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Abstract—Recently, it was found that clipping can significantly
improve the section error rate (SER) performance of sparse
regression (SR) codes if an optimal clipping threshold is chosen.
In this paper, we propose irregularly clipped SR codes, where
multiple clipping thresholds are applied to symbols according to
a distribution, to further improve the SER performance of SR
codes. Orthogonal approximate message passing (OAMP) algo-
rithm is used for decoding. Using state evolution, the distribution
of irregular clipping thresholds is optimized to minimize the SER
of OAMP decoding. As a result, optimized irregularly clipped
SR codes achieve a better tradeoff between clipping distortion
and noise distortion than regularly clipped SR codes. Numerical
results demonstrate that irregularly clipped SR codes achieve 0.4
dB gain in signal-to-noise-ratio (SNR) over regularly clipped SR
codes at code length≈ 2.5×104 and SER≈ 10−5. We further
show that irregularly clipped SR codes are robust over a wide
range of code rates.

I. INTRODUCTION

Sparse regression (SR) codes were introduced and studied
by Barron and Joseph [1] and were shown to achieve the
capacity of the additive white Gaussian noise (AWGN) chan-
nel when the code length and the rate of non-zero symbols
go to infinity [2]–[4]. Furthermore, the code rate can be
easily changed by adjusting the matrix size directly rather
than rebuilding the parity check matrix carefully as in low
density parity check (LDPC) codes [5] because there is no
sparse/tree-like requirement on the measurement matrix. The
low-complexity fast Fourier transform (FFT) algorithm can be
used to reduce the complexity and efficient approximate mes-
sage passing (AMP) type algorithms can be used for decoding
to guarantee a Bayes-optimal solution, i.e., the minimum mean
square error (MMSE) solution [2]–[4]. However, SR codes
have a weakness at finite code length. When the code length
and the compression rate are finite, the performance of SR
codes is far from the capacity, and much worse than the widely
used LDPC codes.

To improve the performance and competitiveness of SR
codes, several techniques have been introduced. Spatial-
coupling, originally introduced for LDPC codes, was used in
SR codes [4] to obtain a Bayes-optimal decoding performance
for any compression rate. Recently, it was found that regular
clipping, a technique that is generally used to reduce the peak-
to-average-power ratio (PAPR), can also improve the section
error rate (SER) performance of SR codes significantly [6].
When a signal is clipped, we compensate by scaling the
clipped signal to maintain a fixed transmit power; the intuition

of clipped SR codes is that this scaling is more beneficial
than the penalty of distortion due to clipping. Therefore,
there exists a tradeoff between the clipping distortion and
noise distortion. An optimal clipping threshold can bring a
significant gain in SER performance for SR codes at finite
code length, sometimes achieving 4 dB in SNR at code length
104. However the performance is still not very close to the
capacity (about 2 dB at code length 104).

This paper considers irregular clipping of SR codes. In
addition, a permuted discrete cosine transform (DCT) matrix
is used for the SR code measurement matrix, rather than
an i.i.d. Gaussian matrix as in previous work. Thus, low-
complexity fast DCT and inverse DCT (IDCT) algorithms can
be applied to reduce the encoding and decoding complexity
of SR codes. Orthogonal AMP (OAMP) algorithm [7] (see
also closely-related earlier works in [8], [9]) is exploited for
the decoding of the clipped SR codes. It was shown in [10],
[11] that state evolution (SE) can asymptotically characterize
the performance of OAMP algorithm, similar to extrinsic
information transfer (EXIT) chart in iterative decoding [12],
[13]. In this paper, the main contributions are summarized as
follows.

• To further improve the SER performance of regularly
clipped SR codes, we propose an irregularly clipped SR
code. In irregularly clipped SR codes, a new irregular
clipping method applies different clipping thresholds to
different symbols, which provides a larger optimization
space and thus results in better SER performance.

• Based on the SE analysis for the OAMP decoding, the
distribution of irregular clipping thresholds is optimized
to minimize the SER of irregularly clipped SR codes,
which is a concave optimization and thus can be solved
by standard convex optimization tools.

• We provide numerical results to demonstrate the ef-
ficiency of irregularly clipped SR codes. Specifically,
comparing with the existing regularly clipped SR codes,
the proposed irregularly clipped SR codes achieve about
0.4 dB gain in signal-to-noise-ratio (SNR) at code length
≈2.5×104 and SER ≈ 10−5. Furthermore, the irregularly
clipped SR codes are robust in a wide range of code rates,
e.g., from 0.2 (low rate) to 1 (high rate).

The findings in this paper provide a promising direction to
significantly enhance the performance of SR codes.
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II. PRELIMINARIES

In this section, we briefly introduce SR codes, regularly
clipped SR codes and OAMP decoding.

Consider an AWGN channel:

y = c+ n, (1)

where c ∈ RM is an encoded vector and n ∼ N (0, σ2
nIM ) is

a Gaussian noise vector. We define SNR = σ−2n . The goal is
to recover c via the received signal vector y.

A. Sparse Regression (SR) Codes
An SR code is generated by [2], [4]:

c = Ax, (2)

where A∈RM×N is a measurement matrix with compression
rate δ = M/N ≤ 1, and x is an information-carrying sparse
vector that contains L sections. Each section is of length B and
has a single non-zero entry with amplitude

√
B. An example

of x is as follows:

Φ: xT=[

section 1︷ ︸︸ ︷
0, . . . , 0,

√
B |

section 2︷ ︸︸ ︷
. . . , 0,

√
B, 0 | . . . , |

section L︷ ︸︸ ︷√
B, 0, . . . , 0]. (3)

The positions of the non-zero symbols in x carry the infor-
mation. In this code, the code length is M and the amount
of information is LlogB. Thus, the code rate is given by
R = LlogB/M .

For theoretical analysis in [2], [4], A ∈ RM×N in (2) is
assumed to have independent identically distributed Gaussian
(IIDG) entries over N (0, N−1). In this paper, A is generated
by randomly selecting M rows from the N ×N DCT matrix.
Hence, the low-complexity fast DCT algorithm can be used in
encoding and decoding. In addition, OAMP [7] can be applied
to such non-IID sensing matrices. Furthermore, it is shown
that the performance of partial DCT matrices is better than
IID Gaussian matrices [9]. Apart from that, it was proved that
the OAMP decoding is potential Bayes optimal and obtains
the maximum a posteriori (MAP) solution of (1).

SR codes work well at a very large length but are not as
good as expected in more practical scenarios (e.g., limited
code length and high code rates). Therefore a new method to
improve the performance is needed.

B. Regularly Clipped SR Code
Clipping is normally applied to reduce PAPR. It sets the

signals whose absolute value is larger than a given threshold
to the threshold and then normalizes the transmitted signals to
keep the same power.

Let clip(·) be a symbol-by-symbol clipping given by

clipε (z) =

 ε, z > ε
z, |z| ≤ ε
−ε, z < −ε

. (4)

The clipping ratio (CR) of clip(·) in (4) is defined as CR =
10log10(ε2/E{z2}). Then, the codeword c is given by a
normalized clipping function defined as [6]:

c = α clipε(Ax), (5)
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Fig. 1. Graphical illustrations of (a) clipped SR codes and AWGN channel,
(b) OAMP decoding and (c) state evolution of OAMP. Functions γ and φ in
(b) are respectively corresponding to Γ and Φ in (a). F and F−1 are DCT and
inverse DCT (IDCT) corresponding to the transfer F in (a). Orthogonalization
“orth" is used to solve the correlation problem in iterative process.

where α = 1√
E{‖clip(Ax)‖2}/M

is a normalizing factor. We

call (5) a regularly clipped SR code since all the elements
in Ax are clipped with the same threshold ε. Intuitively,
α makes a power compensation for the clipping operation,
which introduces a tradeoff between the clipping distortion
and channel noise distortion.

For simplicity, we rewrite the problem as:

Γ : y = α clipε(z) + n, (6a)
Ψ : z = Fx, (6b)
Φ : xl ∼ P (xl), ∀l, (6c)

where Γ contains a symbol-by-symbol clipping and an AWGN
channel, Ψ is a DCT process (F is a DCT matrix), xl denotes
the l-th section in x, and Φ the block sparse modulation in
(3). Fig. 1(a) gives a graphical illustration of the clipped SR
codes.

Optimized clipping can significantly improve the SER per-
formance of SR codes [6]. For example, as shown in Fig. 3,
when code length = 104 and R = 0.5, the clipped SR code
with optimal clipping threshold achieves 4dB gain in SNR at
SER = 10−5 comparing the un-clipped case. However, it is
still 2dB away from the Shannon limit (0 dB for R = 0.5) of
the system in (1).

C. OAMP Decoding

Fig. 1(b) gives an illustration of the OAMP decoding
process, which consists of the following modules:
• De-clipping process γ(·) solves the clipping-and-AWGN

constraint Γ in (6a).
• De-modulation process φ(·) for the sparse modulation

constraint Φ in (6c).



• F and F−1 correspond to the transfer constraint in (6a).
• The orthogonalization “orth" solves the correlation prob-

lem in iterative process and ensures the correctness of
state evolution [7].

Their expressions are given by

Declip : zpost = γε(zpri) = E{z|Γ, zpri, vzpri
}, (7a)

vpost =γSEε (vzpri
)=var{z|Γ, zpri, vzpri}, (7b)

Orth : vzorth =OSE

(
δvzpost

+(1−δ)vzpri
, vzpri

)
, (7c)

zorth = O(zpost, vzpost
; zpri, vzpri

), (7d)

IDCT : xpri = F−1zorth, vxpri
= vzorth , (7e)

Demod : xpost = φ(xpri) = E{x|Φ,xpri, vxpri
}, (7f)

vpost =φSE(vxpri
)=var{x|Φ,xpri, vxpri

}, (7g)

Orth : vxorth
= OSE(vxpost

, vxpri
), (7h)

xorth = O(xpost, vxpost
;xpri, vxpri

), (7i)

DCT : zpri = Fxorth, vzpri
= vxorth

, (7j)

where orthogonalization is defined as

vorth = OSE(vpost, vpri)

≡
(
v−1post − v−1pri

)−1
, (8a)

uorth = O(upost, vpost;upri, vpri)

≡ vorth
(
v−1postupost − v−1priupri

)
, (8b)

and the symbol-by-symbol de-clipping and the section-by-
section de-modulation are calculated by

γε(zpri) =

∫
zP (z|Γ, zpri, vzpri)dz, (9a)

γSEε (vzpri
) =

∫
z2P (z|Γ, zpri, vzpri

)dz − γ2(zpri), (9b)

φ(xpri
s ) =

∫
xsP (xs|Φ,xpri

s , vxpri
)dxs, (9c)

φSE(vxpri
)= 1

B

∫ ∥∥xs−φ(xpri
s )
∥∥2P (xs|Φ,xpri

s , vxpri
)dxs. (9d)

The subscript “s” denotes a section of the corresponding
variance vector (see (3)).

State Evolution (SE): SE has been strictly proven to be
a numerical tool [10], [11] that can asymptotically character-
ize the performance of OAMP decoding with any unitarily-
invariant matrices.

For simplicity, we let vz = vzpri
= vxorth

and vx = vxpri
=

vzorth . The transfer curves of the orthogonal de-clipping and

orthogonal demodulation are given by

vx=γSEorth(vz, ε, λ)≡OSE

(
δγSEε (vz) + (1−δ)vz, vz

)
(10a)

=vz
[
δ−1
(
1−λγSEε (vz)/vz

)−1− 1
]
, (10b)

vz = φSEorth(vx) ≡ OSE

(
φSE(vx), vx

)
. (10c)

where OSE(·) is given in (8). In practice, the local transfer
curves γSEorth(·) and φSEorth(·) can be obtained by local Monte
Carlo simulations, using the IID Gaussian property of OAMP.

III. IRREGULARLY CLIPPED SR CODE

In this section, we propose an irregular clipping technique to
further improve the SER performance of the clipped SR codes.
Using SE, we optimize the distribution of irregular clipping
thresholds to minimize the SER of SR codes.

A. Irregular Clipping

In the regular clipping in Section II-B, all the elements are
clipped based on the same threshold. Differently, in irregular
clipping, different clipping thresholds can be applied to differ-
ent symbols, which provides more optimization space for the
SR codes and thus results in better performance.

Define the irregular clipping function as

c = clipIrr
ε,λ(z). (11)

where ε = [ε1 · · · εK ]. Specifically, z is partitioned into K
subvectors {z1 · · · zK}, where zk is clipped with threshold εk
and has length λkM . λ = [λ1 · · ·λK ] denotes the threshold
distribution of ε with 0 ≤ λk ≤ 1 and

∑K
k=1 λk = 1. There-

fore, the codeword length is still M . Similarly, c is partitioned
into {c1 · · · cK}. Then, the irregular clipping function in (11)
is given by

ck = αk clipεk(zk), k = 1, . . . ,K, (12)

where clipεk(·) is defined in (4) and αk is a power compen-
sation parameter for clipping function clipεk(·). Similarly to
(6), we define an irregularly clipped SR code as

Γ̃ : y = clipIrr
ε,λ(z) + n, (13a)

Ψ : z = Fx, (13b)
Φ : xl ∼ P (xl), ∀l, (13c)

where clipIrr
ε,λ(·) is given in (12), and (13b) and (13c) are the

same as those in (6).

B. OAMP Decoding for Irregularly Clipped SR codes

Let zpost = [zpost1 · · · , zpostK ], zpri = [zpri1 · · · , z
pri
K ] and

zorth = [zorth1 · · · , zorthK ]. In the decoding of irregularly
clipped SR codes, the de-clipping is performed for each
subvector. Thus, the de-clipping in (7) is replaced by: ∀k,

Irr−declip : zpostk = γεk(zprik ), (14a)

vzpost
=

K∑
k=1

λkγ
SE
εk

(vzpri), (14b)

where γεk(·) and γSEεk (·) are respectively given in (7a) and
(7b). The other parts (e.g. demodulation, orthogonalization and



DCT/IDCT) of the OAMP decoding of irregularly clipped SR
codes are the same as those in (7).

State Evolution (SE): In irregularly clipped SR codes, the
transfer curve of orthogonal irregular de-clipping is given by

vx = γ̃SEorth(vz, ε,λ) (15a)

≡
[(
δ

K∑
k=1

λkγ
SE
εk

(vz) + (1− δ)vz
)−1
− v−1z

]−1
(15b)

= vz

[
δ−1
(

1−
K∑
k=1

λkγ
SE
εk

(vz)/vz

)−1
− 1
]
, (15c)

where γSEorth(vz, ε) is given in (10b). The transfer curve of
orthogonal demodulation is the same as the regularly clipped
SR codes in (10c).

Complexity: It is easy to see that the computational com-
plexity of irregularly clipped SR codes is almost the same as
that of regularly clipped SR codes, dominated by DCT/IDCT
with complexity O(N logN) per iteration.

C. Optimization of Irregular Clipping Thresholds

In this subsection, given the irregular clipping threshold
vector ε, we will discuss the optimization λ = [λ1 · · ·λK ].
Intuitively, the distribution vector λ controls the contribution
of the different clipping thresholds. Therefore, we can optimize
λ to minimize the SER performance of irregularly clipped SR
codes. Equivalently, given SNR, we can maximize the minimal
gap between the transfer curves γ̃SEorth and φSEorth in [vmin, 1],
where vmin is a small enough positive number to obtain the
desired SER performance. Hence, the optimization problem
can be described as

P1 : max
λ

min
v∈[vmin,1]

φSE
−1

orth (v)− γ̃SEorth(v, ε,λ), (16a)

s.t.

K∑
k=1

λk = 1, (16b)

0 ≤ λk ≤ 1, (16c)

where γ̃SEorth(v, ε,λ) is given in (15), and φSE
−1

orth (·) is an inverse
function of φSEorth(·) in (10c).

Notice that the objective function in P1 is a complicated
function of v. Given λ, it is very difficult to find the analytical
solution of P1 on the continuous region v ∈ [vmin, 1]. To over-
come this problem, we consider minimization on the uniformly
sampling points V = {vi} on [vmin, 1] in log domain. In
general, we set vmin = 10−6 and the number of sampling
points as 100, i.e., |V| = 100. Therefore, following (15), P1

can be rewritten to the following optimization problem:

P2 : max
λ

min
vi∈V

φSE
−1

orth (vi)− γ̃SEorth(vi, ε,λ), (17a)

s.t.

K∑
k=1

λk = 1, (17b)

0 ≤ λk ≤ 1. (17c)

Note that δ, vi, γSEεk (vi) are all positive. It is easy to verify
that {γ̃SEorth(vi, ε,λ),∀i} (see (15)) are concave functions of λ.
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Fig. 2. SE transfer charts of (a) the optimized regularly clipped SR code
with SNR = 2 dB and (b) the optimized irregularly clipped SR codes with
SNR = 1.3 dB. B = 64, L = 2048 and R = 0.5. The optimal CR of
regular clipping for regularly clipped SR codes is −13 dB.

The minimization of concave functions is also concave [14].
In addition, the constraints in P2 are linear. Therefore, P2 is a
concave problem of λ and thus it can be solved using standard
convex optimization tools.

D. Transfer Chart Comparison of Regularly Clipped and
Irregularly Clipped SR codes

Fig. 2 compares the SE transfer charts of the optimized
regularly clipped SR codes and the optimized irregularly
clipped SR codes. As illustrated in Fig. 2, to ensure the OAMP
decoding converges to the target SER, the key is to create a
decoding tunnel between the curves of demodulation and de-
clipping. Let vmin be the target performance. There should be
no fixed point in the region v ≤ vmin, since otherwise the
tunnel will be closed at v > vmin. It is shown that the tunnel
is opened at SNR = 2 dB for regularly clipped SR codes (see
Fig. 2(a)), and at SNR = 1.3 dB for irregularly clipped SR
codes (see Fig. 2(b)). In other words, following the SE transfer
chart analysis, irregularly clipped SR codes achieve about 0.7
dB gain in SNR comparing with regularly clipped SR codes
for the target performance vmin = 10−5.

IV. SIMULATION RESULTS

Fig. 3 gives the SERs of non-clipped SR code, optimized
regularly clipped SR code and optimized irregularly clipped
SR code. The parameters are set as B = 64, L = 2048, R =
0.5 (code rate), M = 24, 576 (code length) and SNR = σ−2n .
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Fig. 3. SER comparison between the non-clipped SR codes, optimized
regularly clipped SR codes and optimized irregularly clipped SR codes.
B = 64, L = 2048, R = 0.5 (code rate), M = 24, 576 (code length)
and SNR = σ−2

n . The CRs and its distribution λ are given in Table I. The
maximum number of iterations is 120. The optimal CR of regular clipping
for regularly clipped SR codes is −13 dB.

The optimal CR of regularly clipped SR codes is −13 dB.
The irregularly clipped SR codes involve 19 candidate CRs
for irregular clipping. For the irregularly clipped SR codes in
Fig. 3, the CRs and corresponding distribution vector λ are op-
timized for each simulated SNR (see the concave optimization
in Section III-C). The maximum number of iterations is 120.
As we can see in Fig. 3, the proposed irregularly clipped SR
codes achieve better SER performance than regularly clipped
and non-clipped. Comparing with regularly clipped SR codes
[6], irregularly clipped SR codes achieve about 0.4 dB gain in
SNR at SER=10−5.

Fig. 4 gives the SERs of optimized irregularly clipped
SR codes with code rates R = {0.2, 0.4, 0.6, 0.8, 1}.
The parameters are set as B = 64, L = 2048, and
M = {61440, 30720, 20480, 15360, 12288} (code lengths).
The maximum number of iterations is 100. As can be seen, the
optimized irregularly clipped SR codes exhibit characteristic
waterfall behavior for a range of rate from 0.2 (low rate) to
1 (high rate). Every point in Fig. 4 uses different CRs and λ.
Table I shows the λ of each code rate for the points whose
SER is close to 10−5.

V. CONCLUSION

This paper investigated irregular clipping for SR codes with
OAMP decoding. Using SE analysis, we constructed a convex
optimization problem to minimize the SER of irregularly
clipped SR codes by optimizing the distribution of the clipping
thresholds. As a result, the proposed irregularly clipped SR
codes achieve a better SER performance than the existing regu-
larly clipped SR codes. When compared with regularly clipped
SR codes, irregularly clipped SR codes achieve about 0.4 dB
gain in SNR at code length ≈ 2.5 × 104 and SER ≈ 10−5.
Furthermore, irregularly clipped SR codes are robust in a wide
range of code rates, e.g., from 0.2 (low rate) to 1 (high rate).
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Fig. 4. SERs of the optimized irregularly clipped SR codes with different
code rates. B = 64, L = 2048, R = {0.2, 0.4, 0.6, 0.8, 1} (code rates),
M = {61440, 30720, 20480, 15360, 12288} (code lengths) and SNR =
σ−2
n . CRs and the distribution are given in Table I. The maximum number

of iterations is 100.

TABLE I
OPTIMIZED COEFFICIENT CRS AND λ

R SNR (dB) CR (dB) and λ

0.2 -3.6 -300 -12 -10 -8
0.04460 0.27394 0.38313 0.29831

0.4 0.2

-300 -30 -16 -10 -8
0.02590 0.05297 0.00756 0.00145 0.17107

-6 -2 0 4
0.51890 0.13035 0.00790 0.08390

0.5 1.6

-300 -24 -22 -18 -6
0.01251 0.12000 0.00027 0.00293 0.00031

-5 -4 -3 -2
0.07169 0.56832 0.16883 0.05508

0.6 2.8

-300 -30 -19 -16
0.02048 0.01288 0.13391 0.00462

-12 -4 -2 0
0.00034 0.19962 0.26163 0.36647

0.8 4.8

-300 -30 -22 -16 -14
0.01207 0.02881 0.01619 0.07276 0.04741

-10 0 2 6 8
0.07536 0.06970 0.43372 0.17212 0.07178

1.0 6.4

-300 -30 -22 -20
0.00899 0.03115 0.00010 0.00380

-16 -14 -6 300
0.00037 0.16628 0.00015 0.78912
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