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Abstract—Consider a pair of random vectors (X,Y) and
the conditional expectation operator E[X|Y = y]. This work
studies analytic properties of the conditional expectation by
characterizing various derivative identities. The paper consists
of two parts. In the first part of the paper, a general derivative
identity for the conditional expectation is derived. Specifically,
for the Markov chain U ↔ X ↔ Y, a compact expression
for the Jacobian matrix of E[U|Y = y] is derived. In the
second part of the paper, the main identity is specialized to
the exponential family. Moreover, via various choices of the
random vector U, the new identity is used to recover and
generalize several known identities and derive some new ones.
As a first example, a connection between the Jacobian of
E[X|Y = y] and the conditional variance is established. As

a second example, a recursive expression between higher order
conditional expectations is found, which is shown to lead to
a generalization of the Tweedy’s identity. Finally, as a third
example, it is shown that the k-th order derivative of the
conditional expectation is proportional to the (k + 1)-th order
conditional cumulant.

I. INTRODUCTION

Consider a pair of random vectors (X,Y) ∈ Rd×k with

a joint distribution PXY and the conditional expectation

operator given by

E[X|Y = y] =

∫

X dPX|Y=y. (1)

The conditional expectation operator plays an important role

in a variety of fields that require statistical analysis (e.g., [1],

[2]). The goal of this work is to study analytical properties

of the conditional expectation, i.e., y 7→ E[X|Y = y].
Specifically, the focus is on derivative identities.

There exist a number of derivative identities that relate

the conditional expectation to other quantities such as the

score function, the conditional variance and the conditional

cumulants. Perhaps the most well-known such identity is the

Tweedy’s formula [3], [4]: given that PY|X belongs to the

exponential family with sufficient statistics T(y) and base

measure h(y), we have that

(JyT(y))E[X|Y = y] = ∇y log
fY(y)

h(y)
, (2)

where JyT(y) is the Jacobian of the sufficient statistics

T(y), and fY(·) is the marginal probability density function

(pdf) of Y. Tweedy’s formula is an instrumental tool in

statistical signal processing. For example, (2) implies that

the conditional expectation depends on the joint distribution

PX,Y only through the marginal PY, which leads to an

important class of estimators known as empirical Bayes [3].

For a historic account and impact of Tweedy’s formula the

interested reader is referred to [5]. In information theory,

Tweedy’s formula is used to connect information and es-

timator measures and can be used to prove the I-MMSE

relationship [6], [7]. The formula is also useful in establish-

ing interesting connections between estimation theory and

detection theory [8].

There exist a number of other such identities, which will

be surveyed throughout the paper. However, most of these

identities have been derived under some restricted conditions

(e.g., PY|X is Gaussian). Moreover, most of these identities

are found in an ad-hoc way and there is no unifying approach

for characterizing derivative identities for the conditional

expectation. Recently, in the context of a Gaussian noise

model, the authors of [9] have provided a unifying approach

that is capable of recovering most of the known identities

in the literature from a single meta-identity. In this work, we

extend the results of [9] by providing a new general derivative

identity that holds under a much more general assumption on

the joint distribution PX,Y .

Outline and Contributions. The contributions and the out-

line of the paper are as follows:

• In Section II, Theorem 1 presents a new identity for the

Jacobian of the conditional expectation. Throughout the

paper, this general identity will be used for systematic

proofs of known and novel identities.

• In Section III, Theorem 2 specializes Theorem 1 to the case

when PY|X is an exponential family. Moreover, Theorem 2

is evaluated for the multivariate Gaussian distribution and

the Wishart distribution.

• Section IV further focuses on the exponential family and

studies consequences of the general derivative identity in

Theorem 2; specifically:

– In Section IV-A, Proposition 1 shows that the Jaco-

bian of E[X|Y = y] is related to the conditional

variance. Moreover, as an application of Proposition 1,

Section IV-A presents a novel representation of the

minimum mean squared error (MMSE).

– In Section IV-B, Proposition 2 focuses on the uni-

variate case and provides a recursive identity between

the conditional moments. The recursive identity is used

to derive two new results. First, it is shown that the

recursive identity leads to a new representation of higher-

order conditional expectations (i.e., E[Xk|Y ]) in terms

of the derivatives of the conditional expectation. Second,

the recursive identity is used to generalize Tweedy’s

identity to higher-order conditional expectations. This

generalization of the Tweedy’s identity maintains the

property that E[Xk|Y ] depends on the joint distribution

only through the marginal of Y .
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– In Section IV-C, Theorem 4 and Proposition 3 establish

connections between the derivatives of the conditional

cumulant generating function, the derivatives of the con-

ditional cumulants, and the derivatives of the conditional

expectation. For example, it is shown that the k-th

derivative of the conditional expectation is proportional

to the (k + 1)-th conditional cumulant.

Notation. Deterministic scalar quantities are denoted by

lowercase letters, scalar random variables are denoted by

uppercase letters, vectors are denoted by bold lowercase let-

ters, random vectors by bold uppercase letters, and matrices

by bold uppercase sans serif letters (e.g., x, X , x, X, X).

[n1 : n2] is the set of integers from n1 to n2 ≥ n1; 〈·, ·〉
denotes the inner product; for a matrix A, |A| and tr(A)
denote the determinant and the trace of A, respectively; ⊗ is

the Kronecker product; logarithms are in base e.

For a triplet (U,X,Y) ∈ Rm×n×k we define the condi-

tional variance matrix and the conditional cross-covariance

matrix as follows,

Var(X|Y) = E
[
XXT|Y

]
− E [X|Y]E

[
XT|Y

]
, (3)

Cov(X,U|Y) = E
[
XUT|Y

]
− E [X|Y]E

[
UT|Y

]
. (4)

The gradient of a function f : Rn → R is denoted by

∇xf(x) =
[
∂f(x)
∂x1

∂f(x)
∂x2

. . .
∂f(x)
∂xn

]T

∈ R
n. (5)

The Jacobian matrix of a function f : Rn → R
m is denoted

by Jxf(x) ∈ Rn×m and defined as

Jxf(x) =
[
∇xf1(x) ∇xf2(x) . . . ∇xfm(x)

]
. (6)

The vectorization of a matrix A ∈ Rn×m is given by

vec(A) =
[
aT1 aT2 . . . aTm

]T
∈ R

mn×1, (7)

where, for i ∈ [1 : m], ai ∈ Rn×1 is the i-th column of A.

For a symmetric matrix A ∈ Rn×n, the half-vectorization

operator is defined as the vectorization of the lower triangle

part of A, i.e., vech(A) ∈ R
n(n+1)

2 ×1 is defined as

vech(A) =
[
aT1 [1 : n] aT2 [2 : n] . . . aTn[n : n]

]T
, (8)

where we use the (Matlab-inspired) notation ai[i : n] ∈
R(n−i+1)×1 to denote the i-th column of A where only the

elements from the i-th row to the n-th row are retained.

Finally, the duplication matrix and the elimination matrix

are denoted by Dn ∈ Rn2×n(n+1)
2 and Ln ∈ R

n(n+1)
2 ×n2

,

respectively, and satisfy

Dnvech(A) = vec(A), Lnvec(A) = vech(A). (9)

The space of symmetric positive definite matrices of dimen-

sion n is denoted by Sn+.

II. MAIN DERIVATIVE IDENTITY

In order to present the main derivative identity and its

proof, we need the notions of information density, score

function and conditional score function. The information

density for the joint distribution PX,Y supported on X × Y
where X ⊆ Rd and Y ⊆ Rk is defined as

ιPX,Y
(x;y) = log

dPX,Y

d(PX · PY)
(x,y), x ∈ X , y ∈ Y, (10)

where
dPX,Y

d(PX·PY) (x,y) =
dPY|X=x

dPY

(x,y) is the Radon-

Nikodym derivative with the understanding that if PY|X=x

is not absolutely continuous with respect to PY we define

ιPX,Y
(x;y) = ∞. For a distribution PY with a pdf fY(·),

the score function is defined as

ρY(y) = ∇y log fY(y) =
∇yfY(y)

fY(y)
, y ∈ Y. (11)

For the conditional distribution PY|X with a pdf fY|X(·|·),
we define the conditional score function as

ρY|X(y|x) = ∇y log fY|X(y|x), x ∈ X , y ∈ Y. (12)

The following elementary properties of the above three

quantities are proved for completness in Appendix A and

will be useful in the proof of the main identity.

Lemma 1. The information density, score function, and con-

ditional score function satisfy the following properties:

• (Conditional Expectation and Information Density): Sup-

pose that U ↔ X ↔ Y forms a Markov chain, in that

order. Then, for y ∈ Y

E[U|Y = y] = E

[

UeιPX,Y
(X;y)

]

. (13)

• (Gradient of the Information Density): Suppose that the

distributions PY and PY|X have pdfs fY(·) and fY|X(·|·),
respectively. Then, for (x,y) ∈ X × Y

∇yιPX,Y
(x;y) = ρY|X(y|x) − ρY(y). (14)

• (Score Function vs. Conditional Score Function): Suppose

that E
[
‖∇yfY|X(y|X)‖

]
< ∞ for all y ∈ Y and that

(x,y) 7→ fY|X(y|x) is absolutely continuous in y for

every x. Then, for y ∈ Y

ρY(y) = E[ρY|X(Y|X)|Y = y]. (15)

By leveraging the properties in Lemma 1, we can now prove

the main derivative identity, which is provided in the next

theorem.

Theorem 1. Suppose that the random vectors U ∈ Rm,X ∈
X ⊆ Rd and Y ∈ Y ⊆ Rk satisfy the following conditions:

A1 :U ↔ X ↔ Y forms a Markov chain, in that order;

A2 :E
[
‖U‖

∥
∥∇yιPX,Y

(X;Y)
∥
∥ |Y = y

]
< ∞, y ∈ Y ⊆ R

k;

A3 :E
[
‖∇yfY|X(y|X)‖

]
< ∞ for all y ∈ Y ;

A4 : (x,u,y) 7→ u ιPX,Y
(x;y) and (x,y) 7→ fY|X(y|x)

are absolutely continuous in y for every (x,u).

Then, for y ∈ Y

JyE[U|Y = y] = Cov
(
ρY|X(Y|X),U |Y = y

)
. (16)

Proof: For i ∈ [1 : m], we have that

∇yE[Ui|Y = y]

(a)
= ∇yE

[

Uie
ιPX,Y

(X;y)
]

(b)
= E

[

Ui∇yιPX,Y
(X;y)eιPX,Y

(X;y)
]

(c)
= E

[
Ui∇yιPX,Y

(X;y)|Y = y
]

(d)
= E[Ui(ρY|X(Y|X) − ρY(Y))|Y = y]

= E[UiρY|X(Y|X)|Y = y]− E[Ui|Y = y]ρY(y)



(e)
= Cov

(
ρY|X(Y|X), Ui|Y = y

)
, (17)

where the labeled equalities follow from: (a) using (13),

which holds under the assumption A1; (b) interchanging

the gradient and expectation that is permissible by using the

Leibniz integral rule, which requires verifying the conditions

in A2 and A4; (c) using (13), which holds under A1;

(d) using (14); and (e) using (15), which holds under the

assumptions A3 and A4, and the definition of conditional

covariance in (4).

The proof of Theorem 1 is concluded by using (17)

together with the definition of the Jacobian in (6).

The identity in (16) has a number of interesting conse-

quences. In the remaining of the paper, we explore these

consequences in the context of an exponential family.

III. EXPONENTIAL FAMILY AND THE MAIN IDENTITY

The class of probability models P = {PY|X=x,x ∈ X ⊆
Rd} supported on Y ⊆ Rk is an exponential family if the pdf

of it can be written as

fY|X(y|x) = h(y)e〈x,T(y)〉−φ(x), y ∈ Y, x ∈ X , (18)

where T : Y → Rd is the sufficient statistic function; φ :
X → R is the log-partition function; and h : Y → [0,∞)
is the base measure. In this work, we assume that Y is an

open set and that the base measure h is absolutely continuous

with respect to the Lebesgue measure. In other words, we

restrict our focus to continuous distributions belonging to the

exponential family (e.g., normal, Wishart). Furthermore, in

the remaining, we assume that the sufficient statistics T(y)
is an analytic function.

Note that there is a number of known derivative identities

for the mean and variance of the exponential distribution.

For example, the mean and the variance can be related to the

log-partition function φ(·) via the following relationships:

E[Y|X = x]=∇φ(x), Var(Y|X = x)=H2φ(x), (19)

where H2 is the Hessian matrix of φ(·). Note that the

identities in (19) do not assume any prior distribution on

X. In this work, however, we are interested in a family of

derivative identities that are fundamentally different from the

above identities. Specifically, we are interested in studying

derivative identities for quantities such as E[X|Y = y] in

which there is a prior distribution on X.

The next theorem specializes Theorem 1 to the aforemen-

tioned exponential family.

Theorem 2. Suppose that random vectors U ∈ Rm,X ∈
X ⊆ Rd and Y ∈ Y ⊆ Rk are such that fY|X(·|·) is as

in (18), and satisfy the following conditions,

A1 :U ↔ X ↔ Y forms a Markov chain, in that order;

A2 :E [‖U‖ |Y = y] < ∞, y ∈ Y ⊆ R
k;

A3 :E [‖U‖ ‖X‖ |Y = y] < ∞, y ∈ Y ⊆ R
k;

A4 : (x,u,y) 7→ u ιPX,Y
(x;y) and (x,y) 7→ fY|X(y|x)

are absolutely continuous in y for every (x,u);

A5 :E [‖X‖ |Y = y] < ∞, y ∈ Y ⊆ R
k.

Then, for y ∈ Y ⊆ Rk, we have that

JyE[U|Y = y] = (JyT(y))Cov(X,U|Y = y). (20)

Proof: In Appendix B, we show how the three conditions

in Theorem 1 specialize to the case of the exponential family

in (18). Now, we are left to show the identity in (20).

From (16), we obtain

JyE[U|Y = y] = Cov
(
ρY|X(Y|X),U|Y = y

)

(a)
= Cov (∇y log(h(y)),U|Y = y)

+ Cov ((JyT(y))X,U|Y = y)

(b)
= (JyT(y))Cov (X,U|Y = y) ,

where (a) follows from the fact that Cov(A + B,C) =
Cov(A,C)+Cov(B,C) and the fact that, for the exponential

family in (18), the conditional score function is given by

ρY|X(Y|X) = ∇y log(h(y)) +∇y〈x,T(y)〉

= ∇y log(h(y)) + (JyT(y)) x; (21)

and (b) holds since Cov (∇y log(h(y)),U|Y = y) = 0.

This concludes the proof of Theorem 2.

Remark 1. The assumptions A2, A3 and A5 in Theorem 2

are rather mild. For example, these assumptions hold if both

X and U are integrable, i.e., E[‖X‖2] < ∞,E[‖U‖2] < ∞.

In the remaining of the paper, we only consider priors on

(U,X) that satisfy the regularity conditions A1−A5.

We conclude this section by evaluating the result in The-

orem 2 for two continuous distributions that belong to the

exponential family.

Example. Multivariate Normal with (Un)Known Mean and

(Un)Known Covariance. Consider the case where Y|X =
x ∼ N (m;Σ) where N (m;Σ) is the multivariate normal

distribution with mean m and covariance matrix Σ. The

mapping to the exponential family in (18) is done as follows,

x =
[
[
Σ

−1
m

]T [
vec

(
− 1

2Σ
−1

)]T
]T

, (22a)

h(y) = (2π)−k/2, (22b)

T(y) =
[

yT
[
vec

(
yyT

)]T
]T

, (22c)

φ(x) =
1

2

(
m

T
Σ

−1
m+ log(|Σ|)

)
. (22d)

The Jacobian of T(y) is then given by

JyT(y) =
[
Ik yT ⊗ Ik + Ik ⊗ yT

]
.

Now, suppose that X =
[
[
Σ

−1
M

]T [
vec

(
− 1

2Σ
−1

)]T
]T

where the joint PM ,Σ satisfies A1-A5 of Theorem 2. Then,

for y ∈ R
k, from (20) we obtain

JyE[U|Y = y] =
[
Ik, yT ⊗ Ik + Ik ⊗ yT

]

· Cov

([
Σ

−1
M

vec
(
− 1

2Σ
−1

)

]

,U
∣
∣
∣Y = y

)

. (23)

The above can now be specialized in two ways. First,

specializing it to the case where Σ is known and M is

unknown (i.e., PΣ is a point mass), we arrive at

JyE[U|Y = y] = Σ
−1

Cov

(

M ,U
∣
∣
∣Y = y

)

,



which recovers the result in [9]. Second, specializing (23)

to the case when M is known and equal to zero but Σ is

unknown, we arrive at

JyE[U|Y = y]

= −
1

2

[
yT ⊗ Ik + Ik ⊗ yT

]
Cov

(

vec
(
Σ

−1
)
,U

∣
∣
∣Y = y

)

.

Example. Wishart distribution. The Wishart distribution

with n degrees of freedom and a parameter matrix V ∈ S
p
+,

where n ≥ p, is given by

fA|V,N (A|V, n) =
|A|

n−p−1
2 e−

tr(V−1
A)

2

2
np
2 Γp

(
n
2

)
|V|

n
2

, A ∈ S
p
+, (24)

where Γp(·) is the multivariate gamma function. The pdf of

the Wishart distribution can be written in the exponential

form in (18) by using the following mappings1,

y = vech(A), (25a)

x =
[

− 1
2

[
vec(V−1)

]T n−p−1
2

]T

, (25b)

h(y) = 1, (25c)

T(y) =
[

[vec(A)]T log(|A|)
]T

, (25d)

φ(x) =
n

2
log(|V|) + log Γp

(n

2

)

+
np

2
log(2). (25e)

We also note that the Jacobian of T(y) is given by

JyT(y) =
[
D

T

p D
T

pDpy
]
,

where we have used the facts that

Jyvec(A)
(9)
= Jy (Dnvech(A))

(25a)
= Jy (Dpy) = D

T

p ,

∇y log(|A|) =

D
T

pJvec(A)(|A|)
∣
∣
∣
vec(A)=Dpy

|A|

(25a)
= D

T

pDpy.

Next, by assuming a prior distribution on the parameter

X =
[

− 1
2

[
vec(V−1)

]T N−p−1
2

]T

, where it is assumed

that (V, N) ∼ PV,N , the identity in (20) reduces to

JyE[U|Y = y] =
[

D
T

p D
T

pDpy
]

· Cov

([
− 1

2vec(V
−1)

N−p−1
2

]

,U
∣
∣
∣Y = y

)

. (26)

We next specialize the above result to the case p = 1, i.e.,

the gamma distribution. In other words, we consider

fY |A,B(y|a, b) =
ya−1e−yb

b−aΓ(a)
, y, a, b > 0.

For this case, the result in (26) reduces to

d

dy
E[U|Y = y] =

[
1 y

]
Cov

([
−B

A

]

,U
∣
∣
∣Y = y

)

.

IV. CONSEQUENCES OF THE MAIN IDENTITY FOR THE

EXPONENTIAL FAMILY

In this section, we show that several well-known identities

for the exponential family defined in (18) can be derived

systematically from the Jacobian identity in Theorem 2.

Moreover, we use this new identity to derive several gener-

alizations of previously known identities and discover some

new identities. Specifically, we will evaluate Theorem 2 with

three different choices of U.

1Since A belongs to the set of symmetric matrices, it is more convenient
to take the Jacobian in (20) with respect to vech(A) instead of vec(A).

A. Variance Identity

By setting U = X in Theorem 2 we arrive at the following

result.

Proposition 1. For the exponential family defined in (18),

we have that

JyE[X|Y = y] = (JyT(y))Var(X|Y = y). (27)

The identity in (27) was previously demonstrated for the

case of a Gaussian noise channel with known variance.

Specifically, in [10] this identity was proven for the vector

Gaussian noise with an identity covariance matrix, and then

generalized to an arbitrary covariance matrix [7]. We refer

the interested reader to [9] for an account of the impact of

this identity in the case of Gaussian noise.

Recall that the MMSE matrix of estimating X from Y is

given by

MMSE(X|Y) = E
[
(X− E [X|Y])(X− E [X|Y])T

]
.

As an application of Proposition 1, we have the following

new representation of the MMSE matrix.

Corollary 1. Suppose that (JyT(y)) is PY-almost surely

invertible. Then,

MMSE(X|Y) = E

[

(JYT(Y))
−1

JYE[X|Y]
]

. (28)

Proof: The proof follows by observing that

MMSE(X|Y) = E[Var(X|Y)] and using (27).

B. Recursive Identities

We here seek to express the (ℓ+ 1)-th conditional expec-

tation, with ℓ ≥ 1, as a function of the ℓ = 1-st conditional

expectation. Towards this end, we focus on the univariate

case, and we set U = Xℓ in Theorem 2. By doing this, we

arrive at the following recursive identity.

Proposition 2. Assume that fY |X(·|·) is as in (18), and

let E[Xℓ|Y = y] = Fℓ(y). Then, the following recursive

expression holds for all ℓ ≥ 1,

Fℓ+1(y) =
1

T ′(y)
F ′
ℓ(y) + F1(y)Fℓ(y). (29)

A version of the recursive identity in (29) has appeared

in the past in the context of a Gaussian noise channel [11].

In [9], always in the context of a Gaussian noise channel, the

authors showed that the identity in (29) has several equivalent

representations.

Next, we show an equivalent version of the identity in

Proposition 2 by solving the recursion in (29). The new

equivalent version establishes an expression for the (ℓ + 1)-
th conditional expectation, with ℓ ≥ 1, as a function of the

ℓ = 1-st conditional expectation.

Theorem 3. Assume that fY |X(·|·) is as in (18), and define

the following operator for ℓ ∈ N,2

D(ℓ)
y =

1

T ′(y)

d

dy

1

T ′(y)

d

dy
. . .

1

T ′(y)

d

dy
︸ ︷︷ ︸

1
T ′(y)

d
dy ℓ times

, (30)

2Note that, since we assume that T (y) is an analytic function, the
derivatives of T (y) have only isolated zeros. Therefore, the set of y’s for

which the operator D
(ℓ)
y is not well-defined is at most a set of measure zero.



where3 D
(0)
y = 1. Then, for every a ∈ Y , we have that

E[Xℓ+1|Y = y] =

e−
∫

y

a
T ′(u)E[X|Y=u]duD(ℓ+1)

y e
∫

y

a
T ′(u)E[X|Y=u]du.

Proof: We start by defining

gℓ(y) = Fℓ(y)e
∫

y

a
T ′(u)F1(u)du, (31)

from which we get

g′ℓ(y) =F ′
ℓ(y)e

∫
y

a
T ′(u)F1(u)du

+ Fℓ(y)e
∫

y

a
T ′(u)F1(u)duT ′(y)F1(y). (32)

Moreover, from the result in Proposition 2, we have that

T ′(y)Fℓ+1(y) = F ′
ℓ(y) + T ′(y)F1(y)Fℓ(y). (33)

By multiplying both sides of (33) by e
∫

y

a
T ′(u)F1(u)du and

substituting the expressions in (31) and (32), we obtain

gℓ+1(y)T
′(y) = g′ℓ(y) ⇒ gℓ+1(y) =

g′ℓ(y)

T ′(y)
(30)
⇒ gℓ+1(y) = D(ℓ)

y g1(y). (34)

Substituting the definition of gℓ(y) in (31) inside (34), we

arrive at

Fℓ+1(y)e
∫

y

a
T ′(u)F1(u)du = D(ℓ)

y F1(y)e
∫

y

a
T ′(u)F1(u)du,

and, since E[Xℓ|Y = y] = Fℓ(y), we obtain

E[Xℓ+1|Y = y] =e−
∫

y

a
T ′(u)E[X|Y=u]du

·D(ℓ)
y E[X |Y = y]e

∫
y

a
T ′(u)E[X|Y=u]du.

Finally, note that

E[X |Y = y]e
∫

y

a
T ′(u)E[X|Y=u]du

=
1

T ′(y)

d

dy
e
∫

y

a
T ′(u)E[X|Y=u]du.

This concludes the proof of Theorem 3.

We now conclude this discussion with a couple of remarks

that point out some implications of the result in Theorem 3.

Remark 2. The univariate case considered above can

be extended to the multivariate case by setting U =
(XXT)ℓX, ℓ ∈ N in Theorem 2, where for a square matrix

A and ℓ ∈ N we have that Aℓ = A×A× . . .×A
︸ ︷︷ ︸

ℓ times

.

Remark 3. By using the Tweedy’s formula in (2), for ℓ ∈ N

and y ∈ Y , inside the right-hand side of the expression in

Theorem 3, we obtain

E[Xℓ+1|Y = y]

= e−
∫

y

a
d
du log

fY (u)

h(u)
du
D(ℓ+1)

y e
∫

y

a
d
du log

fY (u)

h(u)
du

= e− log
fY (y)

h(y)
+log

fY (a)

h(a) D(ℓ+1)
y elog

fY (y)

h(y)
−log

fY (a)

h(a)

= e− log
fY (y)

h(y) D(ℓ+1)
y elog

fY (y)

h(y)

=
h(y)

fY (y)
D(ℓ+1)

y

fY (y)

h(y)
.

3Note that, when the sufficient statistics is a linear function (e.g., Gaussian

noise), the operator D
(ℓ)
y becomes an ℓ-th derivative.

C. Identity for Cumulants

We here establish fundamental connections between condi-

tional cumulants and conditional moments for the exponential

family defined in (18). In particular, for ease of explanation,

we focus on the univariate case. Consider the conditional

cumulant-generating function,

KX(t|Y =y)=log
(
E[etX |Y =y]

)
, y∈Y⊆R, t ∈ R. (35)

The ℓ-th conditional cumulant is given by

κX|Y=y(ℓ) =
dℓ

dtℓ
KX(t|Y = y)

∣
∣
∣
t=0

, ℓ ∈ N. (36)

The next theorem, the proof of which can be found in

Appendix C, provides a relationship that we will leverage in

Proposition 3 to establish a fundamental connection between

conditional cumulants and conditional moments.

Theorem 4. Assume that fY |X(·|·) is as in (18), and let D
(ℓ)
y

be defined as in (30) with D
(0)
y = 1. Then, for y ∈ Y and

t ∈ R, we have that

dℓ

dtℓ
KX(t|Y = y) =D(ℓ)

y KX(t|Y = y)

+D(ℓ−1)
y E[X |Y = y].

Proposition 3. Assume that fY |X(·|·) is as in (18). For ℓ ∈
N and y ∈ Y , we have that

κX|Y=y(ℓ) = D(ℓ−1)
y E[X |Y = y]. (37)

Proof: The proof follows by leveraging the result in The-

orem 4 and demonstrating that D
(ℓ)
y KX(t|Y = y)|t=0 = 0.

Towards this end, recall the following power series represen-

tation of the cumulant-generating function around t = 0,

KX(t|Y = y)

= κX|Y=y(1)t+
κX|Y=y(2)t

2

2!
+

κX|Y=y(3)t
3

3!
+ . . .

Consequently, since the operator D
(ℓ−1)
y acts only with

respect to y, we have that D
(ℓ)
y KX(t|Y = y)|t=0 = 0. This

concludes the proof of Proposition 3.

The identity in (37) has been previously shown in the context

of Gaussian noise for y = 0 [12] and for all y ∈ R [9]. The

work in [9] also contains vector generalizations of (37).

The following concluding remark points out to some

interesting consequences of Proposition 3.

Remark 4. The result in Proposition 3 establishes a novel

relationship between conditional cumulants for the exponen-

tial family, namely for ℓ ∈ N and y ∈ Y , we have that

κX|Y=y(ℓ + 1) =
1

T ′(y)

d

dy
κX|Y=y(ℓ).

Moreover, by using the Tweedy’s formula in (2), for ℓ ∈ N

and y ∈ Y , we obtain

κX|Y=y(ℓ) = D(ℓ)
y log

(
fY (y)

h(y)

)

.

In other words, the conditional cumulants depend on the joint

distribution PX,Y only through the marginal PY .

The result in (37) can also be used to find a power series

representation of the conditional expectation. The polynomial

approximation of the conditional expectation has received

some recent attention and the interested reader is referred

to [13] and [14].



APPENDIX A

PROOF OF LEMMA 1

The proof of (13) follows by using the Markov chain U ↔
X ↔ Y and the definition of information density in (10),

E[U|Y = y] =

∫

U dPU|X dPX|Y=y

=

∫

U dPU|X eιPX,Y
(X;y) dPX

= E

[

UeιPX,Y
(X;y)

]

.

To show (14), observe the following sequence of steps,

∇yιPX,Y
(x;y) = ∇y log

fY|X(y|x)

fY(y)

= ρY|X(y|x) − ρY(y).

To show (15), note that

E[ρY|X(Y|X)|Y = y]
(a)
= E

[
∇yfY|X(y|X)

fY|X(y|X)
|Y = y

]

(b)
= E

[
∇yfY|X(y|X)

fY|X(y|X)
eιPX,Y

(X;y)

]

(c)
=

E
[
∇yfY|X(y|X)

]

fY(y)

(d)
=

∇yE
[
fY|X(y|X)

]

fY(y)

=
∇yfY(y)

fY(y)

= ρY(y),

where the labeled equalities follow from: (a) applying (12);

(b) using (13); (c) applying (10); and (d) interchanging

the gradient and the expectation that is permissible by us-

ing the Leibniz integral rule, which requires verifying that

E
[
‖∇yfY|X(y|X)‖

]
< ∞ and that fY|X(y|x) is absolutely

continuous in y. This concludes the proof of Lemma 1.

APPENDIX B

PROOF OF A1-A5 IN THEOREM 2

Clearly, A1 and A4 in Theorem 1 and Theorem 2 are the

same. For A2 in Theorem 1, we have that

E
[
‖U‖

∥
∥∇yιPX,Y

(X;Y)
∥
∥ |Y = y

]

(a)
= E

[
‖U‖

∥
∥ρY|X(y|x) − ρY(y)

∥
∥ |Y = y

]

(b)
= E [‖U‖ ‖∇y log(h(y))+(JyT(y))X− ρY(y)‖ |Y=y]

(c)
= E [‖U‖ ‖g(y) + (JyT(y))X‖ |Y = y]

(d)

≤ E [‖U‖ ‖g(y)‖ |Y = y]+E [‖U‖ ‖(JyT(y))X‖ |Y=y]

(e)

≤ ‖g(y)‖E [‖U‖|Y=y]+‖JyT(y)‖⋆E [‖U‖‖X‖|Y=y] ,

where the labeled (in)equalities follow from: (a) using (14);

(b) the fact that, for the exponential family in (18), the

conditional score function is given by

ρY|X(Y|X) = ∇y log(h(y)) +∇y〈x,T(y)〉

= ∇y log(h(y)) + (JyT(y)) x; (38)

(c) letting g(y) = ∇y log(h(y)) − ρY(y); (d) applying the

triangle inequality; and (e) denoting with ‖JyT(y)‖⋆ the

operator norm of JyT(y). Thus, a sufficient condition to

have A2 in Theorem 1 satisfied, is to have A2 and A3 in

Theorem 2 satisfied.

Finally, for A3 in Theorem 1, we have that

E
[
‖∇yfY|X(y|X)‖

]

(a)
= E

[
‖ (∇y log(h(y)) + (JyT(y))X) fY|X(y|X)‖

]

(b)

≤ E
[
‖ (∇y log(h(y))) fY|X(y|X)‖

]

+ E
[
‖ ((JyT(y))X) fY|X(y|X)‖

]

(c)
= E

[
fY|X(y|X)

]
‖∇y log(h(y))‖

+ E
[
fY|X(y|X)‖ (JyT(y))X‖

]

(d)

≤ E
[
fY|X(y|X)

]
‖∇y log(h(y))‖

+ ‖ (JyT(y)) ‖⋆E
[
fY|X(y|X)‖X‖‖

]

(e)
= fY(y)‖∇y log(h(y))‖ + E [‖X‖|Y = y] fY(y),

where the labeled (in)equalities follow from: (a) applying

the gradient to fY|X(·|·) in (18); (b) the triangle inequality;

(c) the fact that the pdf is non-negative; (d) denoting with

‖JyT(y)‖⋆ the operator norm of JyT(y); and (e) applying

Bayes’ theorem. Thus, since fY(y)‖∇y log(h(y))‖ is almost

surely bounded, a sufficient condition to have A3 in Theo-

rem 1 satisfied, is to have A5 in Theorem 2 satisfied.

APPENDIX C

PROOF OF THEOREM 4

Let U = etX . Then, the derivative of the cumulant-

generating function can be expressed as,

d

dy
KX(t|Y = y)

(a)
=

1

E[etX |Y = y]

d

dy
E[etX |Y = y]

(b)
=

T ′(y) Cov(X, etX |Y = y)

E[etX |Y = y]

(c)
=

T ′(y)
(
E[XetX |Y = y]− E[X |Y = y]E[etX |Y = y]

)

E[etX |Y = y]

(d)
=

T ′(y)
(

d
dtE[e

tX |Y = y]− E[X |Y = y]E[etX |Y = y]
)

E[etX |Y = y]

(e)
= T ′(y)

(
d

dt
log

(
E[etX |Y = y]

)
− E[X |Y = y]

)

(f)
= T ′(y)

d

dt
KX(t|Y = y)− T ′(y)E[X |Y = y],

where the labeled equalities follow from: (a) using the

expression in (35); (b) applying Theorem 2 with T ′(y) =
d
dyT (y); (c) using the definition of conditional cross-

covariance in (4); (d) the fact that

E[XetX |Y = y] = E

[
d

dt
etX |Y = y

]

=
d

dt
E[etX |Y = y],

where the last equality follows by interchanging the derivative

and the expectation, which is permissible by using the Leib-

niz integral rule under the regularity conditions in Theorem 2;

(e) the fact that

d
dtE[e

tX |Y = y]

E[etX |Y = y]
=

d

dt
log

(
E[etX |Y = y]

)
;



and (f) using the expression in (35). Consequently, we obtain

d

dt
KX(t|Y = y) =

1

T ′(y)

d

dy
KX(t|Y = y) + E[X |Y = y].

The proof of Theorem 4 is concluded by applying induction.
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