). (62)

Knowing κ(i)(parent(b),K), both Ch(i)(b, 1) and κ(i)(b,K) can be calculated in O(|V|K−l) steps. Consequently, the total

amount of calculations done for all length-l states is O(|V|K), and consequently for the depth-K tree T , the amount of

calculations done is O(K|V|K).

F. Closed-Form Expressions for the Simple Strategies

1) S1 — Send the oldest important data among the most recent K: For a buffer b, let s be the index of the first important

data among the K most recently arrived packets. Let a = (K ∧ l(b))− s+ 1; and if there is no important data among the K

most recent packets, set a = 0. Let Ai be the value of a at time instant i. It can be verified that the process {Ai} is a Markov

chain with state space {0, 1, . . . ,K}. Let pa,a′ denote the transition probability from state a to a′; and πa denote the stationary

probability of state a. Recall that Z is a geometric random variable and denote p := Pr(Z = 1) and q := Pr(V = v2). Let

x̄ := 1− x.

Now, let us calculate pa,a′ . Observe that when we are at state a, the first element in the buffer is selected and the remaining

a− 1 elements are untouched and need not be known. Conditioned on the next speaking time being a′ − a < z ≤ K − a, the

probability that the next state being a′ is equal to q̄z−(a′−a)−1q. This is because the first z − (a′ − a)− 1 elements must be

v1 and the next should be v2. For z > K − a, since we only check the most recent K data in the buffer, the first K − a′ must

be v1 and the next one should be v2. Thus we obtain the probability as q̄K−a
′
q. Averaging over z, we have

pa,a′ =

∞∑
z=a′−a+1

p̄z−1pq̄(z−a′+a−1)∧(K−a′)q. (63)

With a similar reasoning, we calculate pa′,a as

pa′,a =

∞∑
z=1

p̄z−1pq̄(z+a′−a−1)∧(K−a)q =

∞∑
z=a′−a+1

p̄z−a
′+a−1pq̄(z−1)∧(K−a)q =

(
q̄

p̄

)a′−a
pa,a′ . (64)

It is easy to see that p0,a = p1,a as the buffer is emptied in both cases; and pa,0 = pa,1
q̄
q as the only difference between the

transition from state a to state 0, or to state 1 is the most recent element being v1 or v2.

We now claim that the chain is reversible. The claim is easily verified by noting that the distribution (πa : a = 0, . . . ,K)

described by

π0 = (q̄/q)π1, πa = (q̄/p̄)K−aπK , a = 1, . . . ,K − 1

with

πK =
(
1− q̄

p̄

)
/
(
1− p

q

(
q̄
p̄

)K)
(65)

satisfies the detailed balance equations πapa,a′ = πa′pa,a′ .

31

The average excess age is then calculated straightforwardly:

∆(S1)
e (K) =

K∑
k=1

(k − 1)πk =
K − 1(

1− p
q

(
q̄
p̄

)K) − q̄
p̄

(
1−

(
q̄
p̄

)K)(
1− p

q

(
q̄
p̄

)K)(
1− q̄

p̄

) . (66)

For q = p, one takes q̄
p̄ → 1 in (66) to obtain ∆

(S1)
e = (K−1)K

2(K+ p̄
p)

.

The average distortion is calculated as follows: Unimportant packets are sent π0 fraction of the speaking times, and the

remaining time is allocated to the transmission of important packets. Hence, unimportant packets are sent pπ0 fraction of the

time and important packets are sent p(1− π0) fraction of the time. Consequently,

D(S1)(K) = (q̄ − pπ0)v1 + (q − p(1− π0))v2. (67)

2) S2 — Send the newest important data among the most recent K: Compared to the other strategies, the analysis will be

relatively simpler. For a buffer b, let s be the index of the newest important data among the K most recent and let the state

be a = l − s + 1. If there is no important data among the K most recent, set a = 0. Observe that regardless of the value of

a, the packets (if any) that remain the buffer after transmission are of minimum importance and will be ignored at the next

speaking time. Hence, at the next speaking time, the next state a′ will not depend on the current state a, and we have an i.i.d.

process. Let πa be the probability of the next state being equal to a. Conditioned on the next speaking time z, this probability

is equal to qq̄a−1
1{a ≤ z}. Hence, for 0 < a ≤ K

πa =

∞∑
z≥a

qq̄a−1p̄z−1p = q(p̄q̄)a−1, (68)

and π0 = 1−
∑K
a=1 πa = q̄p+q(p̄q̄)K

1−p̄q̄ . The age and distortion are calculated similar to (66) and (67).

3) S3 — Send the newest important data that has arrived more than K slots ago. If there is no such data, send the oldest

important one: We set the state associated to a buffer b as follows: If b does not contain an important data arrived more than

K time slots ago, set a = (K ∧ l(b)) − s + 1 as the state; and if there is no important data in the buffer, set a = 0. Note

that this is exactly the same as in S1. If b does contain an important data that has arrived more than K time slots ago, set

a = K + 1. Hence the state space will be {0, 1, . . . ,K + 1}. Similar to the analysis of S1, {Ai} will be a Markov chain. We

want to calculate the transition probabilities pK+1,a for 0 < a < K + 1. Since at state K + 1, an important data has arrived

more than K slots ago, b is of the form b = [v2, v1, . . . , v1, . . .︸︷︷︸
K

], where the last K data need not be known. Conditioned on

the speaking time z, the probability of ending up in state a is then should be q̄z+K−aq. Consequently,

pK+1,a =

∞∑
z=1

p̄z−1pq̄K−a+zq =
pqq̄K−a+1

1− p̄q̄
. (69)

Now, we aim to find pa,K+1 for 0 < a < K+ 1. Since b is of the form b = [. . . , v2, . . .︸︷︷︸
a−1

], and the last a− 1 data need not be

known, the next speaking time should be greater than K − a+ 1. Moreover, there must be at least one important data among

32

the first z − (K − a+ 1). Then, we obtain

pa,K+1 =
∑

z>K−a+1

p̄z−1p(1− q̄z−(K−a+1)) =
qp̄K−a+1

1− p̄q̄
. (70)

Calculation of pa,a′ , 0 < a ≤ a′ < K + 1 is similar to the one in S1. Since b = [. . . , v2, . . .︸︷︷︸
a−1

], the next speaking time

should be greater than a′ − a, and the first z − (a′ − a+ 1) data must be unimportant while the z − (a′ − a)th data must be

important. Thus,

pa,a′ =
∑

z>a′−a
p̄z−1pq̄z−a

′+aq =
pqp̄a

′−a

1− p̄q̄
. (71)

A similar analysis reveals that for 0 < a′ ≤ a < K + 1,

pa,a′ =

∞∑
z=1

p̄z−1pq̄z−a
′+a−1q =

pqq̄a−a
′

1− p̄q̄
. (72)

Finally, as we discussed in the analysis of S1, p0,a = p1,a and pa,0 = pa,1
q̄
q . Hence, we have found all the transition probabilities.

We will verify that {Ai} is a reversible Markov chain. The detailed balance equations for the state pairs (a,K+1) with a > 0

require the stationary distribution π to satisfy

πK+1pK+1,a = πapa,K+1 (73)

and thus we find πa = p
(
q̄
p̄

)K+1−a
πK+1 for a > 0. Detailed balance equations for the state pair (0, 1) further yield π0 =

(q̄/q)π1 = pq̄
q

(
q̄
p̄

)K
πK+1. One can easily verify that this choice satisfies not only (73) but all the detailed balance equations.

Thus, we have verified the reversibility of the chain and found its stationary distribution.

Let us start the chain with the stationary distribution and let ∆i := l(Bi) − s(Bi) be the instantaneous excess age at the

ith speaking time. If 0 ≤ Ai ≤ K, then ∆i = (Ai − 1) ∨ 0. When Ai = K + 1, however, ∆i is random. It turns out that the

distribution of ∆i − (K − 1) conditioned on Ai = K + 1 is geometrically distributed. To see this, observe

Pr(∆i = K − 1 + z′|Ai = K + 1) =
Pr(∆i = K − 1 + z′, Ai = K + 1)

πK+1

=
1

πK+1

K+1∑
a=1

πa
∑

z≥K−a+1+z′

p̄z−1pqq̄z
′−1 +

π0

πK+1

∑
z≥K+z′

p̄z−1pqq̄z
′−1

=
1

πK+1

K+1∑
a=1

πap̄
K−a+z′qq̄z

′−1 +
π0

πK+1
p̄K+z′−1qq̄z

′−1

=

K+1∑
a=1

p1{a≤K}
(
q̄
p̄

)K+1−a
p̄K−a+z′qq̄z

′−1 + p q̄q (q̄p̄
)K
p̄K+z′−1qq̄z

′−1

= (p̄q̄)z
′−1(1− p̄q̄).

(74)

Then, the average excess age is found as

∆(S3)
e (K) =

K∑
k=1

(k − 1)πk + πK+1

(
1

1−p̄q̄ +K − 1
)
. (75)

The average distortion is calculated the same as in (67).

33

G. Proof of Corollary 2

Denote the stationary probabilities of each state l as πl and pi := Pr(Z = i) = pp̄i−1 with p̄ := 1− p. Assume τ > N for

the moment. The derivation for τ ≤ N will easily follow.

Let sji :=
∑j
l=i πl and si := s∞i . The stationary probabilities are the solution to the linear system

π1 = p1s
N
1

π2 = p2s
N
1 + p1πN+1

. . .

πτ = pτs
N
1 + pτ−1πN+1 + . . .+ p1πN+τ−1

πτ+1 = pτ+1s
N
1 + pτπN+1 + . . .+ p1sN+τ

. . .

πτ+j = pτ+js
N
1 + pτ+j−1πN+1 + . . .+ pjsN+τ

. . .

(76)

Observe that

πj+1 = p̄πj + pπN+j , 1 ≤ j ≤ τ − 1 (77)

and

πj+1 = p̄πj , j ≥ τ + 1. (78)

Summing up the equalities in (77), with indices up to j + 1, we obtain

sj+1
2 = p̄sj1 + psN+j

N+1 (79)

and hence

πj+1 + psj2 = p̄π1 + psN+j
N+1. (80)

Note that the first equation in (76) implies p̄π1 = psN2 and thus we get

πj+1 + psj2 = psN2 + psN+j
N+1 (81)

and

p̄πj+1 = psN+j
j+2 , 1 ≤ j ≤ τ − 1, (82)

which implies for j = τ − 1

πτ = p

N+τ−1∑
k=1

πτ+k =
πτ+1(1− p̄N−1)

p̄
(83)

34

where the last equality follows from (78). Now repeated application of (77) gives

πτ−j = πτ+1
1− (1 + jp)p̄N−1

p̄j+1
, 0 ≤ j ≤ N − 1. (84)

Our aim is now to find all stationary probabilities in terms of πτ+1. With the above, we are able to find πτ−j , 0 ≤ j ≤ N − 1

in terms of πτ+1. For j > N − 1, we try to observe a pattern. First, try to calculate πτ−N by (77), which gives

πτ−N = πτ+1
1− (1 +Np)p̄N−1 + pp̄2(N−1)

p̄N+1
. (85)

Once more, repeated application of (77) gives

πτ−N−j = πτ+1
1− (1 + (N + j)p)p̄N−1

p̄N+j+1
+ πτ+1

p(
∑j
k=0(1 + kp))p̄2(N−1)

p̄N+j+1
(86)

for 0 ≤ j ≤ N−1. Doing the same procedure, we observe the following pattern: Let S(0)
j := (1+jp) and S(n)

j :=
∑j
k=0 S

(n−1)
k

for n ≥ 1. Also let S(n)
j = 0 for j < 0. Then,

πτ−j = πτ+1

1 +
∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1
. (87)

Finally, since the probabilities sum up to one, we have

1 = sτ1 + sτ+1 = sτ1 +
πτ+1

p

= πτ+1

τ−1∑
j=0

1 +
∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1
+
πτ+1

p

(88)

and therefore

πτ+1 =

[τ−1∑
j=0

1 +
∑dτ/Ne
k=0 (−1)k+1S

(k)
j−kNp

kp̄(k+1)(N−1)

p̄j+1
+

1

p

]−1

. (89)

After calculating all πjs, it is straightforward to obtain expressions for ∆e and D as

∆e =

τ−1∑
j=1

jπN+j + τ

∞∑
j=τ

πN+j =

τ−1∑
j=1

jπN+j +
τπτ+1p̄

N−1

p
(90)

and

D = µV

∞∑
j=1

jπτ+N+j =
µV πτ+1p̄

N

p2
. (91)

	I Introduction
	II Related Work
	III Notation
	IV Problem Definition
	V The Age-Distortion Tradeoff
	V-A Markov Decision Problem Formulation as a Lower Bound
	V-B Policy Iteration with a Truncated State Space
	V-C The Exact Buffer Size for an Optimal Policy
	V-D An Efficient Algorithm to Find the (e, D) Region

	VI Relation to an Erasure Channel with Feedback
	VII When Timestamps Become Significant
	VII-A Buffer Ignorant Strategies
	VII-B Revealing Partial Buffer Content
	VII-C Discussion about other possible coding strategies

	VIII Discussion
	References
	Appendix
	A Proofs of Theorems 1 and 2
	A1 Proof of Theorem 1
	A2 Proof of Theorem 2

	B Proof of Lemma 1
	C Proof of Property 1
	D Proof of Theorem 3
	E Policy Update Improvement
	F Closed-Form Expressions for the Simple Strategies
	F1 S1 — Send the oldest important data among the most recent K
	F2 S2 — Send the newest important data among the most recent K
	F3 S3 — Send the newest important data that has arrived more than K slots ago. If there is no such data, send the oldest important one

	G Proof of Corollary 2

