
ar
X

iv
:2

10
5.

06
10

0v
1 

 [
qu

an
t-

ph
] 

 1
3 

M
ay

 2
02

1

One-shot inner bounds for sending private classical

information over a quantum MAC

Sayantan Chakraborty† Aditya Nema* Pranab Sen†

Abstract

We provide the first inner bounds for sending private classical information over a quan-
tum multiple access channel. We do so by using three powerful information theoretic tech-
niques: rate splitting, quantum simultaneous decoding for multiple access channels, and a
novel smoothed distributed covering lemma for classical quantum channels. Our inner bounds
are given in the one shot setting and accordingly the three techniques used are all very recent
ones specifically designed to work in this setting. The last technique is new to this work and
is our main technical advancement. For the asymptotic iid setting, our one shot inner bounds
lead to the natural quantum analogue of the best classical inner bounds for this problem.

1 Introduction

Private communication over a noisy channel is an important information processing and crypto-
graphic primitive. Here, a sender Alice wants to send her message over a noisy channel C so that
the genuine receiver Bob can decode it with small error. At the same time, an eavesdropping re-
ceiver Eve should get almost no information about the transmitted message. There exist different
ways of formalising the latter requirement as we will see very soon below.

The task of private communication over a noisy classical channel has an old history. Wyner
[Wyn75], and Csiszár and Körner [CK78] first studied this problem for a point to point classi-
cal channel in the asymptotic setting of many independent and identical (iid) uses of the channel.
Calling it the wiretap channel, they proved the following optimal bound:

RA =max
P
(I(X ∶ C)P − I(X ∶ E)P), (1)

where the channel C is modelled as a stochastic map from set A to set C × E and the mutual
information is measured with respect to the probability distribution p(x)p(ce∣x) where X is an
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auxilliary random variable and the maximisation is done over all choices of the random variable
X and encoding maps x ↦ p(a∣x). The above bound is obtained as follows. Let n be the num-
ber of iid channel uses. Alice chooses a random code book of size 2n(RA+ra) by independently
sampling from the probability distribution p(xn) on Xn. This code book is divided into 2nRA

blocks, each of size 2nra . To transmit the mth message for an m ∈ 2nRA , Alice chooses a uniformly
random codeword from the mth block, say the m′th codeword x(m, m′), applies the stochastic en-
coding map to xn(m, m′) to get a sample from a probability distribution on An and feeds it to n
copies of the channel C. The output of the channel is a sample from the probability distribution
p(cnen∣xn(m, m′)). Bob can decode the pair (m, m′) if the rate RA + ra per channel use is less than
I(X ∶ C)P. On the other hand, Eve is ‘obfuscated’ if ra ≥ I(X ∶ E)P. This leads to the achievable rate
RA ≤ I(X ∶ C)P − I(X ∶ E)P for private classical communication. Here, different notions of secrecy
lead to different notions of formalisation of the statement ‘Eve is obfuscated’.

The multiple access channel (MAC) is arguably the simplest multiterminal communication chan-
nel where there are several independent senders but only one genuine receiver. Private commu-
nication over a MAC is an important cryptographic task modelling, for example, the secure com-
munication of messages from multiple independent agents in the field to a base station. Here, the
genuine receiver should be able to decode the entire transmitted message tuple with small error
and an eavesdropping receiver should hardly get any information about the transmitted message
tuple. In the last decade several authors have considered the problem of private classical com-
munication over various types of classical multiple access channels in the asymptotic iid setting
culminating in the work of Chen, Koyluoglu and Vinck [CKV16] who proved the following inner
bound for a general classical discrete memoryless MAC in the asymptotic iid setting: the union of
rate regions of the form

RA ≤ I(X ∶ CY∣Q)P − I(X ∶ E∣Q)P,
RB ≤ I(Y ∶ CX∣Q)P − I(Y ∶ E∣Q)P,

RA +RB ≤ I(XY ∶ C∣Q)P − I(XY ∶ E∣Q)P,
(2)

where the mutual information is measured with respect to the probability distribution p(q)p(x∣q)p(y∣q)p(c, e∣x, y),
Q is an auxilliary ‘time sharing’ random variable, X, Y are auxilliary random variables that are in-
dependent given Q, X → A, Y → B are independent stochastic encoding maps and the channel is
a stochastic map from A × B to C × E. The union is taken over all probability distributions of the
form p(q)p(x∣q)p(y∣q)p(a∣x)p(b∣y).

Both Equations1 and 2 above use the asymptotically vanishing mutual information definition of
secrecy viz. they require that I(MA ∶ En)/n or I(MA MB ∶ En)/n approach zero as the number
of iid channel uses n → ∞ where (MA, MB) denote the input messages distributed uniformly in[2nRA]× [2nRB]. This definition is strictly weaker than the small leakage in trace distance definition
of secrecy defined below that we will use in this paper. Nevertheless we will be able to reproduce
the above bounds even under the stronger secrecy requirement.

The problem of private classical information over a point to point quantum channel was first stud-
ied by Devetak [Dev05] in the asymptotic iid setting. The channel C is modelled as a completely
positive trace preserving (CPTP) map from density matrices on the input Hilbert space A to den-
sity matrices on the output Hilbert space C⊗ E. Here A is the Hilbert spaces of a sender Alice, C
is the Hilbert space of the genuine receiver Charlie and E is the Hilbert space of an eavesdropping
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receiver Eve. Devetak proved that the natural regularised quantum analogue of Equation 1 is the
optimal rate viz.

RA = lim
n→∞

n−1 max
ρ
(I(X ∶ Cn)ρ − I(X ∶ En)ρ), (3)

where the mutual information is taken over all classical quantum states of the form ρXCn En
=∑x p(x) ∣X⟩X ⟨x∣ ρCn En

x , and the maximisation is done over all random variables X and encoding
mappings x ↦ σAn

x . The state ρCn En

x is obtained by applying the channel C⊗n to σAn

x . Subsequently
Renes and Renner [RR11], Radhakrishnan, Sen and Warsi [RSW17] and Wilde [Wil17] studied the
quantum wiretap channel in the one shot setting culminating in the optimal bound

RA =max
ρ
(Iε

H(X ∶ C)ρ − Iδ
max(X ∶ E)ρ), (4)

where the one shot mutual informations (defined formally later on) are taken over all classical

quantum states of the form ρXCE = ∑x p(x) ∣X⟩X ⟨x∣ ρCE
x , and the maximisation is done over all

random variables X and encoding mappings x ↦ σA
x . The state ρCE

x is obtained by applying the
channel C to σA

x . This one shot bound reduces to Devetak’s bound in the asymptotic iid setting.

The above works behoove us to study the one shot private classical capacity of the quantum mul-
tiple access channel (QMAC). The channel C is modelled as a CPTP map from input Hilbert space
A⊗ B to output Hilbert space C⊗E. Here A, B are to be thought of Hilbert spaces of two indepen-
dent senders Alice and Bob. Alice gets a message ma ∈ [2RA] and Bob gets an independent message
mb ∈ [2RB]. Alice encodes ma into a density matrix σA

ma
in the Hilbert space A and Bob indepen-

dently encodes mb into σB
mb

. Then σA
ma
⊗ σB

mb
is fed into C giving rise to a state ρCE

ma,mb
at the channel

output. Let 0 < ε, δ < 1. We require that, averaged over the uniform probability distribution on(ma, mb) ∈ [2RA]× [2RB], Charlie should be able to recover (ma, mb)with probability at least ε from
ρC

ma,mb
, and Eve’s state ρE

ma,mb
should be δ-close to some fixed state ρ̄E in trace distance. We then

say that (RA, RB) is an achievable rate pair for private classical communication over C with error ε

and leakage δ. Note that Equation 4 for the quantum wiretap channel above holds for the stronger
definition of leakage in trace distance, thus improving even on the classical asymptotic iid wiretap
results proved earlier. The trace distance leakage definition is stronger because δn-leakage in trace
distance implies asymptotically vanishing mutual information leakage if δn → 0. Continuing this
tradition, in this paper we will aim for secrecy in the trace distance leakage sense only.

It is thus natural to ponder about private classical communication over a QMAC. A first attempt in
this regard was made by Aghaee and Akhbari [AA20] all the way in the one shot setting, but their
proof has the following serious gap. They use the single sender convex split lemma of Anshu,
Devabathini and Jain [ADJ17] in order to guarantee individual secrecy for Alice and individual
secrecy for Bob, but that does not guarantee joint secrecy. A natural way to get joint secrecy would
be to use the tripartite convex split lemma of Anshu, Jain and Warsi [AJW18] instead. Indeed,
Charlie can use the simultaneous QMAC decoder of Sen [Sen21] and Eve can be obfuscated via
the tripartite convex split lemma in order to get the following achievable rate region of private
classical communication over a QMAC: the union of rate regions of the form

RA ≤ Iε
H(X ∶ CY∣Q)ρ − Imax(X ∶ E∣Q)ρ,

RB ≤ Iε
H(Y ∶ CX∣Q)ρ − Imax(Y ∶ E∣Q)ρ,

RA + RB ≤ Iε
H(XY ∶ C∣Q)ρ − Imax(XY ∶ E∣Q)ρ,

(5)
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where the mutual information is measured with respect to classical quantum state of the form

ρQXYCE = ∑
q,x,y

p(q)p(x∣q)p(y∣q) ∣q, x, y⟩QXY ⟨q, x, y∣⊗ ρCE
xy ,

Q is an auxilliary ‘time sharing’ random variable, X, Y are auxilliary random variables that are
independent given Q, x ↦ σA

x , y ↦ σB
y are independent encoding maps, and the state ρCE

xy is

obtained by applying the channel C to σA
x ⊗σB

y . The union is taken over all probability distributions

of the form p(q)p(x∣q)p(y∣q)p(a∣x)p(b∣y) and encoding maps x ↦ σA
x , y ↦ σB

y .

Though we will not formally prove the achievability of Equation 5 in this paper, the reader can eas-
ily do so using the techiques outlined here combined with the tripartite convex split lemma. How-
ever Equation 5 has a big drawback viz. the terms for Eve are stated in terms of the non-smooth
max mutual information even though the terms for Charlie are stated in terms of the smooth hy-
pothesis testing mutual information. Because of this drawback, we cannot conclude that in the
asymptotic iid limit the one shot bounds lead to the natural quantum version of Equation 2. The
drawback arises because the tripartite convex split lemma [AJW18] has only been proved for non-
smooth max mutual information. Proving it for smooth max mutual information is related to the
simultaneous smoothing problem [DF13], a major open problem in quantum information theory.

In this work, we obtain an alternate one shot inner bound for private classical communication over
a QMAC that is stated in terms of smooth mutual information quantities only. Our inner bound
is contained inside the smooth version of the region of Equation 5. Nevertheless we are able to
show that in the asymptotic iid setting, our one shot bound leads to the natural quantum version
of Equation 2. Our inner bound holds for joint secrecy of Alice and Bob under the leakage in trace
distance definition and is the first non-trivial inner bound for private classical communication
over a QMAC.

We prove our inner bound by using three powerful information theoretic techniques. The first
technique is the use of rate splitting, originally developed by Grant et al. [GRUW01] in the clas-
sical asymptotic iid setting, but recently extended to the one shot quantum setting by the present
authors [CNS21]. Rate splitting allows us to split one sender, say Alice, into two independent
senders Alice1 and Alice2. The two sender QMAC then becomes a three sender QMAC, the ad-
vantage of which will become clear very soon. The second technique is simultaneous decoding
for sending classical information over a QMAC recently developed by Sen [Sen21]. Simultane-
ous decoding is used by Charlie to decode Alice’s message block and codeword within the block,
which has been split into Alice1’s and Alice2’s parts, and Bob’s message block and codeword
within the block, at any rate triple contained in the standard polyhedral achievable region of a
three sender MAC. The three senders also have to ensure Eve’s obfuscation which they do by
randomising within a block as in the proof of the original classical wiretap channel result of Equa-
tion 1. The third and final technique that guarantees that this obfuscation strategy works is a novel
result proved in this paper called the smoothed distributed covering lemma. This lemma is the main
technical advancement of this work and should be useful elsewhere. It is proved by repeated ap-
plications of the single sender convex split lemma [ADJ17], which happens to hold for the smooth
max mutual information. The lemma ensures the joint secrecy of Alice1, Alice2 and Bob with a
rate region described by smooth max mutual information quantitites. Though this region is infe-
rior to what one would get from a smoothed tripartite convex split lemma, it is nevertheless good
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enough to lead to the desired region in the asymptotic iid setting. The advantage of splitting Alice
into Alice1 and Alice2 now becomes clear because the split together with the distributed smoothed
covering lemma gives more obfuscation rate tuples. This leads to a larger inner bound region for
private classical communication than what one would obtain otherwise without rate splitting. In
particular the region obtained without rate splitting seems to be insufficient to obtain the desired
rate region in the asymptotic iid limit in the absence of a simultaneous smoothing result.

2 Preliminaries

All Hilbert spaces in this paper are finite dimensional. By H(A) we mean the Hilbert space asso-
ciated with the system A. We will often useH(A) and A interchangeably, in the sense that, when
we say a state ρ is defined on A, we mean the positive semidefinite matrix ρ belongs to the Hilbert
spaceH(A).
By the term ‘cq state’ we mean some classical-quantum state ρXB which is of the form

ρXB ∶= ∑
x∈X

∣x⟩ ⟨x∣X ⊗ ρB
x

Definition 2.1. Let ρ and σ be two states in the same Hilbert space. Then, given 0 ≤ ε < 1 we define the
smooth hypothesis testing relative entropy of ρ with respect to σ aa

Dε
H(ρ∣∣σ) ∶= max

Π∶Tr[Πρ]≥1−ε
− log Tr[Πσ]

Definition 2.2. Given a state ρAB, the smooth hypothesis testing mutual information between A and B is
defined as

Iε
H(A ∶ B)ρ ∶= Dε

H(ρAB ∣∣ρA ⊗ ρB)
We will require the notion of the purified distance, which, for any two states ρ and σ in the space
Hilbert space, is defined as

P(ρ, σ) ∶=√1− F2(ρ, σ)
where F(ρ, σ) is the fidelity between ρ and σ. On occasion we will find it easier to use other
metrics, such as the 1-norm. To that end, the Fuchs-Van de Graaf inequalities essentially prove
that all these metrics are equivalent:

Fact 2.3. For any two states ρ and σ in the same Hilbert space, the following holds

1−
1

2
∥ρ − σ∥1 ≤ F(ρ, σ) ≤

√
1−

1

4
∥ρ − σ∥21
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Definition 2.4. Given two states ρ and σ in the same Hilbert space, we define the max relative entropy of
ρ with respect to σ as

Dmax(ρ∣∣σ) ∶= inf{λ ∣ ρ ≤ 2λσ}
Definition 2.5. Given the setting of Definition 2.4, the ε smooth max relative entropy is defined as

Dε
max(ρ∣∣σ) ∶= inf

ρ′∈Bε(ρ)
Dmax(ρ∣∣σ)

where Bε(ρ) is the ε ball around ρ with respect to the purified distance.

Definition 2.6. Given a state ρAB, the smooth max mutual information between A and B is defined as

Iε
max(A ∶ B) ∶= Dε

max(ρAB ∣∣ρA ⊗ ρB)

3 Our results

We study the single shot private capacity of the classical quantum multiple access channel. The
problem is as follows: we are given a quantum multiple access channel along with two indepen-
dent classical distributions PX and PY on the inputs for the two senders, Alice and Bob. Suppose
that the input distributions are supported on the classical alphabets X and Y . The output states
corresponding to each input tuple (x, y) is a shared quantum state between the receiver Charlie
and the eavesdropper Eve. This situation is usually modelled by the following so called control
state:

ρXYCE ∶= ∑
x∈X
y∈Y

PX(x) ⋅ PY(y) ∣x⟩ ⟨x∣X ⊗ ∣y⟩ ⟨y∣Y ⊗ ρCE
x,y (6)

The goal is for Alice and Bob to send messages m and n from the sets [M] and [N] via this channel
to Bob in such a way that Eve does not gain any information about the message tuple that was sent,
yet Charlie is able to decode both Alice an Bob’s messages with high probability. To be precise, we
require that, given ε, δ > 0:

1. For all messages m and n,

Pr[(m̂, n̂) ≠ (m, n)] ≤ ε

where (m̂, n̂) is Charlie’s estimate of the messages sent by Alice and Bob. This is called the
correctness condition.

2. There exists a state σE such that, for all tuples (m, n)
∥ρE

f (m),g(n) − σE∥
1
≤ δ

where ρE
m,n is the state induced on Eve’s system when Alice and Bob send the messages m

and n after encoding the messages into the input space of the channel via the maps f ∶ [M]→
X and g ∶ [N] → Y . This is called the secrecy condition.
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3.1 Previous Work

A simpler variant of this problem, formally known as the classical-quantum wiretap channel, has
been studied before in the one-shot setting by Radhakrishnan-Sen-Warsi [RSW17]. The heart of
the argument used in that paper is a technical tool called the covering lemma. To gain some
understanding of the RSW argument, consider the following strategy:

1. Sender Alice chooses 2R symbols {x1, x2, . . . , x(2R)} iid from her input distribution PX.

2. She then divides the list of 2R symbols into blocks, each of size 2K.

3. Alice then assigns a block number to each message m ∈ [M].
4. To send the message m, Alice first looks at the block of symbols corresponding to m, say(x(i1), x(i2), . . . , (i2K)). She then randomly picks an index iRAND from this block and sends the

corresponding symbol through the channel.

Correctness : It is known [WR12] that as long as the rate R − K is at most slightly less than the
smooth hypothesis testing mutual information Iε

H(X ∶ C), the decoding error is at most ε. Please
note that the quantity Iε

H(X ∶ C) is computed with respect to the control state corresponding to
only a single sender for this channel. [AJ18]

Secrecy : To show that the secrecy condition holds, RSW proved a novel one-shot covering lemma.
They showed that, as long as K is slightly more than the smooth max mutual information Iδ

max(X ∶
E) (again computed with respect to the single sender control state), then, for every message m ∈[M], the following condition holds with high probability, over all choices of the codebook:XXXXXXXXXXXX

1

K
∑

j∈[K]

ρE
ij
− ρE

XXXXXXXXXXXX1

≤ δ

where the indices {ij} belong to the block corresponding to message m, and ρE is the marginal of
the control state on E.

To see that this implies that privacy holds in the protocol, notice that the expression on the right
inside the norm is precisely the state induced by Alice’s encoding function on the system E.

3.1.1 The Single Shot Covering Lemma

The covering lemma proved by RSW goes via an operator Chernoff bound. While this style of
argument gives a strong concentration bound for the secrecy condition, one caveat is that the rate
K becomes dependant on the dimension of the eavesdropper system E. To be precise, for the
secrecy condition to hold, RSW require the following condition:

K ≥ I
O(δ)
max (X ∶ E) − log δ+ log log∣E∣ +O(1)
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Strictly speaking, such a strong condition is not necessary to prove the covering lemma. One can
show that the secrecy condition holds in expectation over the choice of symbols inside the block.
To make things precise, consider the following fact:

Fact 3.1. Given the control state ∑
x∈X

PX(x) ∣x⟩ ⟨x∣X ⊗ ρE and δ > 0, let {x1, x2, . . . , xK} be iid samples from

the distribution PX. Then, given the condition

log K ≥ I
O(δ)
max (X ∶ E)ρ − log δ

the following holds

Ex1,x2,...,xK

XXXXXXXXXXXX
1

K
∑

i∈[K]

ρE
xi
− ρE

XXXXXXXXXXXX1

≤ δ

This average version of the covering lemma is a direct consequence of the convex split lemma
proved by Anshu, Devabathini and Jain [ADJ17], adapted to cq states. A proof of Fact 3.1 for
the non-smooth max information can be found in [AJW19]. The smoothing argument is standard
and can be easily adapted from the smooth version if the convex split lemma proved by Wilde
[Wil17].

3.2 Our Contribution

As mentioned earlier we consider the problem of sending information privately over a classical-
quantum multiple access channel in the single shot setting. The achievable rate region we would
like to recover is as follows:

log M ≲ Iε
H(X ∶ YC) − Iδ

max(X ∶ E)
log N ≲ Iε

H(Y ∶ XC) − Iδ
max(Y ∶ E)

log M + log N ≲ Iε
H(XY ∶ C) − Iδ

max(XY ∶ E)
where we have omitted the log ε and log δ terms for clarity. To show that the above region is
achievable, we will need the following technical tools:

1. A distributed covering lemma for multiple senders.

2. A decoder which can decode any message pair, which corresponds to a rate in the desired
region.
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3.2.1 A Smoothed Distributed Covering Lemma

We will address the second requirement later. For the distributed covering lemma, we wish to find
the rate pairs (K1, K2) such that, for K1 and K2 iid samples {x1, x2, . . . , xK1

} and {y1, y2, . . . , yK2
}

from the distributions PX and PY respectively, the following holds

Ex1 ,x2,...,xK1
y1,y2,...,yK2

XXXXXXXXXXXXXXXXXX
1

K1 ⋅K2
∑

i∈[K1]
j∈[K2]

ρE
xi ,yj
− ρE

XXXXXXXXXXXXXXXXXX1

≤ δ (7)

Notice that a naïve extension of the single user covering lemma will not work. This is because, the
total number of random bits required for the secrecy condition is at least Iδ

max(XY ∶ E) bits while
the naïve lemma would require only log K1 + log K2 ≥ Iδ

max(X ∶ E) + Iδ
max(Y ∶ E) random bits.

One way to prove the distributed covering lemma would be to appeal to a multipartite convex
split lemma, and then exploit the connection between the convex split lemma for cq states and
a covering lemma [AJW19]. Indeed such a non-smooth multipartite version of the convex split
lemma does exist and is not hard to prove [AJW18]. However, this proof strategy will give us a
region of the following kind:

log K1 > Imax(X ∶ E) − log δ

log K2 > Imax(Y ∶ E) − log δ

log K1 + log K2 > Imax(XY ∶ E) − log δ

One can see that this region is described in terms of the non-smooth max information. Indeed,
obtaining the above region in terms of the smooth max information is a major open problem in
quantum information theory, and is known as the simultaneous smoothing conjecture [DF13]. In the
absence of a smoothed region, we cannot hope to recover the desired rates in terms of the quantum
mutual information in the asymptotic iid limit.

In this paper, we overcome this problem by taking a different approach. Instead of straightaway
trying to show the secrecy property of the entire inverted pentagonal region (with two sides at
infinity), we first prove a sequential covering lemma for a corner point of the region. We show that,
if Alice randomises over a block of size log K1 > Iδ

max(X ∶ E) and Bob randomises over a block
of size log K2 > Iδ

max(Y ∶ XE), then indeed Eq. (7) holds, albeit with a worse dependence in δ. A
similar statement holds for the other corner point as well. We call this a successive cancellation style
covering lemma, since the strategy is similar in spirit to the successive cancellation style decoding
for the multiple access channel.

To be precise, we prove the following lemma:

Lemma 3.2. Given the control state in Eq. (6), δ > 0 and 0 < ε′ < δ let {x1, x2, . . . , xK1
} and {y1, y2, . . . , yK2

}
be iid samples from the distributions PX and PY. Then, if

9



log K1 ≥ Iδ−ε′

max(X ∶ E)ρ + log
3

ε′3
− 1

4
log δ

log K2 ≥ Iδ−ε′

max(Y ∶ EX)ρ + log
3

ε′3
− 1

4
log δ +O(1)

the following holds

Ex1 ,x2,...,xK1
∼PX

y1,y2,...,yK2
∼PY

XXXXXXXXXXXX
1

K1 ⋅K2

K2∑
i

K1∑
j

ρE
xi ,yj
− ρE

XXXXXXXXXXXX1

≤ 20δ1/8

Remark 3.3. The proof of Lemma 3.2 can be extended to the case when there are more than two
senders. The argument is a straightforward induction on the triangle inequality in the last step
of the proof. The dependence of the expected error on δ worsens however, with the constant
increasing from 20 to 40 in the case when there are three senders.

To recover the non-corner points in the idealised secrecy region, we use the idea of rate splitting.
Rate splitting was first suggested by Grant, Rimoldi, Urbanke and Whiting [GRUW01] as an al-
ternative to time sharing to achieve the non-corner points on the dominant face of the achievable
pentagon, in the context of sending classical information over a classical multiple access channel
in the asymptotic iid setting. Recently, Chakraborty, Nema and Sen [CNS21] adapted this tech-
nique to the one-shot fully quantum regime to derive entanglement transmission codes across a
quantum multiple access channel.

The idea of rate splitting is roughly as follows : Given the input distribution PX corresponding
to the sender Alice, we split the distribution into two independent distributions Pθ

U and Pθ
V , with

respect to a parameter θ ∈ [0, 1]. These two new distributions correspond to two new senders
Alice1 and Alice2. Uθ and Vθ are independent random variables, each supported on the alphabet
X . This splitting is done by using a splitting function f ∶ X ×X → X , which has the following
properties:

1. f (Uθ , Vθ) ∼ PX for all θ ∈ [0, 1].
2. For θ = 0 , Pf (Uθ,Vθ)∣Uθ = PX and for θ = 1, Pf (Uθ,Vθ)∣Uθ puts all its mass on one element.

3. For a fixed u, Pf (Uθ,Vθ)∣Uθ is a continuous function of θ ∈ [0, 1].
Grant et.al. proved that such a family of triples {(Pθ

U , Pθ
V , f )} exists which obeys these properties.

They did this via the following explicit construction:

For a fixed θ ∈ [0, 1] and assuming that the elements of X have an ordering,

1. Pr[Uθ ≤ u] ∶= θ ⋅Pr[X ≤ u]+ 1− θ

2. Pr[Vθ ≤ v] ∶= Pr[X≤v]
Pr[Uθ≤v]

10



3. f (u, v) ∶=max(u, v)
We will refer to this construction as the max contruction.

Using this split, we can rewrite the control state in Eq. (6) after splitting as follows:

ρUVYCE
θ ∶= ∑

u,v∈X
y∈Y

Pθ
U(u) ⋅ Pθ

V(v) ⋅ PY(y) ∣u⟩ ⟨u∣U ⊗ ∣v⟩ ⟨v∣V ⊗ ∣y⟩ ⟨y∣Y ⊗ ρ(θ)CE
u,v,y (8)

where for each (u, v)
ρ(θ)CE

u,v,y ∶= ρCE
f (u,v),y

Armed with this split state, we invoke the three sender version of Lemma 3.2 to prove the follow-
ing theorem:

Theorem 3.4. Given the control state in Eq. (8), δ > 0 and 0 < ε′ < δ let {u1, u2, . . . , uK1
}, {y1, y2, . . . , yK2

}
and {v1, v2, . . . , vK3

} be iid samples from the distributions Pθ
U, PY and Pθ

V respectively, for a fixed θ ∈ [0, 1].
Then, if

log K1 ≥ Iδ−ε′

max(Uθ ∶ E)ρθ
+ log

3

ε′3
− 1

4
log δ

log K2 ≥ Iδ−ε′

max(Y ∶ EUθ)ρθ
+ log

3

ε′3
− 1

4
log δ +O(1)

log K3 ≥ Iδ−ε′

max(Vθ ∶ EYUθ)ρθ
+ log

3

ε′3
− 1

4
log δ +O(1)

the following holds

Eu1,u2,...,uK1
∼Pθ

U
y1,y2,...,yK2

∼PY

v1,v2,...,vK3
∼Pθ

V

XXXXXXXXXXXX
1

K1 ⋅K2 ⋅K3

K1,K2,K3∑
i,j,k

ρ(θ)Eui ,yj,vk
− ρE

XXXXXXXXXXXX1

≤ 40δ1/8

Remark 3.5.

1. Note that by construction of the triple (Pθ
U, Pθ

V , f ),
ρE = ρE

θ

2. Alice has to randomise over of total block of size of K1 ⋅ K3. This implies that, thinking of
Alice as the combination of the two senders Alice1 and Alice2, the size of the block over
which Alice has to randomize has to be at least

Iδ−ε′

max(Uθ ∶ E)ρθ
+ Iδ−ε′

max(Vθ ∶ EYUθ)ρθ
+ 2 log

3

ε′3
− 1

2
log δ +O(1)
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3. For θ = 0 and θ = 1, the expressions , Iδ−ε′

max(Uθ ∶ E)ρθ
and Iδ−ε′

max(Vθ ∶ EYUθ)ρθ
take the value zero

respectively. This can be easily seen from the properties of the max construction.

4. When θ ∈ {0, 1}, the secrecy region collapses to the two sender case. For θ = 0, the user Alice1

becomes trivial, and similarly for Alice2 when θ = 1. These values of θ thus correspond to
the corner points of the secrecy region.

As θ ranges from 0 to 1, the point (Iδ−ε′

max(Uθ ∶ E) + Iδ−ε′

max(Vθ ∶ EYUθ), Iδ−ε′

max(Y ∶ EUθ)) traces out a
curve between the corner points, which lies on or above the line joining the corner points. To
show that this is true, we use the following properties of the smooth max mutual information:

Lemma 3.6. Given the control state in Eq. (6) and the post split state in Eq. (8) for some fixed θ ∈ [0, 1],
the following holds

Iε
max(UθVθY ∶ E)ρθ

= Iε
max(XY ∶ E)ρ

for any ε > 0.

Lemma 3.7. Given a state ϕRAB, not necessarily pure, and ε > 0, the following holds

I12ε
max(R ∶ AB)ϕ ≤ I

ε−γ
max(R ∶ A)ϕ + I

ε−γ
max(RA ∶ B)ϕ + 2 log

1

ε
+ log

3

γ2

These two lemmas together show that the boundary of the secrecy region between the corner

points lies on or above the straight line x + y = I
O(ε)
max (XY ∶ E)ρ.

3.2.2 Decoding

We now turn our attention to the problem of Charlie decoding the messages sent by Alice and
Bob. There are two kinds of decoders we can consider:

1. Successive Cancellation: One way to decode the messages would be a successive cancel-
lation strategy, in which Charlie first decodes Alice1, then using Alice1’s message as side
information he decodes Bob, and finally using Alice1 and Bob’s messages as side informa-
tion he decodes Alice2. This gives us an achievable region which is the union over θ ∈ [0, 1]
over all rectangles subtended by the point

(Iε
H(Uθ ∶ C)+ Iε

H(Vθ ∶ CUθY), Iε
H(Y ∶ CUθ))

where we have neglected the additive log ε terms for brevity.
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Remark 3.8. For reasons that will become clear shortly, instead of following the order of
decoding given above, we actually would like to decode in the order Alice1–Bob–Alice1.
This would give the rate point

(Iε
H(Vθ ∶ C)+ Iε

H(Uθ ∶ CVθY), Iε
H(Y ∶ CVθ))

2. Simultaneous Decoding: The other decoding strategy we consider is simultaneous decod-
ing. Given a cq-mac and the control state in Eq. (6), a simultaneous decoder gives us the
following achievable region:

R1 < Iε
H(X ∶ YC)− log

1

ε

R2 < Iε
H(Y ∶ XC)− log

1

ε

R1 + R2 < Iε
H(XY ∶ C)− log

1

ε

where R1 and R2 correspond to Alice and Bob’s rates.

In the absence of chain rules for the smooth hypothesis testing mutual information, the rate region
given by the successive cancellation decoder is a deformed version of the pentagonal region we
expect.

This issue can be mitigated somewhat if we use the simultaneous decoder. Thus, we will use
simultaneous decoding as our decoding strategy of choice. We elaborate on this in the next section.

3.2.3 Simultaneous Decoding

We will use the construction given by Sen in [Sen21]. Until recently, the existence of such a simul-
taneous decoder for the cq-mac which recovers the rate region given by Winter in [Win01] in the
asymptotic iid setting was a major open problem. To be precise, Sen proved the following fact:

Fact 3.9. Given a cq mac and its associated control state Eq. (6), there exists an encoding and decoding
scheme such that, all rate pairs (R1, R2), where R1 corresponds to Alice and R2 corresponds to Bob, are
achievable for transmission of classical information of the channel with error at most 49

√
ε :

R1 ≤ Iε
H(X ∶ YC)+ log ε − 1

R2 ≤ Iε
H(Y ∶ XC)+ log ε − 1

R1 +R2 ≤ Iε
H(XY ∶ C)+ log ε − 1

13



The above lemma is easily generalised to the case when there are multiple senders. In our case, we
use a three sender simultaneous decoder, which, for every fixed θ ∈ [0, 1] gives us the following
achievable region for Alice1, Bob and Alice2:

R10 < Iε
H(Uθ ∶ CVθY)+ log ε − 1

R2 < Iε
H(Y ∶ CUθVθ)+ log ε − 1

R11 < Iε
H(Vθ ∶ CUθY)+ log ε − 1

R10 + R11 < Iε
H(UθVθ ∶ CY)+ log ε − 1

R10 + R2 < Iε
H(UθY ∶ CVθ)+ log ε − 1

R2 +R11 < Iε
H(YVθ ∶ CUθ)+ log ε − 1

R10 + R2 + R11 < Iε
H(UθYVθ ∶ C)+ log ε − 1

Here R10, R2 and R11 corresponds to Alice1, Bob and Alice2 respectively. The bound on the last
term is equal to Iε

H(XY ∶ C)+ log ε − 1. The proof of this fact is the same as Lemma 3.6.

For every θ ∈ [0, 1], we will project the above rate region to the 2 dimensional space which contains
the achievable rate points for Alice and Bob. To obtain the full achievable region, we take a union
bound over all θ. to be precise, we show the following lemma:

Lemma 3.10. Given a 2 sender cq mac and the associated control state in Eq. (6), and its corresponding
split state Eq. (8) for some fixed θ ∈ [0, 1], the following rate region is achievable for sending classical
information over the channel with error ε1/8 is as follows:

R1 ≤ Iε
H(UθVθ ∶ CY)+ log ε − 1

R1 ≤ Iε
H(Vθ ∶ CUθY)+ Iε

H(Uθ ∶ CVθY)+ 2 log ε − 2

R2 ≤ Iε
H(Y ∶ CUθVθ)+ log ε − 1

R2 ≤ Iε
H(YVθ ∶ CUθ)+ log ε − 1

R2 ≤ Iε
H(UθY ∶ CVθ)+ log ε − 1

R1 +R2 ≤ Iε
H(Vθ ∶ CUθY)+ Iε

H(UθY ∶ CVθ)+ 2 log ε − 2

R1 +R2 ≤ Iε
H(YVθ ∶ CUθ)+ Iε

H(Uθ ∶ CVθY)+ 2 log ε − 2

R1 + 2R2 ≤ Iε
H(UθY ∶ CVθ)+ Iε

H(YVθ ∶ CUθ)+ 2 log ε − 2

R1 +R2 ≤ Iε
H(UθYVθ ∶ C)+ log ε − 1

(9)

where all the mutual information terms are computed with respect to Eq. (8).
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3.2.4 The Private Capacity Region

Let us call the achievable region given by Lemma 3.10 as Sθ, for some fixed θ ∈ [0, 1]. For the same
θ, consider the block sizes (K1 +K3, K2) given by Theorem 3.4. We define

Tθ ∶= {(log K, log K′) ∣ K ≥ K1 ⋅K3, K′ ≥ K2}
Then, we can have the following theorem, which gives an inner bound on the region for private
transmission of classical information over the cq mac

Theorem 3.11. Given a classical quantum multiple access channel, the control state in Eq. (6) and a split(Pθ
U, Pθ

V , f ) of the distribution PX, for some θ ∈ [0, 1] the rate pairs in the following region, are achievable
for private transmission of messages across the channel

⎛⎝ ⋃θ∈[0,1]

(Sθ − Tθ)⎞⎠
+

with decoding error at most 49
√

ε and privacy leakage at most 40δ1/8, where ε, δ > 0 and 0 < ε < δ. All
the information quantities above are computed with respect to the split state ρUVYCE

θ . Here, the operation(A − B)+ , where A and B are sets of real numbers is defined as {max(a − b, 0) ∣ a ∈ A, b ∈ B}.
To precisely describe the set Sθ − Tθ, let

δ′ ∶= δ − ε′

c ∶= log
1

ε
+ log

1

ε′3
− 1

4
log δ+O(1)

and define the rates

RA ∶= R1 − log K

RB ∶= R2 − log K′

To ease the burden on notation, we drop the superscripts from the random variables Uθ and Vθ.
Then, for a fixed θ ∈ [0, 1], the region Sθ − Tθ looks like

RA ≤ Iε
H(UV ∶ YC)− Iδ′

max(U ∶ E)− Iδ′

max(V ∶ UYE)+ c

RA ≤ Iε
H(V ∶ UYC)+ Iε

H(U ∶ VYC)− Iδ′

max(U ∶ E)− Iδ′

max(V ∶ UYE)+ 2c

RB ≤ Iε
H(Y ∶ UVC)− Iδ′

max(Y ∶ UE)+ c

RB ≤ Iε
H(YV ∶ UC)− Iδ′

max(Y ∶ UE)+ c

RB ≤ Iε
H(UY ∶ VC)− Iδ′

max(Y ∶ UE)+ c

RA +RB ≤ Iε
H(V ∶ UYC)+ Iε

H(UY ∶ VC)− Iδ′

max(U ∶ E) − Iδ′

max(V ∶ UYE)− Iδ′

max(Y ∶ UE)+ 2c

RA +RB ≤ Iε
H(YV ∶ UC)+ Iε

H(U ∶ VYC)− Iδ′

max(U ∶ E) − Iδ′

max(V ∶ UYE)− Iδ′

max(Y ∶ UE)+ 2c

RA + 2RB ≤ Iε
H(UY ∶ CV)+ Iε

H(YV ∶ UC)− Iδ′

max(U ∶ E)− Iδ′

max(V ∶ UYE)− 2Iδ′

max(Y ∶ UE)+ 2c

RA +RB ≤ Iε
H(UYV ∶ C)− Iδ′

max(U ∶ E)− Iδ′

max(V ∶ UYE)− Iδ′

max(Y ∶ UE)+ c
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Remark 3.12. 1. To get an idea as to what the above region looks like, first note that for θ ={0, 1}, the region in Lemma 3.10 is equivalent to the following region:

R1 ≤ Iε
H(X ∶ CY)+O(log ε)

R2 ≤ Iε
H(Y ∶ CX)+O(log ε)

R1 +R2 ≤ Iε
H(XY ∶ C)+O(log ε)

2. This essentially looks like the achievable rate region for the 2-sender mac. In fact, from
Lemma 3.10 we can see that as θ ranges from 0 to 1, the corresponding rate regions Sθ that
we get are subsets of this pentagonal region.

3. Note that, if the smooth hypothesis testing mutual information obeyed a chain rule with
equality, then the region in Lemma 3.10 would be equivalent to the pentagonal region in
Item 1 for all values of θ ∈ [0, 1].

4. On the other hand, the secrecy region given by Theorem 3.4 and following it, looks like an
inverted pentagon in the first quadrant with two sides at infinity, and the dominant face
slightly warped due the chain rule for the smooth max information Lemma 3.7.

5. The final secrecy region thus looks like a smaller pentagon, but with the dominant face
warped inwards.

3.3 Extension to the Asymptotic IID Regime

In this we show that our one-shot techniques can be used to recover the expected private capac-
ity region of the classical quantum multiple access channel in the limit of asymptotically many
channel uses. To do this, we first note some facts about the asymptotic behaviour of the smoothed
information quantities we have used so far:

Fact 3.13. Given a classical quantum state with N classical inputs

ρX1X2 ...XNC ∶= ∑
x1x2 ...xN

N∏
i

PXi
(xi) ∣xi⟩ ⟨xi∣Xi ⊗ ρC

x1x2 ...xN

let J ⊆ [N]. Then, for some ε > 0 and an integer n ∈N, the following holds true in the limit of n →∞ and
ε → 0 for all J,

lim
ε→0

lim
n→∞

1

n
Iε
H(Xn

J ∶ CnXn
Jc)ρ⊗n = I(XJ ∶ CXJc)ρ

lim
ε→0

lim
n→∞

1

n
Iε
max(Xn

J ∶ CnXn
Jc)ρ⊗n = I(XJ ∶ CXJc)ρ

where XJ ∶= ∏
j∈J

Xj.

Fact 3.13 allows us to prove the following theorem from Theorem 3.11:
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Theorem 3.14. Given a classical quantum multiple access channel, the control state in Eq. (6), the follow-
ing rate region is achievable for private transmission of messages across the channel, when asymptotically
many channel uses are allowed:

R
private
ALICE

< I(X ∶ YC)− I(X ∶ E)
R

private
BOB

< I(Y ∶ XC)− I(Y ∶ E)
R

private
ALICE

+R
private
BOB

< I(XY ∶ C)− I(XY ∶ E)
3.4 A Generalisation

A generalisation of the theorems presented in the previous sections can be shown to be true using
a time sharing random variable. To be precise, instead of the input distributions PX and PY on
the classical alphabets X and Y , we will consider the joint distribution PQ ⊗ PX∣Q ⋅ PY∣Q over the
alphabet Q×X ×Y . Consider the control state

ρQXYCE ∶= ∑
q,x,y

PQ(q)PX∣Q(x∣q) ⋅ PY∣Q(y∣q) ∣q, x, y⟩ ⟨q, x, y∣QXY ⊗ ρCE
x,y (10)

Define

ρXYCE∣Q ∶= (ρQ ⊗ 1)−1 ρQXYCE

rank(ρQ)(ρQ ⊗ 1)−1

Using the above state, one can define the conditional smooth hypothesis testing mutual informa-
tion and the smooth max information. A version of Fact 3.9 with respect to the above conditional
control state was shown to be true in [Sen21]. It is also not hard to see that the successive cancel-
lation covering lemma Lemma 3.2, can also be proved using this control state, since the operator
inequalities used in the proof of that lemma are preserved by the above definition.

Before we go on to state the general theorem with respect to the state Eq. (10), we would like to
remark that in order to get the most general version of the private capacity region, we consider
a fully quantum or qq multiple access channel C which maps the systems X′Y′ → CE. To import
this into the classical quantum setting, we introduce the classical alphabets X and Y and the maps
F ∶ X → X′ and G ∶ Y → Y′ such that

F(x) ∶= σX′

x

G(y) ∶= σY′

y

where σX′
x and σY′

y are states in the input Hilbert space of C.
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Then define

C(σX′

x ⊗ σY′

y ) ∶= ρCE
x,y (11)

We are now ready to state the theorem:

Theorem 3.15. Given the channel C ∶ X′Y′ → CE, the maps F,G and the definition Eq. (11), consider the
classical quantum control state given in Eq. (10). Then, given the split (Pθ

U∣Q, Pθ
V∣Q, f ) with respect to the

parameter θ ∈ [0, 1], we have that the following region if achievable for private information transmission
with error at most ε1/8 and leakage at most 40δ1/8

RA ≤ Iε
H(UV ∶ YC∣Q)− Iδ′

max(U ∶ E∣Q)− Iδ′

max(V ∶ UYE∣Q)+ c

RA ≤ Iε
H(V ∶ UYC∣Q)+ Iε

H(U ∶ VYC∣Q)− Iδ′

max(U ∶ E∣Q)− Iδ′

max(V ∶ UYE∣Q)+ 2c

RB ≤ Iε
H(Y ∶ UVC∣Q)− Iδ′

max(Y ∶ UE∣Q)+ c

RB ≤ Iε
H(YV ∶ UC∣Q)− Iδ′

max(Y ∶ UE∣Q)+ c

RB ≤ Iε
H(UY ∶ VC∣Q)− Iδ′

max(Y ∶ UE∣Q)+ c

RA +RB ≤ Iε
H(V ∶ UYC∣Q)+ Iε

H(UY ∶ VC∣Q)− Iδ′

max(U ∶ E∣Q) − Iδ′

max(V ∶ UYE∣Q)− Iδ′

max(Y ∶ UE∣Q)+ 2c

RA +RB ≤ Iε
H(YV ∶ UC∣Q)+ Iε

H(U ∶ VYC∣Q)− Iδ′

max(U ∶ E∣Q) − Iδ′

max(V ∶ UYE∣Q)− Iδ′

max(Y ∶ UE∣Q)+ 2c

RA + 2RB ≤ Iε
H(UY ∶ CV∣Q)+ Iε

H(YV ∶ UC∣Q)− Iδ′

max(U ∶ E∣Q)− Iδ′

max(V ∶ UY∣QE)− 2Iδ′

max(Y ∶ UE∣Q)+ 2c

RA +RB ≤ Iε
H(UYV ∶ C∣Q)− Iδ′

max(U ∶ E∣Q) − Iδ′

max(V ∶ UYE∣Q)− Iδ′

max(Y ∶ UE∣Q)+ c

and

δ′ ∶= δ − ε′

c ∶= log
1

ε
+ log

1

ε′3
− 1

4
log δ+O(1)

where ε, δ > 0, 0 < ε′ < δ and all the information quantities are computed with respect to the split of the
control state in Eq. (10).

4 Proofs of Important Lemmas

In this section we present the proof of all the lemmas and theorems stated in Section 3.2.

Proof of Lemma 3.2. Suppose we are given the cq state

ρXYE ∶= ∑
x∈X
y∈Y

pX(x)pY(y) ∣x⟩ ⟨x∣X ⊗ ∣y⟩ ⟨y∣Y ρE
x,y

Consider the quantity

λ ∶= Ĩε
max(Y ∶ EX)ρ ∶= inf

∥ρ′−ρ∥1≤ε
Dmax(ρ′XYE∣∣ρY ⊗ ρ′XE)
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Let ρ̃XYE be the optimizer in the definition of Ĩε
max(Y ∶ EX). Without loss of generality we can

assume that ρ̃XYE is a cq state. This is because, suppose the optimizer was a state ρ∗ which is not
cq. By definition, ρ∗ obeys the following properties

ρ∗ ≤ 2 Ĩε
max(Y∶EX) ρY ⊗ ρ∗XE

∥ρ∗ − ρ∥1 ≤ ε

Now we will measure the X and Y systems along the canonical bases {∣x⟩} and {∣y⟩}, to get the cq
state ρ∗∗. Since measurement is CPTP it preserves the operator inequality. This also implies that
ρ∗∗ is in the ε ball around ρ. Finally, it is easy to see that, ρ∗∗XE is the post measurement state on
the systems XE. These observations imply that ρ∗∗ is a cq state which is also an optimizer, proving
the claim.

Next, suppose that

ρ̃ ∶=∑
x,y

P̃XY(x, y) xX ⊗ yY ⊗ ρ̃E
x,y

where we have used the shorthand xX ∶= ∣x⟩ ⟨x∣X and similarly for y. It is easy to see that the two
following properties hold

∥P̃XY − PX ⋅ PY∥1 ≤ ε (12)

Changing the Distributions We can infer from Eq. (12) that

∥P̃x − PX∥1 ≤ ε

which implies that

∥P̃XY − P̃X ⋅ PY∥1 ≤ 2ε (13)

Eq. (13) can be written as

EP̃X ⋅PY
[ ∣ P̃XY(X, Y)

P̃X(X) ⋅ PY(Y) − 1∣ ] ≤ 2ε

Then, by Markov’s inequality this implies that

Pr
P̃X ⋅PY

[ ∣ P̃XY(X, Y)
P̃X(X) ⋅ PY(Y) − 1∣ ≥√ε ] ≤ 2

√
ε (14)

Now, by the definition of ρ̃ and using the classical nature of the XY system , we see that, for all(x, y) the following holds

P̃XY(x, y) ρ̃E
x,y ≤ 2λ P̃X(x) ⋅ PY(y) ρ̃E

x
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where

ρ̃E
x ∶=∑

y

P̃Y(y∣x)ρ̃E
x,y

Coupled with Eq. (14) this implies that with probability at least 1 − 2
√

ε over the choice of x from
the distribution P̃X and y from the distribution PY, the following holds

ρ̃E
x,y ≤ 2λ 1

1−√ε
ρ̃E

x (15)

The Set of GOOD x’s Define the function 1x,y as the indicator, which is 1 when Eq. (15) holds.
Further, define

1x ∶=∑
y

PY(y)1x,y

Intuitively, 1x is the probability that, for a fixed x, the pairs (x, y) satisfy Eq. (15), over choice of y.
We know from the discussion in the previous section that

∑
x

P̃X(x)1x ≥ 1− 2
√

ε

Then, another application of Markov’s inequality implies that

Pr
P̃X

[{x ∣ 1x ≥ 1− ε1/4}] ≥ 1− 2ε1/4 (16)

We define

NICEX ∶= {x ∣ 1x ≥ 1− ε1/4}
What this implies is that, for any x ∈ NICEX, the probability over choice of y that (x, y) satisfies
Eq. (15) is at least 1− ε1/4, and that the probability that a random x is picked from NICEX is at least
1− 2ε1/4 under the distribution P̃X.

We will however require a few more conditions to define the good set. To that end, define

NICERX ∶= NICEX ∩ {x ∣ ∥PY∣x − PY∥1 ≤√ε}
From Eq. (12) we know that

EP̃X
[∥P̃Y∣X − PY∥1] ≤ 2ε

By Markov’s inequality we conclude that

Pr
P̃X

[{x ∣ ∥PY∣x − PY∥1 ≤√ε}] ≥ 1− 2
√

ε
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This implies that

Pr
P̃X

[NICERX] ≥ 1− 4ε1/4

Since ∥P̃X − PX∥1 ≤ ε, this implies that

Pr
PX

[NICERX] ≥ 1 − 5ε1/4

Next, consider the state

ρ′ ∶=∑
x,y

PX(x)PY(y)xX ⊗ yY ⊗ ρ̃E
x,y

Then,

∥ρ′ − ρ∥
1
≤ ∥ρ′ − ρ̃∥

1
+ ∥ρ̃ − ρ∥1

= ∥P̃XY − PX ⋅ PY∥1 + ∥ρ̃ − ρ∥1
≤ 3ε

Since

∥ρ′ − ρ∥
1
= EPX

⎡⎢⎢⎢⎢⎣
XXXXXXXXXXX∑y PY(y)yY ⊗ ρ̃E

x,y −∑
y

PY(y)yY ⊗ ρE
x,y

XXXXXXXXXXX1

⎤⎥⎥⎥⎥⎦
this implies that

Pr
PX

⎡⎢⎢⎢⎢⎣
XXXXXXXXXXX∑y PY(y)yY ⊗ ρ̃E

x,y −∑
y

PY(y)yY ⊗ ρE
x,y

XXXXXXXXXXX1

≥
√

ε

⎤⎥⎥⎥⎥⎦ ≤ 3
√

ε

Call the event inside the last probability expression BX. Finally, we define

GOODX ∶= NICERX ∩ BX

This implies that,

Pr
PX

[GOODX] ≥ 1− 10ε1/4

The Covering Lemma Let us fix an an x ∈ GOODX. Recall that, this implies

∥P̃Y∣x − PY∥1 ≤√ε

or EPY
∣ P̃Y∣x(Y)

PY(Y) − 1∣ ≤√ε
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Then, by Markov’s inequality,

Pr
PY

[∣ P̃Y∣x(Y)
PY(Y) − 1∣ ≥ ε1/4] ≤ ε1/4

Define the set

GOODY∣x ∶= {y ∣ (x, y) s.t. Eq. (15), ∣ P̃Y∣x(Y)
PY(Y) − 1∣ ≤ ε1/4}

Then, under the distribution PY,

Pr
PY

[GOODY∣x] ≥ 1 − 2ε1/4

Define the subdistribution P̄Y as

P̄Y∣x = P̃Y∣x y ∈ GOODY∣x

= 0 otherwise

Then it holds that

ρ̄YE
x ∶=∑

y

P̄Y∣x(y∣x) yY ⊗ ρ̃E
x,y ≤ 2λ 1

1−√ε
( ∑

y∈GOODY∣x

P̃Y∣x(y∣x) yY)⊗ ρ̃E
x

≤ 2λ 1

1−√ε
( ∑

y∈GOODY∣x

P̃Y∣x(y∣x) yY + ∑
y∈∉GOODY∣x

PY(y)yY)⊗ ρ̃E
x

≤ 2λ 1

1−√ε
((1+ ε1/4) ∑

y∈GOODY∣x

PY(y) yY + ∑
y∈∉GOODY∣x

PY(y)yY)⊗ ρ̃E
x

≤ 2λ 1+ ε1/4

1−√ε
(∑

y

PY(y)yY)⊗ ρ̃E

= 2λ 1+ ε1/4

1−√ε
ρY ⊗ ρ̃E

x

Also note that

ρ̄E
x =∑

y

P̄Y∣x(y∣x)ρ̃E
x,y

≤∑
y

P̃Y∣x(y∣x)ρ̃E
x,y

= ρ̃E
x

Using the above fact in the proof of convex split lemma we get that

XXXXXXXXXXXX
1

K

K∑
i=1

ρ̄YiE
x ⊗

j≠i

ρYj − ρ̃E
x

K⊗
i=1

ρYi

XXXXXXXXXXXX1

≤

¿ÁÁÀ2λ
1+ ε1/4

1−√ε

1

K
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Next we bound the distance between ρYE
x and ρ̄YE

x . To do this, consider the following triangle
inequality

∥ρ − ρ̄∥1 ≤
XXXXXXXXXXXρ̄ −∑y P̃Y∣x(y∣x) yY ⊗ ρ̃E

x,y

XXXXXXXXXXX1

+XXXXXXXXXXX∑y P̃Y∣x(y∣x) yY ⊗ ρ̃E
x,y −∑

y

PY(y) yY ⊗ ρ̃E
x,y

XXXXXXXXXXX1

+XXXXXXXXXXX∑y PY(y) yY ⊗ ρ̃E
x,y −∑

y

PY(y) yY ⊗ ρE
x,y

XXXXXXXXXXX1

= ∑
y∶P̄Y∣x(y∣x)=0

P̃Y∣x(y) + ∥P̃Y∣x − PY∥1 +∑
y

PY(y) ∥ρ̃E
x,y − ρE

x,y∥1
To bound the first term, observe that the summation is precisely over those y’s which do not belong
to GOODY∣x. We already know that under the distribution PY this set has probability at most 2ε1/4.

Thus by the definition of GOODX the first term is at most
√

ε + 2ε1/4 ≤ 3ε1/4.

The second and third terms can be bounded similarly directly from the definition of GOODX by√
ε each. Thus,

∥ρYE
x − ρ̄YE

x ∥1 ≤ 5ε1/4

We will require one more triangle inequality to replace ρ̃E
x with ρE

x :

∥ρ̃E
x − ρE

x ∥1 =
XXXXXXXXXXX∑y P̃Yx(y∣x)ρ̃E

x,y −∑
y

PY(y)ρE
x,y

XXXXXXXXXXX1

≤
XXXXXXXXXXX∑y P̃Yx(y∣x)ρ̃E

x,y −∑
y

PY(y)ρ̃E
x,y

XXXXXXXXXXX1

+ XXXXXXXXXXX∑y PY(y)ρ̃E
x,y −∑

y

PY(y)ρE
x,y

XXXXXXXXXXX1

≤ 2
√

ε

Collating all these arguments together and using the standard trick to get a covering lemma from
the convex split lemma, we see that the following holds

Ey1,y2,...,yK∼PY
∥ 1

K

K∑
i

ρE
x,yi
− ρE

x∥
1

≤ 8ε1/4 +
¿ÁÁÀ2λ

1+ ε1/4

1−√ε

1

K

The Successive Cancellation Step

Define ε0 ∶= 10ε1/4. Suppose we sample K′ times independently from the distribution PX. Then, by
Markov’s inequality,
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Pr
⎡⎢⎢⎢⎣

K′∑
i

IXi∉GOODX
≥
√

ε0 ⋅K′⎤⎥⎥⎥⎦ ≤
√

ε0

Suppose x1x2 . . . xK′ is a sequence which has at most
√

ε0K′ samples from GOODc
X. Then, for this

fixed sequence xK′ , the following holds

Ey1,y2,...,yK∼PY

XXXXXXXXXXXX
1

K ⋅K′
K′∑
i

K∑
j

ρE
xi ,yj
− ρE

XXXXXXXXXXXX1

≤ Ey1,y2,...,yK∼PY

⎡⎢⎢⎢⎢⎣
XXXXXXXXXXXX

1

K ⋅K′
K′∑
i

K∑
j

ρE
xi ,yj
− 1

K′

K′∑
i

ρE
xi

XXXXXXXXXXXX1

⎤⎥⎥⎥⎥⎦ +
XXXXXXXXXXX

1

K′

K′∑
i

ρE
xi
− ρE
XXXXXXXXXXX1

≤
1

K′

K′∑
i

Ey1,y2,...,yK∼PY

⎡⎢⎢⎢⎢⎣
XXXXXXXXXXXX

1

K

K∑
j

ρE
xi ,yj
− ρE

xi

XXXXXXXXXXXX1

⎤⎥⎥⎥⎥⎦ +
XXXXXXXXXXX

1

K′

K′∑
i

ρE
xi
− ρE
XXXXXXXXXXX1

≤
1

K′
((1−√ε0)K′ ⋅ ⎛⎜⎝8ε1/4 +

¿ÁÁÀ2λ
1+ ε1/4

1−√ε

1

K

⎞⎟⎠+
√

ε0K′ ⋅ 2)
+ XXXXXXXXXXX

1

K′

K′∑
i

ρE
xi
− ρE
XXXXXXXXXXX1

We will now set the values of K and K′. We set K and K′ such that

2λ 1+ ε1/4

1−√ε

1

K
≤ ε1/4

and

Ex1,x2,...,xK′∼PX

XXXXXXXXXXX
1

K′

K′∑
i

ρE
xi
− ρE
XXXXXXXXXXX1

≤ ε1/4

The second inequality can be set by using the smoothed version of the convex split lemma. Then,

Ex1,x2,...,xK′∼PX
y1,y2,...,yK∼PY

XXXXXXXXXXXX
1

K ⋅K′
K′∑
i

K∑
j

ρE
xi ,yj
− ρE

XXXXXXXXXXXX1

≤ ((1 −√ε0) ⋅ 9ε1/4 + 2
√

ε0) ⋅ (1−√ε0) + 2
√

ε0 + ε1/4

≤ 10ε1/8

Proof of Lemma 3.7. Suppose that ∣ϕ⟩RABC is a purification of ϕRAB, where C is the purifying reg-
ister. Consider the following task : Let Alice possess the systems ABC and R be the reference.
Alice wants to send the systems AB to Bob. This is known as quantum state splitting. We will
achieve this task in two steps. In Step 1, Alice will send the system A to Bob while treating BC
as the purifying registers. This will require 1

2 Iε
max(R ∶ A)ϕ + log 1

ε
bits of quantum communication.
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In Step 2, Alice will send the system B to Bob, while while treating the system C as the purifying
register. This task will require 1

2 Iε
max(RA ∶ B) + log 1

ε
bits of quantum communication. At the end

of the protocol Alice will have successfully sent Bob the systems AB, with some O(ε) error. We
already know from [BCR11] that any one-way entanglement assisted protocol that achieves this
task with ε error requires at least 1

2 Iε
max(R ∶ AB)ϕ number of qubits. Collating these arguments

together gives us the upper bound.

To achieve Step 1 and Step 2 above, we will use the smoothed convex split lemma, specifically the
protocol in Theorem 1 of [ADJ17].

Step 1

Let ϕ′RA be the optimiser for the expression Ĩε
max(R ∶ A)ϕ. Then the smoothed convex split lemma,

along with two triangle inequalities shows us that

P(1

n

n∑
i=1

ϕRAi⊗
j≠i

ϕAj , ϕR
n⊗

i=1

ϕAi) ≤ 3ε

where n > Ĩε
max(R ∶ A)ϕ + 2 log 1

ε
.

Armed with this relation, we can directly use the protocol in Theorem 1 to send the system A to

Bob and obtain a pure state ∣ϕ”⟩RABC such that

1. P(ϕ”RABC, ϕRABC) ≤ 3ε

2. The system A is now with Bob.

Step 2 For the next part of the protocol, we recall that, whenever m > Ĩε
max(RA ∶ B)ϕ + 2 log 1

ε

P( 1

m

m∑
i=1

ϕRABi⊗
j≠i

ϕBj , ϕRA
m⊗

i=1

ϕBi) ≤ 3ε

However, since we global state shared by Alice, Bob and Referee is ϕ”, we need a further triangle
inequality to show that

P( 1

m

m∑
i=1

ϕ”RABi⊗
j≠i

ϕBj , ϕ”RA
m⊗

i=1

ϕBi) ≤ 9ε

Repeating the protocol in Theorem 1 to send the system B to Bob, while Bob possesses the system
A, we get a pure state ϕ̃RABC such that

P(ϕ̃RABC, ϕ”RABC) ≤ 9ε

Ô⇒ P(ϕ̃RABC, ϕRABC) ≤ 12ε
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Along with the lower bound, this implies that

Ĩε
max(R ∶ A)ϕ + Ĩε

max(RA ∶ B)ϕ + 4 log
1

ε
≥ Ĩε

max(R ∶ AB)ϕ

Finally, we use the bound that, for any state ρAB

Ĩε
max(A ∶ B)ρ ≤ I

ε−γ
max(A ∶ B)ρ + log

3

γ2

to get the desired chain rule.

Proof of Lemma 3.10. The proof of this lemma is a simple Fourier-Motzkin elimination, with the
extra condition that

R1 = R10 +R11

and hence we omit it.

Proof of Theorem 3.11. Fix a θ ∈ [0, 1] and fix the rate tuple for Alice1, Bob and Alice2, (R10, R2, R10)
such that it belongs to the region given by Eq. (9). By Lemma 3.10, this ensures that the rate pair(R10 + R11, R2) is achievable for classical message transmission across the cq-mac, with error at
most ε1/8. Recall that we use the definition R1 = R10 +R11.

Again, fix K1, K2 and K3 i.e. the block sizes over which Alice1, Bob and Alice2 randomise, as in
Theorem 3.4. Define

R
private
ALICE

∶= R1 − log K1 − log K2

R
private
ALICE

∶= R2 − log K3

The code construction is as follows:

1. For Alice1 choose symbols x(1), x(2), . . . , x(R10) iid from Pθ
U.

2. For Bob choose symbols y(1), y(2), . . . , y(R2) iid from PY.

3. For Alice2 choose symbols z(1), z(2), . . . , z(R11) iid from Pθ
V .
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4. Divide Alice1’s codebook into blocks, each of size K1. Do the same for Bob and Alice2, with
block sizes K2 and K3 respectively.

5. Alice1 maps her message set [M1] to codebook such that each message m1 ∈ [M1] corre-
sponds to some block. Bob and Alice2 do the same, for their message sets [N] and [M2].

6. To send the message m1, Alice1 goes into the block corresponding to that message. Sup-
pose that block contains the symbols (xm1

(1), xm1
(2), . . . , xm1

(K1)), Alice1 picks a symbol
uniformly at random and transmits it,

7. Bob and Alice2 do the same for their corresponding messages n and m2.

Decodability is guaranteed by the code specified rates and [Sen21]. Secrecy is guaranteed by the
values of K1, K2, K3 and Theorem 3.4. This argument implies that for any rate tuple (R1, R2) that
lies in the region given by Lemma 3.10, and for any (log K, log K′) such that

log K ≥ log K1 + log K3

log K′ ≥ log K2

the rate pair (R1 − log K, R2 − log K′) is achievable for private transmission across the cq mac, as-
suming both coordinates are non-negative. This is precisely the definition of the set (Sθ − Tθ)+.
Repeating this procedure for all θ ∈ [0, 1] and then taking a union bound over all the regions
concludes the proof.

Proof of Theorem 3.14. The proof is easy and we only provide a brief sketch. First note that using
Fact 3.13, it is easy to see (using the chain rule for the mutual information and the data processing
inequality) that for every θ ∈ [0, 1], the region Sθ is equivalent to the region

R1 < I(X ∶ YC)
R2 < I(Y ∶ XC)
R1 + R2 < I(XY ∶ C)

Call this region S . Along with Theorem 3.11, this implies that the private capacity region is given
by

⎛⎝S − ⋃θ∈[0,1]

Tθ

⎞⎠
+
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Using the continuity of the mutual information with respect to θ ∈ [0, 1], and again via the chain
rule for the mutual information, we see that the region ⋃

θ∈[0,1]
Tθ is equivalent to

log K ≥ I(X ∶ E)
log K′ ≥ I(Y ∶ E)
log K + log K′ ≥ I(XY ∶ E)

Taking the difference of these two regions gives us the desired region for private transmission.
This concludes the proof.
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