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Abstract—We consider a fully connected network consisting of
a source that maintains the current version of a file, n nodes
that use asynchronous gossip mechanisms to disseminate fresh
information in the network, and an adversary who infects the
packets at a target node through data timestamp manipulation,
with the intent to replace circulation of fresh packets with
outdated packets in the network. We show that a single infected
node increases the expected age of a fully connected network from
O(logn) to O(n). Further, we show that the optimal behavior for
an adversary is to reset the timestamps of all outgoing packets to
the current time and of all incoming packets to an outdated time.
Additionally, if the adversary allows the infected node to accept
a small fraction of incoming packets from the network, then a
large network can manage to curb the spread of stale files coming
from the infected node and pull the network age back to O(logn).
Lastly, we show that if an infected node contacts only a single
node instead of all nodes of the network, the system age can still
be degraded to O(n). These show that fully connected nature of
a network can be both a benefit and a detriment for information
freshness; full connectivity, while enabling fast dissemination of
information, also enables fast dissipation of adversarial inputs.

I. INTRODUCTION

Sensor networks generally have limited resources, which
prevents them from implementing traditional computer secu-
rity techniques, making them vulnerable to adversarial attacks.
Uncertain dynamics of such networks often force them to
rely on decentralized gossip protocols [1]–[14] for information
dissemination, where information is exchanged between nodes
repeatedly and asynchronously using their local status. Gossip
protocols were introduced and have been widely used in the
context of distributed databases. In this work, we consider the
presence of an adversary in a gossip network [15]–[22], who
corrupts the gossip operation by manipulating the timestamps
of some data packets flowing in the network, a technique
known as timestomping [23], with the goal of bringing about
staleness and inefficiency to the network. A timestomping
attack can be launched in many ways. For instance, a malicious
insider node can deviate from the gossip protocol and inject
old packets by rebranding them as fresh packets via timestamp
manipulation, while maintaining the gossiping frequency to
evade suspicion. Other methods include meddler in the middle
(MITM) attacks, where the adversary inserts its node unde-
tected between two nodes and manipulates communication,
and eclipse attacks where the adversary manipulates the target
node by redirecting its inbound and outbound links away from
legitimate neighboring nodes to adversary controlled nodes,
thereby isolating the node from the rest of the network, as
encountered in gossip based blockchain networks.

Most prior works on gossip networks consider total dissem-
ination time of a message in the network as the performance
metric. For instance, [3] shows that dissemination of a single
rumor to n nodes takes O(log n) rounds, [5] shows that n
messages can be disseminated to n nodes in O(n) time in fully
connected networks using random linear coding (RLC), [6]
provides an analogous result for arbitrarily connected graphs,
and [7] analyzes dissemination of messages by dividing them
into pieces. However, highly dynamic nature of data sources
in modern applications prevents these networks from waiting
for a specific message to reach all nodes of the network before
fresh information can be circulated. Distributed databases [8],
[9], for example, employ timestamp versioning, wherein every
new information is created with a timestamp value taken
from the system clock. When two nodes come in contact to
exchange information, the timestamps of data at both nodes are
compared and the node carrying the data with older timestamp
discards its data for the fresher data of the other node.

In this regard, age of information [24]–[26] may be a more
suitable indicator of network efficiency. Given Ui(t) as the
timestamp of the packet with node i at time t, the instantaneous
age of information is given by Xi(t) = t − Ui(t). The
nodes wish to have access to the most up-to-date information
at all times, and therefore, are prompted to decrease Xi(t)
by fetching packets with more recent timestamps, e.g., with
higher Ui(t). Gossip networks have been studied from time-
liness perspective in [10]–[14]. [10], [11] derive the recursive
age equations using stochastic hybrid system framework for
age, [12] studies the expected version age in clustered gossip
networks, [13] extends these results to the binary freshness
metric, [14] considers age scaling in gossip networks using
file slicing and network coding, and [18] studies the effects of
jamming adversaries on gossip age in ring networks.

Timestomping is often used by malware authors as an anti-
forensics technique to make files blend in with the rest of the
system. In this work, an adversary uses timestomping with the
goal of worsening the expected age in the network. Consider
two nodes, A and B, that randomly come in contact to
exchange information and consider the presence of adversary
at node A capable of altering timestamps of all incoming and
outgoing files. If node A is outdated compared to node B, the
adversary would be inclined to increase the timestamp of an
outgoing packet from node A to make it appear fresher so as
to misguide node B into discarding its packet in favor of a
staler packet, and also, decrease the timestamp of an incoming
packet from node B so as to avoid its acceptance at node
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A. Conversely, if node A is more up-to-date than node B,
the adversary would reduce timestamps of outgoing packets
and increase timestamps of incoming packets to make node
B reject fresher files and node A accept staler files. More the
manipulated timestamps digress away from their true value,
higher are the chances of error in deciding which packet should
be discarded, since this decision is based on a comparison of
timestamps. At time t, the maximum error is caused when file
timestamp is either changed to the current time t or the earliest
time 0. Thus, we consider an adversary, who, for each packet,
makes the decision of changing its timestamp to either t or 0.
The adversary is oblivious in that it does not look into a packet
and see its actual timestamp. Thus, the adversary changes the
timestamp to either t or 0 probabilistically.

In this paper, we consider a gossip network where an
adversary captures a node and manipulates the timestamps of
packets coming into and going out of the node (see Fig. 1).
We show that one infected node can single-handedly suppress
the availability of fresh information in a large network of n
users employing a gossip protocol, and increase the expected
age in a complete graph from O(log n) found in [10] to O(n).
In addition, we show that the optimal action for the adversary
is to always increase the timestamp of every outgoing packet
to t and decrease the timestamp of every incoming packet to
0, in effect, preventing all incoming files from being accepted
and actively persuading other nodes to always accept outgoing
packets from the infected node. Further, we show that if the
the infected node is allowed to accept even a small fraction
of incoming packets from the network, then a large network
can curb the spread of stale files coming from the infected
node by effectively lowering the infected node’s age. These
observations show how the fully connected nature of a network
can be both a benefit and a detriment for network staleness.
Additionally, we show that if the malicious node contacts only
one other node instead of all nodes of the network (see Fig. 2),
the system age can still be degraded to O(n), which highlights
how little an effort is needed on the part of the adversary to
bring down the freshness of the entire network.

II. SYSTEM MODEL AND SHS CHARACTERIZATION

We study a fully connected network, shown in Fig. 1, which
comprises a source and n user nodes N = {1, . . . , n}. The
source, alternatively referred to as node 0, is assumed to
always posses the latest file packet and consequently has zero
age at all times. The nodes wish to acquire the most up-to-date
file to lower their average age from the source, who updates
each user node as a Poisson process with rate λ

n . Further, a
user node i randomly sends its current packet to a user node
j according to a Poisson process with rate λij = λ

n−1 . Thus,
all nodes send out updates after exponential inter-update times
with a total rate λ. Let Uj(t) denote the timestamp marked
on the file stored at the node j. Then, at the receiving node
j, the claimed timestamp of the incoming packet is compared
with Uj(t) to determine which packet should be kept. Note
that a node always accepts an update from the source which
generates update packets with current timestamp t.

0

λ
n

1
2

n

n− 1
λ
n−1n− 2

Fig. 1. Fully connected network of n nodes with an infected node.

We assume that the highest index node, node n, is under
attack by an adversary that manipulates the timestamps of all
incoming and outgoing packets of node n. For the outgoing
packets, the adversary chooses to increase the timestamp (to
current time t) with probability p and decrease the timestamp
to 0 with probability 1− p. Similarly, the adversary increases
and decreases the timestamp of incoming packets with prob-
ability 1 − p and p, respectively. We will refer to the nodes
in set NR = {1, . . . , n − 1} as regular nodes and node n as
the infected node. We assume that the infected node always
accepts packets from the source like other nodes, delivered
to it with rate λ

n , which helps the adversary evade suspicion
of malicious activity by maintaining a remote contemporary
relevance of the contents of its manipulated packets.

We denote the long-term average age at node i by vi,
where vi = limt→∞ E[Xi(t)], and wish to study its extent
of deterioration through timestomping. Note that the actual
instantaneous age at node i is Xi(t) = t − Ūi(t), where
Ūi(t) indicates the true packet generation time, which can
be different from the claimed timestamp Ui(t) if the file
timestamp has been tampered with. For a set of nodes S at
time t, let XN(S)(t) indicate the actual instantaneous age of
the node claiming to possess the most recent timestamped
packet in set S, i.e., XN(S)(t) = Xargmaxj∈S Uj(t)(t). We
define vS = limt→∞ E[XN(S)(t)]. Here we would like to
point out that in a network without adversary where all
files are marked with true timestamps, XN(S)(t) reduces to
XS(t) = minj∈S Xj(t) defined in [10], since the node with
highest timestamp will also have the lowest age in the set S.

Reference [10] demonstrates how stochastic hybrid system
(SHS) models yield linear equations useful for deriving long-
term average age at nodes in a gossip network of n users
with a given topology. Due to the presence of a timestomping
adversary, we choose the continuous state for our SHS model
as (XXX(t),UUU(t)) ∈ R2n, where XXX(t) = [X1(t), . . . , Xn(t)]
denotes the instantaneous ages at the n nodes and UUU(t) =
[U1(t), . . . , Un(t)] denotes the timestamps marked on the
packets at the n nodes at time t. The convenience of the
SHS based age characterization follows from the presence
of a single discrete mode with trivial stochastic differential



equation (Ẋ̇ẊX(t), U̇̇U̇U(t)) = (111n,000n), where the age at each node
grows at unit rate when there is no update transfer, since the
timestamps of the node packets do not change between such
transitions. Consider a test function ψ : R2n×[0,∞)→ R that
is time-invariant, i.e., its partial derivative with respect to t is
∂ψ(XXX,UUU,t)

∂t = 0, such that we are interested in finding its long-
term expected value E[ψ] = limt→∞ E[ψ(XXX(t),UUU(t), t)].
Since the test function only depends on the continuous state
values (XXX,UUU) and is time-invariant, for simplicity, we will
drop the third input t and write ψ(XXX,UUU, t) as ψ(XXX,UUU),
which we assume to flow according to the differential equa-
tion ψ̇(XXX(t),UUU(t)) = 1. Let L correspond to the set of
directed edges (i, j), such that node i sends updates to node
j on this edge according to a Poisson process of rate λij ,
with this transition resetting the state (XXX,UUU) at time t to
φi,j(XXX,UUU, t) ∈ R2n post transition. Defining E[ψ(φi,j)] =
limt→∞ E[ψ(φi,j(XXX(t),UUU(t), t))], [27, Thm. 1] yields

0 = 1 +
∑

(i,j)∈L

λij(E[ψ(φi,j)]− E[ψ]) (1)

which is similar to derivations in [10], where the left side
becomes 0 as expectations stabilize. We will be using this
equation repeatedly by defining a series of time-invariant test
functions appropriate for our analysis. For more details, the
reader is encouraged to look at references [27] and [10].

III. AGE SCALING IN THE PRESENCE OF AN ADVERSARY

Note that packets arriving at infected node n from a node
i ∈ NR with rate λ

n−1 Poisson process are accepted (or
discarded) with probability 1 − p (or p) when the adversary
changes timestamp of incoming packet to t (or 0) to make it
appear fresh (or stale). This is equivalent to packets arriving
at node n from node i with thinned Poisson process with rate
λin = (1−p)λ

n−1 such that these packets are always accepted. The
remaining packets are always discarded and have no effect on
age dynamics of the system. Similarly, as the outgoing packets
from the infected node n are accepted at node i ∈ NR with
probability p, this is equivalent to node n sending packets with
timestamp t to node i with a thinned Poisson process of rate
λni = pλ

n−1 such that these packets are always accepted.
Therefore, based on transition (i, j) at time t, the reset map

φi,j(XXX,UUU, t) = [X ′1, . . . , X
′
n, U

′
1, . . . , U

′
n] can be described by

U ′` =



t, i = 0, j ∈ N , ` = j

max{Ui, U`}, i, j ∈ NR, ` = j

t, i = n, j ∈ NR, ` = j

t, i ∈ NR, j = n, ` = j

U`, otherwise

(2)

and

X ′` =



0, i = 0, j ∈ N , ` = j

XN({i,`}), i, j ∈ NR, ` = j

Xn, i = n, j ∈ NR, ` = j

Xi, i ∈ NR, j = n, ` = j

X`, otherwise

(3)

Here, XN(S) = Xargmaxj∈S Uj for state (XXX,UUU) and a subset
of nodes S. Since all regular nodes have statistically similar
age processes, every arbitrary set Sk of k regular nodes will
have the same expected age vSk , Sk ⊆ NR, with vS1

= v1. We
pick our first test function to be ψ(XXX,UUU) = XN(Sk), which is
modified upon transition (i, j) to ψ(φi,j(XXX,UUU, t)) = X ′N(Sk)

.
This in turn is characterized using (2) and (3) as

X ′N(Sk)
=


0, i = 0, j ∈ Sk
XN(Sk∪{i}), i ∈ NR\Sk, j ∈ Sk
Xn, i = n, j ∈ Sk
XN(Sk), otherwise

(4)

Noting that λij is λ
n when i = 0, and it is λ

n−1 when i, j ∈ NR
and considering the thinned Poisson processes related to node
n, using (1), this test function yields,

0 =1 +
kλ

n
(0− vSk) +

(n− k − 1)kλ

n− 1
(vSk+1

− vSk)

+
kpλ

n− 1
(vn − vSk) (5)

which upon rearrangment gives

vSk =
1
kλ + n−k−1

n−1 vSk+1
+ pvn

n−1
1
n + n−k−1

n−1 + p
n−1

(6)

Our second test function is simply ψ(XXX,UUU) = Xn, i.e., the
age at infected node, such that its (i, j) transition map is

X ′n =


0, i = 0, j = n

Xi, i ∈ NR, j = n

Xn, otherwise
(7)

which, upon proceeding similarly to (5) and (6), gives

vn =
1
λ + (1− p)v1
1
n + (1− p)

(8)

Our goal is to obtain an analytical expression for expected
age of a regular node vS1

= v1, by making use of (6) and (8).

A. Case 1: p = 1

In this case, the adversary blocks all incoming packets from
the regular nodes, and misleads them into accepting all packets
sent by infected node n through timestamp manipulation. Let
yk = vSk

n−k
n−1 and using 1

n−1 ≈
1
n for large n, (6) becomes

yk =
n− k

n− k + 1

(
yk+1 +

1

kλ
+

vn
n− 1

)
(9)

Starting from y1 = v1, and successively substituting for
y2, y3, . . . , yn−1, we obtain

v1 =
1

λ

n−1∑
k=1

n− k
nk

+ vn

n−1∑
k=1

n− k
n(n− 1)

(10)

=
1

λ

n−1∑
k=1

1

k
− 1

λ

n− 1

n
+

vn
n(n− 1)

n−1∑
k=1

k (11)

=O(log n) +
vn
2

(12)
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Fig. 2. MITM attack on fully connected network of n nodes.

since
∑n−1
k=1

1
k grows asymptotically as log n and n−1

n ≈ 1.
The vn in the second term can in turn be obtained by
substituting p = 1 in (8), giving vn = n

λ . Hence,

v1 = O(log n) +
n

2λ
= O(n) (13)

To put this deterioration in age scaling into perspective, re-
member that in a fully disconnected network with no gossiping
[12], expected age at each node also scales as O(n), to be
exact, nλ , a fact that will come handy later.

B. Case 2: p=0

In this case, the infected node accepts all files from the
n−1 regular nodes but does not transmit any files, even when
it possesses the latest file, thereby limiting its contribution,
positive or negative, to the system age.

Substituting p = 0 in (6) and assuming 1
n−1 ≈

1
n for large

n gives yk = 1
kλ + yk+1 which, upon solving iteratively for

k = {1, . . . , n−1}, gives v1 = 1
λ

∑n−1
k=1

1
k = O(log n). Hence,

for large n, such an adversary has negligible effect on the
network age. In addition, putting p = 0 in (8) gives

vn =
1
λ + v1
1
n + 1

≈ 1

λ
+ v1 (14)

Hence vn scales as O(log n) similar to v1, which indicates that
the degradation in age caused by adversary upon increasing
timestamps of incoming files is negligible.

C. Case 3: 0 < p < 1

In this case, the adversary partially allows node n to receive
incoming files from the gossip network. In (6), plugging p = 1
in denominator gives lower bound n−k

n−k+1

(
yk+1+ 1

kλ+ pvn
n−1

)
<

yk and plugging p = 0 in denominator gives upper bound
yk < yk+1+ 1

kλ+ pvn
n−1 , and together with techniques employed

in cases 1 and 2, we can bound v1 as

O(log n) +
pvn
2

< v1 < O(log n) + pvn (15)

Clearly how age scales at the infected node dictates the age
scaling for the regular nodes in the rest of the network.
For a fixed p < 1, choosing n � 1

1−p can result in

vn ≈
1
λ+(1−p)v1

(1−p) = O(1) + v1, which, when combined with
(15) yields O(log n) age scaling for both v1 and vn. Hence,
if the infected node is allowed to accept a small fraction of
incoming packets from the network, then a large network can
manage to curb the spread of stale files coming from the
infected node by sustaining a low age at all nodes.1

IV. MITM ATTACK ON FULLY CONNECTED NETWORK

In previous sections, the adversarial node was in direct
contact with all other nodes due to fully connected nature of
the network, and the adversary could raise the system age to
O(n) with p = 1. Here, an interesting question to ask is if the
network could do better if the adversary instead had access to
only one node. To this end, we consider the network model of
Fig. 2, where the adversary, which we will refer to as node A,
intercepts the updates to node n coming from the source. In
turn the adversary sends updates with rate λ, after changing
the timestamps of every outgoing packet to current time, only
to node n.

Clearly the expected age at the adversary, denoted by vA,
scales as O(n) since it is isolated from the gossip network
and only receives updates from the source with rate λ

n . The
two reset maps useful for our analysis are

X ′N(Sk∪{n}) =


0, i = 0, j ∈ Sk
XN(Sk+1∪{n}), i ∈ NR\Sk, j ∈ Sk ∪ {n}
XA, i = A, j = n

XN(Sk∪{n}), otherwise
(16)

and

X ′N(Sk)
=


0, i = 0, j ∈ Sk
XN(Sk+1), i ∈ NR\Sk, j ∈ Sk
XN(Sk∪{n}), i = n, j ∈ Sk
XN(Sk), otherwise

(17)

We claim vSk∪{n} ≥
vA
2 , a loose lowerbound that is trivially

verified with induction as follows. Invoking (1) regarding (16)
for k = n− 1 results in

vSn−1∪{n} =
1
λ + vA
n−1
n + 1

≥ O(1) +
vA
2
≥ vA

2
(18)

which verifies the claim for k = n− 1. Next, we assume the
claim holds for k+ 1, i.e., vSk+1∪{n} ≥

vA
2 , and verify for k.

Invoking (1) regarding (16) for k ≤ n − 2 and using 1
λ > 0

in the numerator and k
n ≤ 1 in the denominator gives

vSk∪{n} =
1
λ + (k+1)(n−1−k)

n−1 vSk+1∪{n} + vA
k
n + (k+1)(n−1−k)

n−1 + 1
(19)

1More generally, the adversary can increase timestamps of outgoing and
incoming packets with probability p and q − 1, respectively, which changes

(8) to vn =
1
λ
+(1−q)v1
1
n
+(1−q)

. Nevertheless, if q = 1, similar to Case 1, vn = n
λ

,

and since (15) remains unchanged, we get again v1 = O(n). Likewise, when
q < 1, similar to Case 3, choosing n � 1

1−q again brings down age at all
nodes to O(n). Hence, the adversary can best worsen the age to O(n) by
not allowing incoming packets to infected node.



≥
(k+1)(n−1−k)

n−1 vSk+1∪{n}
(k+1)(n−1−k)

n−1 + 2
+

vA
(k+1)(n−1−k)

n−1 + 2
(20)

≥
(k+1)(n−1−k)

n−1
vA
2

(k+1)(n−1−k)
n−1 + 2

+
2vA
2

(k+1)(n−1−k)
n−1 + 2

(21)

=
vA
2

(22)

Finally, we re-invoke (1) for (17) which results in

vSk =
1
kλ + n−k−1

n−1 vSk+1
+

vSk∪{n}
n−1

1
n + n−k−1

n−1 + 1
n−1

(23)

Let yk = vSk
n−k
n−1 , using 1

n−1 ≈
1
n for large n, (23) becomes

yk =
n− k

n− k + 1

(
yk+1 +

1

kλ
+
vSk∪n
n− 1

)
(24)

≥ n− k
n− k + 1

yk+1 +
(n− k)vSk∪{n}

(n− k + 1)(n− 1)
(25)

Starting from y1 = v1, we successively substitute for
y2, y3, . . . , yn−1 and use vSk∪{n} ≥

vA
2 to obtain

v1 ≥
1

n(n− 1)

n−1∑
k=1

(n− k)vSk∪n (26)

≥ vA
2n(n− 1)

n−1∑
k=1

(n− k) =
vA
4

(27)

Hence, v1 scales at least as O(n) for all regular nodes. This
result is far from intuitive, for it brings home the point how an
adversary, with so little an effort as sending tampered packets
to just one node, can bring down the freshness of an entire
large gossip network.

V. NUMERICAL RESULTS

We simulate a fully connected network of size n and allow
it to gossip for a total time of 1000n, choosing λ = 1.

Fig. 3 shows the expected age at a regular node and the
infected node for all three cases of p of Section III. Focusing
on the case p = 1 shown in red color, the age at the infected
node vn grows as n

λ and the age at a regular node v1 grows
as vn

2 = n
2λ , as was analytically suggested in (12) and (13).

On the other extreme, p = 0 gives logarithmic age scaling at
all nodes, with the infected node age vn just slightly above
the regular node age v1, in accordance with (14). In the third
case of p = 0.99, which allows the infected node to accept
1% of incoming gossip, we observe that the infected node age
vn initially begins to grow linearly but later starts to scale
logarithmically for larger values of n as n becomes n� 1

1−p .
These results imply that the best course of action for the
adversary should be to block all incoming traffic and actively
send out outdated timestomped packets.

Fig. 4 shows the expected age at different types of nodes
when the adversary is positioned between the source and a
node. The red line shows the lower bound vA

4 of (27), where
the age at a regular node v1 lies above this lower bound.
Adversary age vA grows as O(n) by virtue of being an isolated
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Fig. 3. Node capture attack on fully connected network of n nodes.
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Fig. 4. MITM attack on fully connected network of n nodes.

node. Finally, though (19) yields a loose lower bound of vA
2 ,

the graph shows that the age at the node that is in contact with
adversary, vn, closely follows adversary age vA.

VI. CONCLUSION

We studied the effects of timestomping attacks on the age
of gossip in a large fully connected network. We showed that
one infected node in such a network can increase the age
at all other nodes from O(log n) to O(n) through timestamp
manipulation. Further, we showed that the optimal behavior for
the adversary is to reset the timestamps of all outgoing packets
to current time thereby disguising them as current packets and
of all incoming packets to an outdated time to prevent their
acceptance at the infected node. Additionally, we showed that
if the adversary allows the infected node to accept even a
very small fraction of the incoming packets from the network,
then a large network can manage to curb the spread of stale
files coming from the infected node and pull the network age
back to O(log n). Lastly, we showed that if an infected node
contacts only a single node instead of all nodes of the network,
the system age can still be degraded to O(n).
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