
Communication-Efficient LDPC Code Design for
Data Availability Oracle in Side Blockchains

Debarnab Mitra, Lev Tauz and Lara Dolecek
Department of Electrical and Computer Engineering, University of California, Los Angeles, USA

email: debarnabucla@ucla.edu, levtauz@ucla.edu, dolecek@ee.ucla.edu

Abstract—A popular method of improving the throughput
of blockchain systems is by running smaller side blockchains
that push the hashes of their blocks onto a trusted blockchain.
Side blockchains are vulnerable to stalling attacks where a side
blockchain node pushes the hash of a block to the trusted
blockchain but makes the block unavailable to other side
blockchain nodes. Recently, Sheng et al. proposed a data availabil-
ity oracle based on LDPC codes and a data dispersal protocol as a
solution to the above problem. While showing improvements, the
codes and dispersal protocol were designed disjointly which may
not be optimal in terms of the communication cost associated with
the oracle. In this paper, we provide a tailored dispersal protocol
and specialized LDPC code construction based on the Progressive
Edge Growth (PEG) algorithm, called the dispersal-efficient
PEG (DE-PEG) algorithm, aimed to reduce the communication
cost associated with the new dispersal protocol. Our new code
construction reduces the communication cost and, additionally,
is less restrictive in terms of system design.

I. INTRODUCTION

Side blockchains, e.g., [1]–[4], are a popular method of
improving the transaction throughput of blockchain systems
where a single trusted blockchain supports a large number
of side (smaller) blockchains by storing the block hashes of
the side blockchains in their ledger [5]. Systems that run side
blockchains are vulnerable to a form of data availability attack
[6], [7] called a stalling attack, where a side blockchain node
commits the hash of a block to the trusted blockchain but
makes the block itself unavailable to other side blockchain
nodes. Authors in [5] proposed a scalable solution to the above
attack by introducing a data availability oracle between the
trusted blockchain and side blockchains. The oracle consists
of nodes whose goal is to collectively ensure that the block is
available, even if some of the oracles nodes are malicious.
Nodes in the oracle layer accept the block from a side
blockchain node (who wishes to commit its hash to the trusted
blockchain), and push the hash commitment only if the block
is available to the system. The goal is to share (disperse) the
block among the oracle nodes in a storage and communication
efficient way to check the block availability. The solution in
[5] involves using a Low-Density Parity-Check (LDPC) code
to generate coded chunks from the block such that each oracle
node receives different coded chunks, and using incorrect-
coding proofs [6], [7] to ensure that the block is correctly
coded. A dispersal protocol ensures that the oracle nodes
receive sufficient coded chunks that guarantee that the original
block can always be decoded by a peeling decoder using
the coded chunks sent to the oracle nodes, (i.e., the block
is available), even in the presence of malicious oracle nodes.

Stopping sets are a set of variable nodes (VNs) of an LDPC

code that if erased prevent a peeling decoder from decoding
the block. Formally, a set of VNs of an LDPC code is called
a stopping set if every check node (CN) connected to this set
of VNs is connected to it at least twice. To guarantee block
availability in the presence of malicious oracle nodes, the
dispersal protocol defined in [5] requires every subset of oracle
nodes of a particular size to receive at least M −Mmin + 1
distinct coded chunks, where M and Mmin are the blocklength
and minimum stopping set size of the LDPC code, respec-
tively. As a result, the communication cost associated with the
dispersal is inversely proportional to the minimum stopping
set size of the LDPC code. Thus, authors in [5] focused
on LDPC code constructions with large minimum stopping
set size for their dispersal protocol. This combination of
dispersal protocol and LDPC construction may not necessarily
be optimal in terms of communication costs. In this paper, we
design a new dispersal protocol that considers the multiplicity
of small stopping sets and provide a specialized LDPC code
construction based on the Progressive Edge Growth (PEG)
algorithm [18], which we call the dispersal-efficient PEG (DE-
PEG) algorithm, that aims at minimizing the communication
cost within our protocol. We demonstrate a significantly lower
communication cost using our specialized LDPC construction
and dispersal protocol in comparison to [5]. Our techniques
support a wider range of system parameters allowing for more
flexibility in system design such as scaling the number of
oracle nodes while still allowing scalability of the block size
as [5] thereby providing a much more scalable solution to the
stalling attack problem. Previously, channel coding has been
extensively used to mitigate issues such as data availability,
storage, and communication in blockchain systems [6]–[17].

The rest of this paper is organized as follows. In Section II,
we describe the preliminaries and system model. In Section
III, we provide our new dispersal protocol and motivate our
LDPC design criterion. The DE-PEG algorithm is described
in Section IV. Finally, the simulation results and concluding
remarks are presented in Section V.

II. PRELIMINARIES AND SYSTEM MODEL
In this paper, we assume the blockchain and data availability

oracle model of [5] and is summarized in Fig. 1. Suppose that
there are N oracle nodes and an adversary is able to corrupt
a fraction β of them, where β < 1

2 , such that the maximum
number of malicious oracles nodes is f = dβNe. When a
client proposes a block of size b, it first generates a special
Coded Merkle Tree [7], called a Coded Interleaving Tree (CIT)
introduced in [5], with the data chunks of the block as leaf
nodes of the CIT. A CIT is a coded version of a regular Merkle

ar
X

iv
:2

10
5.

06
00

4v
2

 [
cs

.I
T

]
 2

6
A

ug
 2

02
1

Fig. 1: System Model. The network consists of oracle nodes and
side blockchain nodes (called clients), where clients propose blocks
to the oracle nodes to commit to the trusted blockchain. Oracle nodes
verify the correctness of each received block and submit the block
commitment to the trusted blockchain if the block is available.

tree [19] and is constructed by applying a rate-R systematic
LDPC code to each layer of the Merkle tree before hashing
the layer to generate its parent layer. Details regarding the
CIT construction can be found in [5] and in Appendix A. In
particular, the CIT has M base layer coded chunks (symbols),
each with an associated Proof of Membership (POM), which
consists of a systematic (data) symbol and a parity symbol
from each CIT layer. The CIT has a root with t hashes and in
each layer q hashes are batched together into a data chunk for
the layer. The data availability oracle functions in the following
way as shown in Fig. 1:
1) When a client proposes a block of size b, it constructs its
CIT, which generates a set of base layer coded symbols, each
with an associated POM, and a CIT root.
2) The client then uses a dispersal protocol to disperse the
base layer coded symbols, their associated POMs, and the CIT
root to the N oracle nodes. The dispersal protocol specifies
the base layer coded chunks each oracle node should receive,
each receiving k of them (with their POMs) and the CIT root.
3) Each of the oracle nodes, on receiving the specified k coded
chunks check their correctness (i.e., whether they satisfy the
associated POM with the root). The dispersal is accepted if
γ+β fraction of the nodes vote that they individually received
all correct coded chunks, for a parameter γ ≤ 1−2β defined in
the dispersal protocol. In this case, the CIT root is committed
to the trusted blockchain and each of the oracle nodes store
the k coded chunks they received to allow for future block
retrieval. The CIT prevents clients from performing incorrect
coding of the block via an incorrect-coding proof [5].

The focus of this paper is to design a dispersal protocol and
an associated LDPC code to reduce the communication cost
of the dispersal process. The dispersal protocol must satisfy
the availability condition: whenever the root of the CIT is
committed to the trusted blockchain, an honest client must
be able to decode each CIT layer using a peeling decoder
by requesting for the coded chunks stored at the oracle nodes.
Each CIT layer in [5] is constructed using random LDPC codes
that with high probability have a stopping ratio (minimum
stopping set size divided by the blocklength) α∗. The dispersal
protocol in [5] is designed such that every γ fraction of the
oracle nodes receive more than 1−α∗ fraction of distinct base

layer coded chunks. Moreover, it was shown in [5] that the
POMs of any η fraction of distinct base coded chunks have
at least η fraction of distinct coded chunks from each CIT
layer (we call this the repetition property). Thus, the dispersal
protocol ensures that every γ fraction of nodes also have more
than 1− α∗ fraction of distinct coded chunks from each CIT
layer. Hence, when a root is committed, due to 3), there is a
γ fraction of honest oracle nodes who have more than 1−α∗
fraction of coded symbols from each CIT layer, allowing a
peeling decoder to decode each layer ensuring availability.

Let the CIT have l layers and nj coded chunks in layer
j, 1 ≤ j ≤ l, where nl = M . Let Hj denote the parity
check matrix of the LPDC code used in layer j which has nj
columns {vj1, v

j
2, . . . , v

j
nj} (we drop the superscript j based on

context). Let Gj denote the Tanner graph (TG) representation
of Hj , where we also refer to vi as the ith VN in Gj and rows
of Hj as CNs in G. A cycle of length g is called a g-cycle.
For a set T , let |T | denote its cardinality. Let the dispersal
protocol be defined by the set C = {A1, A2, . . . , AN}, where
Ai denotes the set of base layer coded chunks sent to oracle
node i and |Ai| = k. For a set S of VNs, let neigh(S) be
the set of oracle nodes who have at least one coded chunk
corresponding to the VNs of S. Let the hashes of each coded
block be of size y. Let He(p) = −p ln(p)− (1− p) ln(1− p).

Definition 1. Protocol C is called η-valid for layer j if every
γ fraction of oracle nodes have > η fraction of distinct layer j
coded chunks. Similarly, C is µ-SS-valid for layer j if every γ
fraction of oracle nodes have > nj −µ distinct layer j coded
chunks. If no layer is specified, we refer to the base layer.

Note that a protocol that is µ-SS-valid for layer j is also(
nj−µ
nj

)
-valid for layer j. Due to the repetition property, if

the base layer is µ-SS-valid, we can determine µ̃ such that the
protocol is µ̃-SS-valid for layer j. Thus, we majorly talk about
the base layer and drop the specification of the layer according
to Definition 1. In [5], the dispersal protocol is required to be
(1 − α∗)-valid for all layers. A protocol which is µ-SS-valid
for layer j can guarantee that a client will be able to decode
layer j of the CIT using a peeling decoder when the block is
committed and stopping sets of size < µ do not exist in Hj .

In [5], elements of Ai are randomly chosen with replace-
ment from the set of M base layer coded chunks. For such
a design, it was shown in [5] that for k > M

Nγ ln 1
1−η ,

Prob(C is not η-valid) ≤ exp(NHe(γ) − Mf(η, ρ)) :=
PUB(η,N,M, k, γ), where ρ = γNk

M and f(η, ρ) =
(eρ(1−η)−1)2

eρ(eρ(1−η)+1) is a positive function. It is clear that M can be
made sufficiently large to make PUB(η,N,M, k, γ) arbitrarily
small. This principle was used in [5] to randomly design
the dispersal protocol. However, as we show next, to make
PUB(η,N,M, k, γ) smaller than a given threshold probability
pth, for a fixed M , there is a limit on the number of oracle
nodes the system can support.
Lemma 1. Let NUB = M(1−η)+ln(pth)

He(γ) and η̄ = 1 − η. If
N ≥ NUB , PUB(η,N,M, k, γ) > pth ∀k > M

Nγ ln 1
η̄ . If

N < NUB , then PUB(η,N,M, k, γ) ≤ pth for k ≥ kfmin :=

M
Nγ ln

(
−(2η̄+v)−

√
8η̄v+v2

2η̄(v−η̄)

)
, where v = NHe(γ)−ln(pth)

M .

Proof. The proof relies on algebraic manipulation of PUB()
and can be found in Appendix B.

Thus, the dispersal protocol used in [5] cannot guarantee
with high probability to be (1−α∗)-valid for all (N,M) pairs.
This feature is undesirable and we would like for a given M ,
any number of oracle nodes to be supported by the protocol.
The problem is alleviated if each Ai gets k distinct coded
chunks chosen uniformly at random from the M base layer
coded chunks which we consider in our design idea.

III. DESIGN IDEA: SECURE STOPPING SET DISPERSAL

Definition 2. A protocol C = {A1, . . . , AN} is called a k-
dispersal if each Ai is a k element subset chosen uniformly
at random with replacement from all the k element subsets of
the M base layer coded chunks.

We analyze the minimum number of distinct coded chunks
k to disperse to each oracle node so that the protocol C is
µ-SS-valid with probability at least 1− pth.
Lemma 2. For a k-dispersal protocol, for the base layer,

Prob(C is not µ-SS-valid) ≤ eNHe(γ)Pf ,

where Pf =

M−µ∑
j=0

(−1)M−µ−j
(
M

j

)(
M − j − 1

µ− 1

)[(j
k

)(
M
k

)]γN
Proof. The proof utilizes the fact that the process of a given
γN nodes sampling with replacement the k element subsets
of the M base layer chunks is known as the coupon collector’s
problem with group drawings [20]. The proof is provided in
Appendix C.

Now, eNHe(γ)Pf can be made smaller than an arbi-
trary threshold pth by choosing a sufficiently large k. Let
k∗(µ,N,M, γ, pth) be the smallest k such that eNHe(γ)Pf ≤
pth. Thus, a k∗(µ,N,M, γ, pth)-dispersal will be µ-SS-valid
for the base layer with probability ≥ 1− pth. The associated
communication cost is NXk∗(µ,N,M, γ), where X is the
total size of one base layer coded chunk along with its POM.
To ensure availability, if we set µ = Mmin, we see that
the communication cost is directly affected by the minimum
stopping set size. Thus, for a k∗(Mmin, N,M, γ, pth)-dispersal
protocol, the best code design strategy is to design LDPC
codes with large minimum stopping set sizes which is consid-
ered to be a hard problem [21], [22]. In this work, we modify
the above dispersal protocol to reduce the communication cost.
We then provide a specialized LDPC code construction aimed
at minimizing the communication cost associated with the
modified dispersal protocol.
Definition 3. A stopping set S is said to be securely dispersed
by a dispersal protocol C if |neigh(S)| ≥ f + 1.

Since f is the maximum number of malicious oracle nodes,
for a stopping set that is securely dispersed, at least one honest
oracle node will have a coded chunk corresponding to a VN
of S and hence the peeling decoder will not fail due to S and
can continue the decoding process. Based on this principle,
we consider the following dispersal protocol:

Dispersal Protocol 1. (k∗-secure dispersal) For µ ≥Mmin,
let Sj be the set of stopping sets of layer j (i.e., of Hj) of size
less than nj −

⌈(
M−µ+1

M

)
nj

⌉
+ 1. Our dispersal protocol

consists of two dispersal phases. In the first phase (called the
secure phase), all stopping sets in Sj , 1 ≤ j ≤ l, are securely
dispersed. This is followed by a k∗(µ,N,M, γ, pth)-dispersal
protocol (called the valid phase).
Lemma 3. Dispersal protocol 1 guarantees availability with
probability ≥ 1− pth.
Proof. Proof is provided in Appendix D. For dj = (nj −⌈(

M−µ+1
M

)
nj

⌉
+ 1), we use the repetition property to show

that with probability ≥ 1−pth, the protocol is dj-SS-valid for
each layer j, and all stopping sets of sizes < dj are securely
dispersed. These conditions guarantee availability.

We use the following greedy procedure to securely disperse
all stopping sets in Sj , 1 ≤ j ≤ l. Let Vgrj be a set of VNs of
Hj with the property that for all S ∈ Sj , ∃ v ∈ Vgrj such that
v is part of S. Note that if each VN in Vgrj is sent to (f + 1)
oracle nodes, all S ∈ Sj will be securely dispersed. We obtain
Vgrj in the following greedy manner: Initialize Vgrj = ∅. Find
a VN v that is part of the maximum number of stopping sets in
Sj , add the VN to Vgrj and remove all stopping sets in Sj that
have v. We repeat the process until Sj is empty. Let the VNs
in each set Vgrj be ordered according to the order they were
added to Vgrj . For each j, we permute the columns of Hj such
that the VNs in Vgrj appear as columns 1, 2, . . . , |Vgrj |, the rest
of the columns are randomly ordered. Note that the Hj’s after
the column permutation are used to build the CIT. Now, our
secure phase is designed as follows: the design starts from
layer l and moves iteratively up the tree till layer 1. For each
layer j, if all VNs corresponding to the first |Vgrj | columns of
Hj are marked as dispersed, we mark layer j as complete and
move to layer j − 1, else, we disperse the remaining coded
chunks corresponding to the first |Vgrj | columns of Hj that are
not marked dispersed by randomly selecting f+1 oracle nodes
to send each of the coded chunk with its POMs. For each layer
i above layer j, coded chunks that were sent to (f + 1) nodes
as part of POMs of the coded chunks of layer j in the previous
step are marked as dispersed. We mark layer j as complete and
proceed to layer j − 1. We continue until layer 1 is complete.

Note that by initially permuting the columns of Hj’s, we
have ensured that when a coded chunk of a particular layer j
with its POMs are sent to (f+1) nodes, the systematic symbol
of the POMs from each layer i above layer j are exactly the
VNs in the first |Vgri | columns of Hi that we require to send
to (f + 1) nodes to securely disperse Si. If the POM for layer
i is outside the first |Vgri | columns (happens if |Vgrj | > |V

gr
i |),

this would imply that layer i is already complete.
Let Xj be the size of one coded chunk of layer j along

with its POMs which involve a data and parity symbol from
each layer above layer j. Also, let tj = maxi∈{j+1,...,l} |Vgri |.
As such, Xl = b

RM + y(2q − 1)(l − 1) and Xj = qy +
y(2q − 1)(j − 1), 1 ≤ j < l, [5] (details can also be found in
Appendix A. The total communication cost CT for Dispersal
Protocol 1 is CT = Nty + Cs + Cv , where Cs and Cv

are the costs associated with the secure and valid phases,
respectively, and Nty is the cost of dispersing the CIT root.
Now, Cv = Nk∗(µ,N,M, γ, pth)Xl and Cs can be calculated
as Cs = (f+1)

[
|Vgrl |Xl +

∑l−1
j=1 max

(
(|Vgrj | − tj), 0

)
Xj

]
,

where we have made the assumption that each |Vgrj | is smaller
than Rnj which is true for small µ and since Rnj is the total
number of systematic variable nodes. The communication cost
of the secure phase depends strongly on |Vgrl | as the base layer
involves data chunks whose sizes are larger than the chunks of
the higher layers which are concatenations of hashes. Thus, we
can reduce the total cost by designing LDPC codes that have
small |Vgrl |. We provide the construction in the next section.

IV. DISPERSAL-EFFICIENT PEG ALGORITHM

Algorithm 1 presents our DE-PEG algorithm that constructs
a TG Ĝ with M VNs, J CNs, and VN degree dv that results
in a small size of Vgrl . Note that the same algorithm is used
for all layers to reduce the sizes of Vgrj . Since stopping sets
in LDPC codes are made up of cycles [23], the DE-PEG
algorithm focuses on cycles as they are easier to optimize.
In the algorithm, all ties are broken randomly.

Algorithm 1 DE-PEG Algorithm

1: Inputs: M , J , dv , gmax, Tth Output: Ĝ
2: Initialize Ĝ to M VNs, J CNs and no edges, L = ∅
3: for j = 1 to M do
4: for e = 1 to dv do
5: [K, g] = PEG(Ĝ, vj)
6: if g > gmax then cs = uniformly random CN in K
7: else . (g-cycles, g ≤ gmax, are created)
8: for each CN c in K do
9: Lcycles = g-cycles formed due to c

10: s̄[c] = greedy-size(L ∪ Lcycles, vj)
11: cs = CN in K with minimum s̄[c]
12: Ls = g-cycles formed due to cs with EMD ≤ Tth
13: L = L ∪ Ls
14: Ĝ = Ĝ ∪ edge{cs, vj}

The algorithm uses the concept of the extrinsic message
degree (EMD) of a set of VNs which is the number of CN
neighbours singly connected to the set of VNs [24] and is
calculated using the method described in [25]. EMD of a
cycle is the EMD of the VNs involved in the cycle. Cycles
with low EMD are more likely to form a stopping set and
we consider them as bad cycles. The algorithm also uses a
procedure greedy-size(L̃, v) which takes as input a list L̃
of cycles, and outputs |S̄|, where S̄ is a set of VNs with the
property that for every cycle C in L̃, ∃ a VN in S̄ that is
part of C, and S̄ is obtained in a manner similar to that of
obtaining Vgrj from Sj described in Section III, however, by
ignoring the VN v during the greedy selection procedure.

The PEG algorithm [18] builds a TG by iterating over the
set of VNs and for each VN vj , establishing dv edges to it.
For establishing the eth edge, there are two situations that the
algorithm encounters: i) addition of an edge is possible without
creating cycles; ii) addition of an edge creates cycles. In both

the situations, the PEG algorithm finds a set of candidate
CNs to connect vj to, that maximises the girth of the cycles
formed. We do not go into the detailed procedure followed by
[18] to find the set of candidate CNs, but assume a procedure
PEG(G, vj) that provides us with the set of candidate CNs K
for establishing a new edge to VN vj under the TG setting G
according to the PEG algorithm. We assume that the set K only
contains CNs with the minimum degree under the TG setting
G. For situation ii), the procedure returns the cycle length g
of the smallest cycles formed when an edge is established
between any CN in K and vj . For situation i) g = ∞ is
returned. When g > gmax is returned, we follow the PEG
algorithm and select a CN randomly from K.

During the course of the DE-PEG algorithm, we maintain
a list L of bad cycles of lengths ≤ gmax that had EMD less
than or equal to some threshold Tth when they were formed.
In the algorithm, when cycle length g ≤ gmax is returned
by the PEG() procedure, for each CN c ∈ K, g-cycles are
formed when an edge is added between c and vj . These cycles
are listed in Lcycles (line 9). We use greedy-size(L ∪
Lcycles, vj) to get s̄[c] (line 10), for each CN c in K. Our
CN selection procedure is to select a CN from K that has the
minimum s̄ (line 10). Once this CN is selected, we update
the list of bad cycles as follows: of all the g-cycles formed
due to the addition of an edge between cs and vj , we find
the list of g-cycles Ls that have EMD ≤ Tth (line 12) and
add them to L (line 13). We then update the TG Ĝ (line 14).
The intuition is that since we want the stopping sets in Sl to
produce a small Vgrl by a greedy procedure, we select CNs
such that a similar greedy procedure produces small |S̄| on
the bad cycles which are more likely to form stopping sets.
Note that a similar PEG algorithm was provided in [8] but it
had a different design objective compared to this paper.
Remark 1. In the DE-PEG algorithm, greedy-size(L ∪
Lcycles, vj) ignores the VN vj while forming the greedy set of
VNs to find |S̄| as vj is part of all the cycles formed by all CNs
c in K and ignoring vj allows to better distinguish between
the CNs in terms of set sizes s̄. While the DE-PEG algorithm
is based on cycles, Dispersal Protocol 1 uses stopping sets Sj
to find Vgrj for the secure phase.

V. SIMULATIONS AND CONCLUSION
In this section, we present the performance of the codes

designed using the DE-PEG algorithm when using the k∗-
secure dispersal protocol. To demonstrate the benefits, we
consider a baseline system that uses codes constructed using
the original PEG algorithm and uses k-dispersal with k chosen
such that for all layers j, 1 ≤ j ≤ l, the k-dispersal is M j

min-
SS-valid, where M j

min is the minimum stopping set size of
layer j (and Mmin = M l

min). To compute a lower bound on
the total communication cost using Dispersal Protocol 1, we
consider a code that has Sj = ∅, 1 ≤ j ≤ l, i.e., for the given
µ, has costs only due to k∗(µ,N,M, γ, pth)-dispersal and the
root, and no cost due to the secure phase. This is equivalent
to designing codes having larger minimum stopping set sizes
which is considered hard. We use the following parameters for
simulations: b = 1MB, y = 32 Bytes, t = 32, q = 4, l = 4,

TABLE I: Communication costs achieved by k∗-secure dispersal for
various choices of µ using the PEG and DE-PEG algorithm for N =
9000, β = 0.49. Lower bound on CT for µ = 20 is 4.438GB.

µ k∗ Cv (|Vgr
1 |, |Vgr

2 |, |Vgr
3 |, |Vgr

4 |) Cs CT

PEG DE-PEG PEG DE-PEG PEG DE-PEG
17 67 5.116 (0,0,0,0) (0,0,0,0) 0 0 5.125 5.125
18 64 4.887 (0,0,0,1) (0,0,0,0) 0.037 0 4.933 4.896
19 61 4.658 (0,0,1,3) (0,0,0,1) 0.112 0.037 4.779 4.704
20 58 4.428 (0,0,1,7) (0,0,0,4) 0.262 0.149 4.700 4.587
21 56 4.276 (0,1,2,14) (0,1,0,13) 0.524 0.486 4.809 4.771

TABLE II: Comparison of total communication cost of our work with
[5] for β = 0.49, M = 256. For each pth, N is the maximum no.
of oracle nodes permissible for the oracle of [5] and kmin is the
minimum number of chunks at each oracle node for η = 1−α∗ and
are computed using Lemma 1 (Note that kmin =

⌈
kfmin

⌉
).

Oracle [5] Our Work

pth N
α∗ = 0.125 µ = 17 µ = 20

kmin CT
full C

T
distinct k

∗ CT
baseline k

∗ CT
PEG CT

DE−PEG

10−8 138 895 1.048 0.2909 207 0.2425 199 0.2372 0.2355
10−6 185 671 1.053 0.3729 184 0.2890 175 0.2803 0.2780
10−4 232 539 1.061 0.4430 164 0.3231 155 0.3122 0.3092

M = 256, R = 0.5, γ = 1 − 2β, pth = 10−8 (specified if
otherwise). The CIT thus has 4 layers with n4 = M = 256,
n3 = 128, n2 = 64 and n1 = 32. For the LDPC codes
constructed using the DE-PEG algorithm, we use gmax = 8
for layer 3 and 4 and gmax = 6 for layer 1 and 2, dv = 4,
and Tth = 5 (provides the best results from a range of
thresholds tested). For the base layer, the PEG and DE-PEG
codes constructed have Mmin = 17 and 18 respectively. All
communication costs are in GB. Costs Cs, Cv and CT are
calculated using equations described in Section III.

Table I compares the communication cost achieved by the
PEG and DE-PEG algorithm with the k∗-secure dispersal
protocol as the value of µ is varied. We see that as µ is
increased, the value of k∗ decreases and Cv decreases. The
table next shows the 4-tuple (|Vgr1 |, |V

gr
2 |, |V

gr
3 |, |V

gr
4 |) for the

PEG and DE-PEG algorithm and we see that the DE-PEG
algorithm always results in lower values thus resulting in a
lower cost Cs during the secure phase compared to the PEG
algorithm. Note that, as µ is increased, Cs increases. Finally,
we look at the total cost CT , which is lowest for µ = 20 for
both the PEG and DE-PEG algorithms, and are 0.425GB and
0.528GB lower, respectively, compared to the baseline (CT =
5.125GB) at µ = 17. Interestingly, CT does not monotonically
decrease with µ. Note that the lower bound on CT at µ = 20
is 0.687GB lower than the baseline.

Table II compares the performance of the k∗-secure dis-
persal protocol and DE-PEG algorithm with the performance
achieved by the data availability oracle of [5]. CTfull is the
communication cost associated with kmin (considering that
each node gets the same chunk multiple times and similar to
the computation carried out in [5]). CTdistinct is the total cost
by considering only distinct chunks (out of the kmin chunks)
at each node (calculated using Monte-Carlo simulations). For
our work, we present the baseline and the k∗-secure dispersal
protocol with µ = 20 (best results in Table I) with the PEG
and the DE-PEG algorithms. From Table II, we see three
levels of cost reduction; 1) CTdistinct to CTbaseline is due to
sampling with replacement, 2) CTbaseline to CTPEG is due to

β (- - - -)

N (——)

C
T

(i
n

G
B

)

Fig. 2: CT for various coding schemes and dispersal protocols vs.
(a) N at β = 0.49 (solid plots, top axis) and (b) β at N = 20000
(dotted plots, bottom axis). For k∗-secure dispersal µ = 20 is used.

using the k∗-secure dispersal protocol for µ = 20, and 3)
CTPEG to CTDE−PEG is due to using DE-PEG LDPC codes
designed to reduce the total communication cost. Note that
these reductions are for a single 1MB block. Also, for the
Oracle of [5], we use α∗ = 0.125 which is for a rate 1

4 code
but assume the data chunk sizes are the same as a rate 1

2 code
to demonstrate that even in this disadvantageous situation we
have a better communication cost.

In Fig. 2, the total communication cost CT is plotted as a
function of the number of oracle nodes and adversary fraction.
The solid plots show CT vs. N at β = 0.49. We see that at
N = 15000, compared to the baseline, there is around 7%
reduction in CT by using the k∗-secure dispersal protocol with
µ = 20 and the PEG algorithm, and a 9.3% reduction by
using the protocol with µ = 20 and the DE-PEG algorithm.
The yellow plot corresponds to the lower bound on CT for
µ = 20 and is tantamount to a maximum of 13% reduction
in CT from the baseline. The dotted plots show CT vs. β at
N = 20000. We see a sharp increase in CT for higher β and as
β is increased from 0.4 to 0.49, CT increases by around 5.1GB
for the baseline, whereas for the PEG and DE-PEG algorithms
using the k∗-secure dispersal protocol (with µ = 20), CT

increases by around 4.52GB and 4.47GB, respectively. The
result indicates that using our methods, the system has to pay
less in terms of the total communication cost in order to handle
a higher adversary fraction.

In conclusion, we provided a new dispersal protocol and
a modification of the PEG algorithm, called the DE-PEG
algorithm, that when combined provide a much lower commu-
nication cost in the data availability oracle of [5] compared to
previous schemes. Simulation results confirm significant im-
provement in the communication cost. Additionally, our new
constructions are more flexible in terms of system parameters.
We are currently investigating other coding techniques, such
as Polar codes, in the context of this application.

ACKNOWLEDGMENT
The authors acknowledge the Guru Krupa Foundation and

NSF-BSF grant no. 2008728 to conduct this research work.

REFERENCES

[1] H. Saleh, S. Avdoshin, and A. Dzhonov, “Platform for Tracking Dona-
tions of Charitable Foundations Based on Blockchain Technology," Actual
Problems of Systems and Software Engineering (APSSE), Nov. 2019.

[2] A. Foti, and D. Marino, “Blockchain and charities: A systemic opportu-
nity to create social value," Economic and Policy Implications of Artifcial
Intelligence, pp. 145-148, Springer, 2020.

[3] M. Jirgensons, and J. Kapenieks, “Blockchain and the future of digital
learning credential assessment and management," Journal of Teacher
Education for Sustainability, vol. 20, no. 1, 2018.

[4] R. Zambrano, A. Young, and S. Velhurst, “Connecting Refugees to Aid
through Blockchain Enabled Id Management: World Food Programme’s
Building Blocks," GovLab, Oct. 2018.

[5] P. Sheng, B. Xue, S. Kannan, and P. Viswanath,“ACeD: Scalable Data
Availability Oracle," arXiv preprint arXiv:2011.00102, Oct. 2020.

[6] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud and data availability
proofs: Maximising light client security and scaling blockchains with
dishonest majorities," arXiv preprint arXiv:1809.09044, Sept. 2018.

[7] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath,
“Coded Merkle Tree: Solving Data Availability Attacks in Blockchains,"
International Conference on Financial Cryptography and Data Security,
pp. 114-134, Springer, Cham, Feb. 2020.

[8] D. Mitra, L. Tauz, and L. Dolecek, “Concentrated Stopping Set Design for
Coded Merkle Tree: Improving Security against Data Availability Attacks
in Blockchain Systems," 2020 IEEE Information Theory Workshop (ITW),
pp. 1-5, Apr. 2021.

[9] S. Cao, S. Kadhe, and K. Ramchandran, “CoVer: Collaborative Light-
Node-Only Verification and Data Availability for Blockchains," IEEE
International Conference on Blockchain (Blockchain), pp. 45-52, Nov.
2020.

[10] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure Code-Based
Low Storage Blockchain Node," IEEE International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pp. 1622-1627, Jul. 2018.

[11] D. Mitra and L. Dolecek, “Patterned Erasure Correcting Codes for Low
Storage-Overhead Blockchain Systems,” Asilomar Conference on Signals,
Systems, and Computers pp. 1734-1738, Nov. 2019.

[12] S. Kadhe, J. Chung, and K. Ramchandran, “SeF: A Secure Fountain
Architecture for Slashing Storage Costs in Blockchains," arXiv preprint
arXiv:1906.12140, Jun. 2019.

[13] A. Tiwari, and V. Lalitha, “Secure Raptor Encoder and Decoder for
Low Storage Blockchain," International Conference on COMmunication
Systems & NETworkS (COMSNETS), pp. 161-165, Jan. 2021.

[14] D. S. Gadiraju, V. Lalitha, and V. Aggarwal, “Secure Re-
generating Codes for Reducing Storage and Bootstrap Costs in
Sharded Blockchains," IEEE International Conference on Blockchain
(Blockchain), pp. 229-236, Nov. 2020.

[15] B. Choi, J. -y. Sohn, D. -J. Han, and J. Moon, “Scalable Network-
Coded PBFT Consensus Algorithm," IEEE International Symposium on
Information Theory (ISIT), pp. 857-861, Jul. 2019.

[16] S. Li, M. Yu, C. Yang, A. S. Avestimehr, S. Kannan, and P. Viswanath,
“PolyShard: Coded Sharding Achieves Linearly Scaling Efficiency and
Security Simultaneously," IEEE Transactions on Information Forensics
and Security, vol. 16, Jul. 2020.

[17] C. Wang, and N. Raviv, “Low Latency Cross-Shard Transactions in
Coded Blockchain," arXiv preprint arXiv:2011.00087, Oct. 2020.

[18] X.Y. Hu, E. Eleftheriou, and D.M. Arnold,“Regular and irregular pro-
gressive edge-growth tanner graphs," IEEE Transactions on Information
Theory, vol. 51, no. 1, Jan. 2005.

[19] S. Nakamato, “Bitcoin: A Peer to Peer Electronic Cash System," 2008.
[Online] Available: https://bitcoin.org/bitcoin.pdf.

[20] W. Stadje,“The Collector’s Problem with Group Drawings," Advances
in Applied Probability, vol. 22, no. 4, JSTOR, 1990.

[21] Y. He, J. Yang, and J. Song, “A survey of error floor of LDPC codes,"
International ICST Conference on Communications and Networking in
China (CHINACOM), Aug. 2011.

[22] X. Jiao, J. Mu, J. Song, and L. Zhou, “Eliminating small stopping sets in
irregular low-density parity-check codes," IEEE Communications Letters,
vol. 13, no. 6, Jun. 2009.

[23] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction
of irregular LDPC codes with low error floors," IEEE International
Conference on Communications, May 2003.

[24] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel,“Selective avoid-
ance of cycles in irregular LDPC code construction," IEEE Transactions
on Communications, vol. 52, no. 8, Aug. 2004.

[25] S. Kim, J. Kim, D. Kim, and H. Song, “LDPC Code Construction with
Low Error Floor Based on the IPEG Algorithm," IEEE Communications
Letters, vol. 11, no. 7, Jul. 2007.

APPENDIX A
CONSTRUCTION OF CODED INTERLEAVING TREE

Let the CIT have l layers (except the root), L1, L2, . . . , Ll,
where Ll is the base layer. For 1 ≤ j ≤ l, let Lj have nj
coded symbols, where we use nl = M in this paper. Let
Nj [i], 1 ≤ i ≤ nj , be the ith symbol of the jth layer, where
Sj = {Nj [i], 1 ≤ i ≤ Rnj} and Pj = {Nj [i], Rnj + 1 ≤
i ≤ nj} are the set of systematic (data) and parity symbols of
Lj , respectively, where we also write Sj [i] = Nj [i], 1 ≤ i ≤
Rnj . Pj is obtained from Sj using a rate R systematic LDPC
code Hj . In the above CIT, hashes of q coded symbols of
every layer are batched (concatenated) together to form a data
symbol of its parent layer, where the nj’s satisfy nj = M

(qR)l−j
,

j = 1, 2, . . . , l.
Let sj = Rnj and pj = (1 − R)nj denote the number of

systematic and parity symbols in Lj . Also define x mod p :=
(x)p. The data symbols of Lj−1 are formed from the coded
symbols of Lj as follows (for 1 < j ≤ l):

Sj−1[i] = Nj−1[i] = concat({Hash(Nj [x]) | 1 ≤ x ≤ nj ,
i = 1 + (x− 1)sj−1

}), 1 ≤ i ≤ sj−1,

where Hash is a hash function (whose output size is y) and
concat represents the string concatenation function. The CIT
has a root which consists of t hashes. The CIT allows to create
a Proof of Membership (POM) for each base layer coded
symbol (which consists of a data and a parity symbol from
each intermediate layer of the tree). In particular, the POM
of symbol Nl[i] is the set of symbols {Nj [1 + (i − 1)sj],
Nj [1 + sj + (i − 1)pj] | 1 ≤ j ≤ l − 1}. The POMs have
the sibling property [5], i.e., for each layer j, 1 ≤ j < l − 1,
the data part of the POM from layer j is the parent of the
two symbols of the POM from layer j + 1. In other words,
Nj [1 + (i − 1)sj] is the parent of Nj+1[1 + (i − 1)sj+1

]
and Nj+1[1 + sj+1 + (i − 1)pj+1

]. By parent, we mean that
Nj [1 + (i− 1)sj] contains the hashes of Nj+1[1 + (i− 1)sj+1]
and Nj+1[1+sj+1 +(i−1)pj+1]. The POM of a symbol from
any intermediate layer j of the tree 1 < j < l similarly consists
of a data and a parity symbol from each layer above layer j.
In particular, POM of the symbol Nj [i] is the set of symbols
{Nj′ [1 + (i−1)sj′], Nj′ [1 + sj′ + (i−1)pj′] |1 ≤ j

′ < j} and
they also satisfy the sibling property. The POM of a coded
symbol is its Merkle proof [19] and is used to check the
inclusion of the coded symbol in the tree (w.r.t to the CIT
root). Note that with the described POM for each symbol, the
process of checking the Merkle proof is same as for regular
Merkle trees in [19].

Let Xj be the size of one coded chunk of layer j along
with its POMs which involves a data and parity symbol from
each layer above layer j as defined in Section III. Note that

http://arxiv.org/abs/2011.00102
http://arxiv.org/abs/1809.09044
http://arxiv.org/abs/1906.12140
http://arxiv.org/abs/2011.00087

the size of each base layer coded chunk is b
RM , where b is

the block size. Thus,

Xl =
b

RM
+ [(q−1)y+ qy](l−1) =

b

RM
+y(2q−1)(l−1)

where the term (q − 1) arises due to the fact that of the q
hashes present in the data symbol of the POM from layer j,
1 ≤ j < l − 1, the hash corresponding to the data symbol
of the POM from layer (j + 1) is not communicated in the
POM (since, due to the sibling property, it can be calculated
by taking a hash of the data symbol of the POM from layer
(j+ 1)). Similarly, of the q hashes present in the data symbol
of the POM from layer l − 1, the the hash corresponding to
the actual base layer data chunk is not communicated. Thus
we only get (q−1) hashes from each layer for the data part in
the POMs. Similarly, Xj = qy+ y(2q− 1)(j− 1), 1 ≤ j < l.

APPENDIX B
PROOF OF LEMMA 1

Let ρ = γNk
M , and x = eρ. The condition k > M

Nγ ln 1
1−η is

equivalent to x > 1
η̄ and the condition PUB(η,N,M, k, γ) ≤

pth can be simplified to x2(vη̄ − η̄2) + (2η̄ + v)x − 1 ≤ 0.
For N = M(1−η)+ln(pth)

He(γ) , v = η̄ and hence we need x ≤ 1
3η̄

which is not possible for x > 1
η̄ (note that η̄ > 0). For N >

M(1−η)+ln(pth)
He(γ) , v > η̄ and hence x2(vη̄− η̄2)+(2η̄+v)x−1

is an upward facing quadratic equation with roots of opposite
sign. Since x is always positive, x2(vη̄−η̄2)+(2η̄+v)x−1 ≤ 0

iff x ≤ xmax =
−(2η̄+v)+

√
8η̄v+v2

2η̄(v−η̄) , where xmax is the positive
root of the quadratic equation. However, a quick algebraic
check would reveal that xmax <

1
η̄ for v > η̄ and hence there

is no feasible x which satisfies x2(vη̄−η̄2)+(2η̄+v)x−1 ≤ 0.
Thus, for N ≥ M(1−η)+ln(pth)

He(γ) , PUB(η,N,M, k, γ) > pth
∀k > M

Nγ ln 1
1−η .

For N < M(1−η)+ln(pth)
He(γ) , v < η̄. In this case x2(vη̄ −

η̄2) + (2η̄ + v)x − 1 is a downward facing quadratic equa-

tion with roots xmax =
−(2η̄+v)−

√
8η̄v+v2

2η̄(v−η̄) and xmin =

−(2η̄+v)+
√

8η̄v+v2

2η̄(v−η̄) satisfying xmin < 1
η̄ < xmax. In this

situation, x2(vη̄ − η̄2) + (2η̄ + v)x − 1 ≤ 0 iff x ≥ xmax

which is equivalent to k ≥ M
Nγ ln

(
−(2η̄+v)−

√
8η̄v+v2

2η̄(v−η̄)

)
.

APPENDIX C
PROOF OF LEMMA 2

We use the following result from [20].

Lemma 4. ([20]) Let S be a set of s elements and let A ⊆
S, |A| = l. From S, let T subsets of size m be drawn with
replacement, each subset drawn uniformly at random from all
subsets of size m of S. Let XT (A) be the number of distinct
elements of the set A contained in the above T drawings. Then

Prob(XT (A) ≤ n) := χ(n, l, s, T,m)

=
n∑
j=0

(−1)n−j
(
l

j

)(
l − j − 1

l − n− 1

)[(s−l+j
m

)(
s
m

)]T
.

Now, following in a manner similar to [5, Appendix A]

Prob(C is not µ-SS-valid)

= Prob(∃S such that |S| = γN, | ∪i∈S Ai| ≤M − µ)

≤
∑

S⊆[M]:|S|=γN

Prob(| ∪i∈S Ai| ≤M − µ)

=
∑

S⊆[M]:|S|=γN

χ(M − µ,M,M, γN, k)

=

(
N

γN

)
χ(M − µ,M,M, γN, k)

≤ eNHe(γ)χ(M − µ,M,M, γN, k)

= eNHe(γ)Pf

where similar to [5], we have used the fact that
(
N
γN

)
≤

eNHe(γ) and Prob(|∪i∈SAi| ≤M−µ) = Prob(XT (A) ≤ n)
when S = A, l = s = M , n = M − µ, m = k and T = γN .

APPENDIX D
PROOF OF LEMMA 3

In the secure phase of Dispersal protocol 1, for each layer
j, 1 ≤ j ≤ l, all stopping sets (of Hj) of sizes < (nj −⌈(

M−µ+1
M

)
nj

⌉
+ 1) are securely dispersed. Hence a peeling

decoder will never fail to decode layer j, 1 ≤ j ≤ l due to
these stopping sets.

Furthermore, the valid phase of Dispersal protocol 1 ensures
that every γ fraction of the oracle nodes have at least M−µ+1
distinct base layer coded chunks with probability ≥ 1 − pth.
Thus, due to the repetition property described in Section II,
this ensures that for a given layer j, 1 ≤ j < l, every γ
fraction of the oracle nodes have has at least M−µ+1

M fraction
of distinct coded chunk, or at least

⌈(
M−µ+1

M

)
nj

⌉
distinct

coded chunks. Thus, with probability ≥ 1− pth, the dispersal
protocol is (nj−

⌈(
M−µ+1

M

)
nj

⌉
+1)-SS-valid for each layer

j, 1 ≤ j ≤ l.
Since the CIT root is committed only when γ+β fraction of

the oracle nodes vote that they received correct coded chunks,
this implies that at least γ fraction of honest oracle nodes have
received correct coded chunks. Now, since with probability
≥ 1−pth, the dispersal protocol is (nj−

⌈(
M−µ+1

M

)
nj

⌉
+1)-

SS-valid for each layer j, a peeling decoder can success-
fully decoder layer j for all stopping sets of size ≥ (nj −⌈(

M−µ+1
M

)
nj

⌉
+ 1) by downloading the coded chunks from

the above honest γ fraction of oracle nodes who voted that
they received correct coded chunks.

Combining the above two situations, the decoder can decode
the entire CIT if the block is committed. Hence Dispersal
Protocol 1 guarantees availability with probability ≥ 1− pth.

	I Introduction
	II Preliminaries and System Model
	III Design Idea: Secure Stopping Set Dispersal
	IV Dispersal-Efficient PEG Algorithm
	V blackSimulations and Conclusion
	References
	Appendix A: Construction of Coded Interleaving Tree
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Lemma 2
	Appendix D: Proof of Lemma 3

