
Double-Cover-Based Analysis of the
Bethe Permanent of Non-negative Matrices

Kit Shing NG
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
nks020@ie.cuhk.edu.hk

Pascal O. Vontobel
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
pascal.vontobel@ieee.org

Abstract—The permanent of a non-negative matrix appears
naturally in many information processing scenarios. Because
of the intractability of the permanent beyond small matrices,
various approximation techniques have been developed in the
past. In this paper, we study the Bethe approximation of the
permanent and add to the body of literature showing that this
approximation is very well behaved in many respects. Our main
technical tool are topological double covers of the normal factor
graph whose partition function equals the permanent of interest,
along with a transformation of these double covers.

I. INTRODUCTION

Let n be a positive integer. Recall that the permanent of a
matrix A = (ai,j) ∈ Rn×n is defined to be (see, e.g., [1])

perm(A) ,
∑
σ∈Sn

∏
i∈[n]

ai,σ(i), (1)

where Sn is the symmetric group of degree n, i.e., the group of
all the n! permutations of [n] , {1, . . . , n}. It is well known
that exactly computing the permanent is suspected to be a hard
problem in general (see, e.g., the discussion in [2]).

In this paper we focus on the particularly important special
case when A is a non-negative matrix, i.e., when the entries of
the matrix A take on non-negative values. Various approaches
have been proposed to efficiently numerically approximate the
permanent of such matrices (see, e.g., the discussion in [2]).
One of these approximations is the so-called Bethe permanent
permB(A), which is based on the Bethe approximation from
statistical physics [3] and is given as the solution of some
optimization problem derived from A.

In contrast to the original definition of permB(A), which is
given in terms of an optimization problem, one can, using the
techniques that were developed in [4], give a combinatorial
characterization of permB(A). Namely,

permB(A) = lim sup
M→∞

permB,M (A), (2)

permB,M (A) , M

√〈
perm(A↑P̃)

〉
P̃∈Φ̃M

. (3)

Here the expression under the root sign represents the (arith-
metic) average of perm(A↑P̃) over all M -covers of A, M≥1.
(See the upcoming sections for the technical details.)

The work described in this paper was partially supported by grants from the
Research Grants Council of the Hong Kong Special Administrative Region,
China (Project Nos. CUHK 14209317 and CUHK 14208319).

Note that we can write

perm(A)

permB(A)︸ ︷︷ ︸
À

=
perm(A)

permB,2(A)︸ ︷︷ ︸
Á

·
permB,2(A)

permB(A)︸ ︷︷ ︸
Â

. (4)

Numerically computing the ratios in (4) for various choices
of matrices A shows that a significant contribution to the
ratio À comes from the ratio Á. Therefore, understanding the
ratio Á can give useful insights to understanding the ratio À.
The central topic of this paper is to make this observation
mathematically more precise.

Let A be an arbitrary non-negative matrix of size n × n.
The key technical result of this paper is that

permB,2(A)

perm(A)
=

√ ∑
σ1,σ2∈Sn

p(σ1) · p(σ2) · 2−c(σ1,σ2), (5)

where p(σ) ,
(∏

i∈[n] ai,σ(i)

)
/ perm(A) is the probability

mass function on Sn induced by A and where c(σ1, σ2) is
the number of cycles of length larger than one in the cycle
notation expression of the permutation σ1 ◦ σ−1

2 .
This result is then leveraged to make the following ana-

lytical statements related to (4):
• If A = 1n×n, i.e., the all-one matrix of size n×n, then1

perm(A)

permB(A)
∼
√

2πn

e
,

perm(A)

permB,2(A)
∼ 4

√
πn

e
. (6)

Observe that, up to a factor
√

2, the ratios Á and Â in (4)
are the same for this matrix!

• If A is a random matrix of size n× n whose entries are
i.i.d. according to some distribution with support over the
non-negative reals, then

γB,2(n) ,

√
E
[
perm(A)2

]√
E
[
permB,2(A)2

] ∼ γ′B,2(n) , 4

√
πn

e
. (7)

Interestingly, although the numerator and the denominator
on the left-hand side of the above expression both depend
on the chosen distribution, the right-hand side of the
above expression is independent of this distribution!

1The notation a(n) ∼ b(n) stands for lim
n→∞

a(n)
b(n)

= 1.
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Fig. 1: Simulation results discussed in Section I.

Empirically, it actually appears that much stronger results
than in (7) can potentially be proven. Namely, the plot in Fig. 1
shows the following:
• For n = 5, we randomly generated 1000 matrices A

of size n × n, where the entries are i.i.d. according
to the uniform distribution in the interval [0, 1]. For
each matrix A, we plotted a red circle at the location(
perm(A),permB,2(A)

)
and a cyan triangle at the lo-

cation
(
perm(A),permB(A)

)
.

• Let γB,2(n) be the quantity defined in (7). The solid
black line going through the cluster of red circles is
the location of pairs

(
perm(A),permB,2(A)

)
for which

perm(A)/ permB,2(A) = γB,2(n).
• Let γ′B,2(n) be the quantity defined in (7). The dashed

black line going through the cluster of red circles is
the location of pairs

(
perm(A),permB,2(A)

)
for which

perm(A)/ permB,2(A) = γ′B,2(n).
• The solid and dashed black lines going through the cluster

of cyan triangles are similar to the solid and dashed red
lines going through the cluster of red circles, respectively.
They are based on our conjecture that the value of the
ratio perm(A)/permB(A) follows closely the value of
the ratio perm(1n×n)/ permB(1n×n).

Motivated by Fig. 1, we leave it to future research to
make stronger analytical statements than in (7) w.r.t. the
distribution of the ratio perm(A)/ permB,2(A), about the
distribution of the ratio perm(A)/ permB(A), etc. Such re-
sults will contribute toward rigorously justifying the empirical
observation of the usefulness of the Bethe approximation
of the permanent (see, e.g., [5]–[12]). Some of these pa-
pers replace the (usually intractable) optimization problem
arg maxA∈A perm(A) by the more tractable optimization
problem arg maxA∈A permB(A), where A is a set of matrices
of interest. For this approximation to work well, the value of
the ratio perm(A)/ permB(A) is irrelevant as long as it is
nearly the same for all matrices A ∈ A.

It is worthwhile to mention that various results for the ratio
perm(A)/ permB(A) have been developed in the past. In
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Fig. 2: NFGs used in Sections II and III. (Here, n = 5.)

particular, lower and upper bounds on this ratio can be found
in [13]–[16] for arbitrary non-negative matrices A of size n×n
and in [17] for non-negative matrices A of size n×n and of a
given non-negative matrix rank. While rather non-trivial, these
results are not strong enough / not suitable to derive the results
mentioned above.

This paper is structured as follows: in Section II we discuss
a family of normal factor graphs whose partition function
equals the permanent of a non-negative matrix A. Afterwards,
we apply a technique from [18] for analyzing permB,2(A): in
Section III for general non-negative matrices, in Section IV
for all-one matrices, and in Section V for random non-
negative matrices with i.i.d. entries. We conclude the paper
in Section VI. Finally, we have collected many of the proofs
in the appendices.

The main tool of this paper are topological graph covers.
Note that graph covers have also been used in other contexts
toward understanding and quantifying the Bethe approxima-
tion of various quantities of interest. For example, graph covers
were used to analyze so-called log-supermodular graphical
models [18], [19] and weighted homomorphism counting
problems over bipartite graphs [20].

II. NORMAL FACTOR GRAPH REPRESENTATION

We assume that the reader is familiar with the basics of
factor graphs [21]–[23], in particular with a variant of factor
graphs called normal factor graphs (NFGs). Recall that an
NFG is a graph consisting of vertices (called function nodes)
and edges, where so-called local functions are associated with
vertices and where variables are associated with edges. The
local functions are such that their arguments are only variables
associated with edges incident on the corresponding factor
node. The global function is then defined to be the product
of the local functions, and the partition function is defined to
be the sum of the global function over all possible assignments
to the variables associated with the edges.

Let A = (ai,j) be an arbitrary non-negative matrix of size
n× n. There are various ways of defining an NFG such that
its partition function equals perm(A). In this paper, we use
the NFG N(A) in Fig. 2 (left), which is the same as in [2]:
• The NFG N(A) is based on a complete bipartite graph

with two times n vertices.
• For every i, j ∈ [n], let the variable associated with the

edge connecting fL,i with fR,j be called xi,j and take
value in the set X , {0, 1}.



• For every i ∈ [n], let

fL,i(xi,1, . . . , xi,n) ,


√
ai,j

∃j ∈ [n] s.t. xi,j = 1;
xi,j′ = 0, ∀j′ ∈ [n] \ {j}

0 (otherwise)

For every j ∈ [n], let

fR,j(x1,j , . . . , xn,j) ,


√
ai,j

∃i ∈ [n] s.t. xi,j = 1;
xi′,j = 0, ∀i′ ∈ [n] \ {i}

0 (otherwise)

• The global function is defined to be

g(x1,1, x1,2, . . . , xn,n) ,

∏
i∈[n]

fL,i(xi,1, . . . , xi,n)


·

∏
j∈[n]

fR,j(x1,j , . . . , xn,j)

 .

• The partition function (or partition sum) is defined to be

Z(N) ,
∑

x1,1,x1,2,...,xn,n

g(x1,1, x1,2, . . . , xn,n).

One can verify the following:
• g(x1,1, x1,2, . . . , xn,n) =

∏
i∈[n] ai,σ(i) if there exists a

permutation σ ∈ Sn such that for all i, j ∈ [n] either
xi,j = 1 if j = σ(i) or xi,j = 0 otherwise.

• g(x1,1, x1,2, . . . , xn,n) = 0 if there exists no such per-
mutation σ ∈ Sn.

• Z(N) = perm(A).
For NFGs whose local functions take on non-negative

values, the paper [3] introduced the Bethe approximation
ZB(N) of the partition function Z(N) as the solution of some
optimization problem derived from N. In [4] it was then shown
that ZB(N) has the following combinatorial characterization:

ZB(N) = lim sup
M→∞

ZB,M (N), (8)

ZB,M (N) , M

√〈
Z(Ñ)

〉
Ñ∈ÑM

, (9)

where the expression under the root sign represents the (arith-
metic) average of Z(Ñ) over all M -covers Ñ of N, M ≥ 1.
For the details of the definition of (topological) graph covers,
we refer to [4].

Interestingly, in the context of the NFG N(A), the expres-
sions in (9) turns into the expression in (3), where for positive
integers M we have defined

A↑P̃ ,

a1,1P̃
(1,1) · · · a1,nP̃

(1,n)

...
...

an,1P̃
(n,1) · · · an,nP̃

(n,n)

 ,

Φ̃M ,
{
P̃ =

{
P̃(i,j)

}
i∈[n],j∈[n]

∣∣∣ P̃(i,j) ∈ PM×M
}
,

PM×M , (set of permutation matrices of size M ×M ).

Note that the matrix A↑P̃ has size (Mn)× (Mn). (For more
details, see the discussion in [4, Section VI].)

In the rest of this paper, we will analyze double covers of
N(A), i.e., graph covers of N(A) for M = 2.

III. DOUBLE-COVER-BASED ANALYSIS: GENERAL CASE

The paper [18] introduced a technique for analyzing double
covers of an arbitrary NFG N. We refer the interested reader
to [18] for all the technical details. Here we just state the main
result when applied to the NFG N(A).

Namely, using [18, Theorem 4], one obtains the following
result. (Note that on the right-hand side of (10) only a single
NFG appears, which is in contrast to the right-hand side of (9)
that averages over multiple NFGs.)

Proposition 1. Let A be a non-negative matrix of size n×n.
It holds that

permB,2(A) =

√
Z
(
N̂(A)

)
, (10)

where the NFG N̂(A) is defined as follows (see Fig. 2 (right)):
• The NFG N̂(A) is based on a complete bipartite graph

with two times n vertices, i.e., the same graph underlying
N(A).

• For every i, j ∈ [n], let the variable associated with the
edge connecting f̂L,i with f̂R,j be called x̂i,j and take
value in the set

X̂ , X × X =
{

(0, 0), (0, 1), (1, 0), (1, 1)
}
.

• For every i ∈ [n], let f̂L,i(x̂i,1, . . . , x̂i,n) ,

ai,j
∃j ∈ [n] s.t. x̂i,j = (1, 1);

x̂i,j′ = (0, 0), ∀j′ ∈ [n] \ {j}

√
ai,jai,j′

∃j, j′ ∈ [n], j 6= j′, s.t.
x̂i,j = (0, 1), x̂i,j′ = (0, 1);

x̂i,j′′ = (0, 0), ∀j′′ ∈ [n] \ {j, j′}

0 (otherwise)

• For every j ∈ [n], let f̂R,j(x̂1,j , . . . , x̂n,j) ,

ai,j
∃i ∈ [n] s.t. x̂i,j = (1, 1);
x̂i′,j = (0, 0), ∀i′ ∈ [n] \ {i}

√
ai,jai′,j

∃i, i′ ∈ [n], i 6= i′, s.t.
x̂i,j = (0, 1), x̂i′,j = (0, 1);

x̂i′′,j = (0, 0), ∀i′′ ∈ [n] \ {i, i′}

0 (otherwise)

• The global function is defined to be

ĝ(x̂1,1, x̂1,2, . . . , x̂n,n) ,

∏
i∈[n]

f̂L,i(x̂i,1, . . . , x̂i,n)


·

∏
j∈[n]

f̂R,j(x̂1,j , . . . , x̂n,j)

 .



• The partition function (or partition sum) is defined to be

Z(N̂) ,
∑

x̂1,1,x̂1,2,...,x̂n,n

ĝ(x̂1,1, x̂1,2, . . . , x̂n,n).

Proof. See Appendix A

Using a mapping from Sn × Sn to the set of valid
configurations of Z(N̂), i.e., the set of configurations
(x̂1,1, x̂1,2, . . . , x̂n,n) that yield ĝ(x̂1,1, x̂1,2, . . . , x̂n,n) 6= 0,
allows us to reformulate Proposition 1 as follows.

Proposition 2. Let A be a non-negative matrix of size n×n.
It holds that

permB,2(A)

perm(A)
=

√ ∑
σ1,σ2∈Sn

p(σ1) · p(σ2) · 2−c(σ1,σ2), (11)

where

p(σ) ,

∏
i∈[n]

ai,σ(i)

perm(A)
(12)

is the probability mass function on Sn induced by A and where
c(σ1, σ2) is the number of cycles of length larger than one in
the cycle notation expression of the permutation σ1 ◦ σ−1

2 , or,
equivalently, where c(σ1, σ2) is the number of orbits of length
larger than one of the permutation σ1 ◦ σ−1

2 .

Proof. See Appendix B.

In the following, we evaluate the expression in Proposition 2
for different setups.

IV. DOUBLE-COVER-BASED ANALYSIS:
ALL-ONE MATRIX

We have the following result for the all-one matrix of size
n×n. (Note that (13) was already proven in [4, Lemma 48].)

Theorem 1. Let A , 1n×n, i.e., the all-one matrix of size
n× n. It holds that

perm(A)

permB(A)
∼
√

2πn

e
, (13)

perm(A)

permB,2(A)
∼ 4

√
πn

e
, (14)

permB,2(A)

permB(A)
∼
√

2 · 4

√
πn

e
. (15)

We see that understanding the ratio perm(A)
permB,2(A) goes a long

way toward understanding the ratio perm(A)
permB(A) .

Proof. A sketch of the proof of this theorem is given below.
For all the details of the proof, see Appendix C.

Let us sketch the proof of Theorem 1. First, thanks to the
special structure of the all-one matrix, Proposition 2 simplifies
as follows.

Corollary 1 (of Proposition 2). Let A = 1n×n. It holds that

permB,2(A)

perm(A)
=

√
1

n!

∑
σ∈Sn

2−c(σ), (16)

where c(σ) is the number of cycles of length larger than
one in the cycle notation expression of the permutation σ,
or, equivalently, where c(σ) is the number of orbits of length
larger than one of the permutation σ.

Proof. This follows from p(σ) = 1/n! for all σ ∈ Sn and
simplifying the summation.

Using results for the cycle index of the symmetric group
(see, e.g., [24], [25]), one can analyze the expression

Zn ,
1

n!

∑
σ∈Sn

2−c(σ) =
1

|Sn|
∑
σ∈Sn

2−c(σ)

for n ∈ N. Indeed, one obtains the following results.

• Let Z0 , 1. Then for n ∈ N it holds that

Zn =
1

n
·

(
Zn−1 +

1

2
·
n∑
`=2

Zn−`

)
.

• Analyzing the expression n ·Zn− (n−1) ·Zn−1 leads to
the following simplified expression for n ≥ 2:

Zn = Zn−1 −
Zn−2

2n
.

This expression is convenient for numerically evaluating
Zn, however, it does not appear that there are closed-form
expressions for Zn.

• Nevertheless, using mathematical induction, one can ob-
tain the following lower and upper bounds which hold
for all positive integers n:

1√
2
· 1√

n
≤ Zn ≤

3

2
√

2
· 1√

n
.

• In order to obtain an even more precise characterization
of Zn, one can use

Zn =
1

n!
·Bn

(
0! · 1, 1! · 1

2
, . . . , (n−1)! · 1

2

)
,

where Bn denotes the n-th complete exponential Bell
polynomial (see, e.g., [26]). Then, carefully bounding the
above expression, one obtains

Zn ∼
√

e

πn
.

This expression, via Corollary 1, immediately yields (14).
• Finally, Eq. 15 is then obtained by combining (13)

and (14).



V. DOUBLE-COVER-BASED ANALYSIS: I.I.D. MATRIX

In this section we consider matrices satisfying the following
assumption.

Assumption 1. Let A be a random matrix of size n × n
whose entries are i.i.d. according to some distribution with
support over the non-negative reals, first moment µ1, second
moment µ2, and, consequently, variance µ2 − µ2

1.

Theorem 2. Given Assumption 1, it holds that√
E[perm(A)2]√

E
[
permB,2(A)2

] ∼ 4

√
πn

e
. (17)

Interestingly, although E
[
permB,2(A)2

]
and E

[
perm(A)2

]
both depend on the chosen distribution (see the calculations
below), the right-hand side of (17) is independent of this
distribution!

Proof. A sketch of the proof of this theorem is given below.
For all the details of the proof, see Appendix D.

Let us sketch the proof of Theorem 2. We start by evaluating
E
[
permB,2(A)2

]
. From Proposition 2 we obtain the following

corollary.

Corollary 2 (of Proposition 2). Given Assumption 1, it holds
that

E
[
permB,2(A)2

]
= n! ·

∑
σ∈S

µ
c1(σ)
2 ·

∏
`≥2

µ
2·`·c`(σ)
1

 · 2−c(σ)

where for ` ≥ 1 we define c`(σ) to be the number of cycles of
length ` in the cycle notation expression of the permutation σ.
Note that

∑
`≥1 ` · c` = n and

∑
`≥2 c`(σ) = c(σ).

Proof. From Proposition 2 it follows that

E
[
permB,2(A)2

]
=
∑

σ1,σ2∈Sn

E

 ∏
i1∈[n]

ai1,σ1(i1)

·
 ∏
i2∈[n]

ai2,σ2(i2)

·2−c(σ1,σ2)

=
∑

σ1,σ2∈Sn

µ
c1(σ1,σ2)
2 ·

∏
`≥2

µ
2·`·c`(σ1,σ2)
1

 · 2−c(σ1,σ2)

= n! ·
∑
σ∈S

µ
c1(σ)
2 ·

∏
`≥2

µ
2·`·c`(σ)
1

 · 2−c(σ),

where for ` ≥ 1 we define c`(σ1, σ2) to be the number of
cycles of length ` in the cycle notation expression of the
permutation σ1 ◦ σ−1

2 .

Using results for the cycle index of the symmetric group,
one can analyze the expression

Zn ,
1

n!

∑
σ∈Sn

µ
c1(σ)
2 ·

∏
`≥2

µ
2·`·c`(σ)
1

 · 2−c(σ)

=
1

|Sn|
∑
σ∈Sn

µ
c1(σ)
2 ·

∏
`≥2

µ
2·`·c`(σ)
1

 · 2−c(σ),

for positive integers n. In order to evaluate Zn, one can use

Zn =
1

n!
·Bn

(
0! · µ2, 1! · 1

2
(µ2

1)2, . . . , (n−1)! · 1

2
(µ2

1)n
)
,

where Bn denotes the n-th complete exponential Bell poly-
nomial. Then, carefully bounding the above expression, one
obtains

Zn ∼ µ2n
1 · e(µ2/µ

2
1)−1 ·

√
e

πn
,

The combination of the above results yields

E
[
permB,2(A)2

]
∼ (n!)2 · µ2n

1 · e(µ2/µ
2
1)−1 ·

√
e

πn
.

Turning our attention now to E
[
perm(A)2

]
, calculations

similar to the above calculations yield

E
[
perm(A)2

]
= n! ·

∑
σ∈S

µ
c1(σ)
2 ·

∏
`≥2

(µ2
1)`c`(σ)


= Ψn(µ2, µ

2
1, 1)

∼ (n!)2 · µ2n
1 · e(µ2/µ

2
1)−1.

Finally, combining the above results, we get (17).

VI. CONCLUSION

We conclude this paper with a few remarks:
• In this paper we have studied the ratios perm(A)

permB(A) and
perm(A)

permB,2(A) . While it is more desirable to characterize the
former, the latter seems to be more tractable. In particular,
the latter can be used to obtain qualitative and quantitative
insights into the former. We leave it to future research to
strengthen the results that are presented in this paper w.r.t.
these ratios.

• For the all-one matrices studied in Sections IV, some
further investigations show that the summation in (5)
is dominated by permutations σ1, σ2 ∈ Sn for which
c(σ1, σ2) = Θ

(
ln(n)

)
, ultimately leading to the result

perm(A)
permB,2(A) = Θ( 4

√
n).

We expect a similar behavior for the matrices of the setup
in Section V. More precisely, we conjecture that with high
probability the matrix A is such that the summation in (5)
is dominated by permutations σ1, σ2 ∈ Sn for which
c(σ1, σ2) = Θ

(
ln(n)

)
.

• The proofs in Appendices C and D can be generalized
and unified. For details, see Appendix E.



APPENDIX A
PROOF OF PROPOSITION 1

Proposition 1 is obtained by applying [18, Theorem 4] to
N(A). (Because the following derivations rely heavily on the
technique presented in [18], the reader is advised to first read
that paper.)

Recall the definition of X , {0, 1} in Section II and the
definition of X̂ , X ×X =

{
(0, 0), (0, 1), (1, 0), (1, 1)

}
in

Section III. In this appendix, we will also use the set

X̃ , X × X =
{

(0, 0), (0, 1), (1, 0), (1, 1)
}
.

For all these sets, their entries are considered to be ordered as
shown above. Moreover, if M is some matrix, then MT is its
transpose. If M1 and M2 are two matrices of arbitrary size,
then M1 ⊗M2 is the Kronecker product of M1 and M2.

We start by recalling some notations from [18].

• Let A , {a1, a2, . . . , a|A|} and B , {b1, b2, . . . , b|B|}
be some finite sets whose entries are considered to be
ordered as shown here. We associate the following matrix
of size |A| × |B| with a function f : A× B → R:

Tf ,


f(a1, b1) f(a1, b2), · · · f(a1, b|B|)
f(a2, b1) f(a2, b2), · · · f(a2, b|B|)

...
...

. . .
...

f(a|A|, b1) f(a|A|, b2) · · · f(a|A|, b|B|)

 .

Similarly, if A, B, and C are some finite sets, then we
associate an array Tf of size |A| × |B| × |C| with a
function f : A× B × C → R, etc.

• The function2

Φ : X̃ × X̂ → R

is defined as in [18, Section III]. Namely, Φ is such that

TΦ ,


1 0 0 0

0 1/
√

2 1/
√

2 0

0 1/
√

2 −1/
√

2 0
0 0 0 1

 .

Note that TT
Φ = TΦ and T−1

Φ = TΦ.
• As in [18, Section III], we define the matrices

Ẽnocross ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

Ẽcross ,


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

2Note that, although Φ (which is introduced here) and Φ̃M (which appears
in Sections I and II) are both used to describe graph covers, they are not
directly related.

whose rows and columns are labeled by the elements of
X̃ . Based on these matrices, we define the matrices

Ênocross , TT
Φ · Ẽnocross ·TΦ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

Êcross , TT
Φ · Ẽcross ·TΦ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ,

and

TÊe
,

1

2
· Ênocross +

1

2
· Êcross =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 .

whose rows and columns are labeled by the elements
of X̂ .

In order to apply the technique from [18], we need, in a
first step, to compute the functions f̃L,i and f̂L,i derived from
fL,i, i ∈ [n], and the functions f̃R,j and f̂R,j derived from
fR,j , j ∈ [n]. Here we will only find f̃L,i and f̂L,i, i ∈ [n],
because f̃R,j and f̂R,j , j ∈ [n], are obtained in an analogous
manner.

Fix some positive integer n and some i ∈ [n]. According
to [18], f̃L,i and f̂L,i are defined as, respectively,

f̃L,i : X̃n → R
(x̃i,1, . . . , x̃i,n) 7→ f(xi,1, . . . , xi,n) · f(x′i,1, . . . , x

′
i,n),

f̂L,i : X̂n → R

(x̂i,1, . . . , x̂i,n) 7→
∑

x̃1,...,x̃n∈X̃

f̃L,i(x̃i,1, . . . , x̃i,n)

·
n∏
j=1

Φ(x̃i,j , x̂i,j),

where we have used x̃i,j , (xi,j , x
′
i,j) ∈ X̃ , j ∈ [n], in the

definition of f̃L,i.
In the following, we want to find the explicit expression for

f̂L,i. However, before tackling the case of general n, we will
first consider the cases n = 2 and n = 3.

A. Function f̂L,i: case n = 2

Let n = 2 and fix some i ∈ [n]. The matrix associated with
the function fL,i turns out to be

TfL,i ,

(
0

√
ai,2√

ai,1 0

)
.



Reusing some of the calculations in [18, Section IV], the
matrices associated with f̃L,i and f̂L,i are, respectively,

Tf̃L,i
,TfL,i ⊗TfL,i =

 0 0 0 ai,2

0 0
√
ai,2ai,1 0

0
√
ai,1ai,2 0 0

ai,1 0 0 0

,
Tf̂L,i

,TΦ ·Tf̃L,i
·TΦ =

 0 0 0 ai,1

0
√
ai,1ai,2 0 0

0 0 −√ai,1ai,2 0

ai,2 0 0 0

,
whose rows and columns are labeled by the elements of X̂ .

Because all the entries of TÊe
in row (1, 0) and all entries

of TÊe
in column (1, 0) are equal to zero, it turns out that

Z
(
N̂(A)

)
is unchanged if the function f̂L,i is replaced by the

function f̂L,i such that

Tf̂L,i
=


0 0 0 ai,1

0
√
ai,1ai,2 0 0

0 0 0 0

ai,2 0 0 0

 .

The reader can verify that this matches the function f̂L,i stated
in Proposition 1 for the case n = 2.

B. Function f̂L,i: case n = 3

Consider now the case n = 3 and fix some i ∈ [n]. (Note
that in the following we do not show the arrays associated
with fL,i and f̃L,i and directly show the array associated with
f̂L,i.)

Reusing some of the calculations in [18, Section IV], the
array Tf̂L,i

of size 4× 4× 4 associated with f̂L,i is3


0 0 0 ai,2

0
√
ai,1ai,2 0 0

0 0 −√ai,1ai,2 0

ai,1 0 0 0

,


0

√
ai,2ai,3 0 0

√
ai,1ai,3 0 0 0

0 0 0 0

0 0 0 0

,


0 0 −√ai,2ai,3 0

0 0 0 0
−√ai,1ai,3 0 0 0

0 0 0 0

,


ai,3 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

,

where all three dimensions are labeled by the elements of X̂ .
Because all the entries of TÊe

in row (1, 0) and all entries
of TÊe

in column (1, 0) are equal to zero, it turns out that

3Note that there were some typos in the paragraph before Lemma 6 in [18].
Namely, the second occurrence of det(Tf |a1=0) should be det(Tf |a2=0)
and the third occurrence of det(Tf |a1=0) should be det(Tf |a2=1). More-
over, the last term in the expression for f̂(0̂, 0̂, 0̂) should be t001t110 instead
of t000t110.

Z
(
N̂(A)

)
is unchanged if the function f̂L,i is replaced by

the function f̂L,i such that the array Tf̂L,i
of size 4 × 4 × 4

associated with f̂L,i is
0 0 0 ai,2

0
√
ai,1ai,2 0 0

0 0 0 0

ai,1 0 0 0

,


0

√
ai,2ai,3 0 0

√
ai,1ai,3 0 0 0

0 0 0 0

0 0 0 0

,


0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

,


ai,3 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

,

The reader can verify that this matches the function f̂L,i stated
in Proposition 1 for the case n = 3.

C. Function f̂L,i: general n

We now consider an arbitrary n ∈ N and fix some i ∈ [n].
The following characterization of the function f̃L,i follows

immediately from the properties of the function fL,i. (Recall
the definition of fL,i in Section II.)
• If there exists a j ∈ [n] s.t. x̃i,j = (1, 1) and x̃i,j′ = (0, 0)

for all j′ ∈ [n] \ {j}, then

f̃L,i(x̃i,1, . . . , x̃i,n) =
√
ai,j ·

√
ai,j = ai,j . (18)

• If there exist j, j′ ∈ [n], j 6= j′, s.t. x̃i,j = (0, 1), x̃i,j′ =
(1, 0) and x̃i,j′′ = (0, 0) for all j′′ ∈ [n] \ {j, j′}, then

f̃L,i(x̃i,1, . . . , x̃i,n) =
√
ai,j · ai,j′ . (19)

• Otherwise,

f̃L,i(x̃i,1, . . . , x̃i,n) = 0. (20)

Based on this, the function f̂L,i can be characterized as
follows.
• If there exists a j ∈ [n] s.t. x̂i,j = (1, 1) and x̂i,j′ = (0, 0)

for all j′ ∈ [n] \ {j}, then

f̂L,i(x̂i,1, . . . , x̂i,n) = ai,j .

This follows from (18) and

Φ(x̃i,j , x̂i,j) =

{
1 if x̃i,j = (1, 1)

0 otherwise
,

Φ(x̃i,j′ , x̂i,j′) =

{
1 if x̃i,j′ = (0, 0)

0 otherwise
.

• If there exist j, j′ ∈ [n], j 6= j′, s.t. x̂i,j = (0, 1), x̂i,j′ =
(0, 1) and x̂i,j′′ = (0, 0) for all j′′ ∈ [n] \ {j, j′}, then

f̂L,i(x̂i,1, . . . , x̂i,n) =
√
ai,j · ai,j′ .



This follows from (19) and

Φ(x̃i,j , x̂i,j) =

{
1√
2

if x̃i,j ∈
{

(0, 1), (1, 0)
}

0 otherwise
,

Φ(x̃i,j′ , x̂i,j′) =

{
1√
2

if x̃i,j′ ∈
{

(0, 1), (1, 0)
}

0 otherwise
,

Φ(x̃i,j′′ , x̂i,j′′) =

{
1 if x̃i,j′′ = (0, 0)

0 otherwise
.

• If there exist j, j′ ∈ [n], j 6= j′, s.t. x̂i,j = (1, 0), x̂i,j′ =
(1, 0) and x̂i,j′′ = (0, 0) for all j′′ ∈ [n] \ {j, j′}, then

f̂L,i(x̂i,1, . . . , x̂i,n) = −√ai,j · ai,j′ .

This follows from (19) and

Φ(x̃i,j , x̂i,j) =


1√
2

if x̃i,j = (0, 1)

− 1√
2

if x̃i,j = (1, 0)

0 otherwise

,

Φ(x̃i,j′ , x̂i,j′) =


1√
2

if x̃i,j′ = (0, 1)

− 1√
2

if x̃i,j′ = (1, 0)

0 otherwise

,

Φ(x̃i,j′′ , x̂i,j′′) =

{
1 if x̃i,j′′ = (0, 0)

0 otherwise
.

• Otherwise,

f̂L,i(x̂i,1, . . . , x̂i,n) = 0.

This follows from (20) and/or from the exact cancellation
of terms.

Finally, we can make a similar observation as in Sec-
tions A-A and A-B. Namely, because all the entries of TÊe

in
row (1, 0) and all entries of TÊe

in column (1, 0) are equal to
zero, it turns out that Z

(
N̂(A)

)
is unchanged if the function

f̂L,i is replaced by the function f̂L,i where f̂L,i(x̂i,1, . . . , x̂i,n)
is set to 0 if there exists a j ∈ [n] such that x̂i,j = (1, 0). We
then obtain
• If there exists a j ∈ [n] s.t. x̂i,j = (1, 1) and x̂i,j′ = (0, 0)

for all j′ ∈ [n] \ {j}, then

f̂L,i(x̂i,1, . . . , x̂i,n) = ai,j .

• If there exist j, j′ ∈ [n], j 6= j′, s.t. x̂i,j = (0, 1), x̂i,j′ =
(0, 1) and x̂i,j′′ = (0, 0) for all j′′ ∈ [n] \ {j, j′}, then

f̂L,i(x̂i,1, . . . , x̂i,n) =
√
ai,j · ai,j′ .

• Otherwise,

f̂L,i(x̂i,1, . . . , x̂i,n) = 0.

The reader can verify that this matches the function f̂L,i stated
in Proposition 1 for arbitrary n ∈ N.

As mentioned earlier, here we only showed how to find f̃L,i

and f̂L,i, i ∈ [n], because f̃R,j and f̂R,j , j ∈ [n], are obtained
in an analogous manner.

APPENDIX B
PROOF OF PROPOSITION 2

In this appendix, we want to prove that

permB,2(A)

perm(A)
=

√ ∑
σ1,σ2∈Sn

p(σ1) · p(σ2) · 2−c(σ1,σ2),

which can be rewritten as

permB,2(A)2

=
∑

σ1,σ2∈Sn

2−c(σ1,σ2) ·

∏
i∈[n]

ai,σ1(i)

 ·
∏
i∈[n]

ai,σ2(i)

 .

However, because of Proposition 1, this is equivalent to
proving

Z(N̂(A)
)

=
∑

σ1,σ2∈Sn

2−c(σ1,σ2) ·

∏
i∈[n]

ai,σ1(i)

·
∏
i∈[n]

ai,σ2(i)

.
(21)

In order to prove (21), we need to better understand the valid
configurations of N̂(A) and their global function value.

Consider the NFG N̂(A) as specified in Proposition 1.
Recall that its global function is called ĝ(x̂), where x̂ ,
(x̂1,1, x̂1,2, . . . , x̂n,n) ∈ X̂ (n2) is an arbitrary configuration of
N̂(A). Let C

(
N̂(A)

)
be the set of all valid configurations of

N̂(A), i.e., the set of all x̂ ∈ X̂ (n2) such that ĝ(x̂) 6= 0.4

Consider Fig. 3, which is a reproduction of Fig. 2 (right).
Let x̂ ∈ C

(
N̂(A)

)
be a valid configuration. From Proposition 1

it follows that every vertex of N̂(A) is either
• the endpoint of exactly a (1, 1)-edge, where a (1, 1)-edge

is defined to be an edge such that x̂i,j = (1, 1), or
• a vertex of exactly one (0, 1)-cycle, where a (0, 1)-cycle

is defined to be a simple cycle such that x̂i,j = (0, 1) for
all its edges.

Example 1. The NFG in Fig. 3 shows a possible valid
configuration of N̂(A) for the case n = 5. Here, an edge
is colored in blue if x̂i,j = (1, 1), it is colored in red if
x̂i,j = (0, 1), and it is colored in black if x̂i,j = (0, 0). (Note
that x̂i,j = (1, 0) cannot occur in a valid configuration.)

Definition 1. Consider the mapping

h : Sn × Sn → C
(
N̂(A)

)
(σ1, σ2) 7→ x̂,

where x̂i,j , i, j ∈ [n], is defined as follows:

x̂i,j ,


(1, 1) if j = σ1(i) = σ2(i)

(0, 1) if j = σ1(i) 6= σ2(i)

(0, 1) if j = σ2(i) 6= σ1(i)

(0, 0) otherwise

.

4In the following, we assume that all entries of A are positive. The case
where some entries of A are zero can be handled by suitable adaptations, or
by considering a sequence of matrices with positive entries where some entries
converge to 0 in the limit and using continuity of the relevant expressions.
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Fig. 3: NFG used in Appendix B. The two (1, 1)-edges are
colored in blue and the edges of the (0, 1)-cycle are colored
in red.

f̂L,5 f̂R,5

f̂R,4
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f̂R,1

f̂L,4

f̂L,3

f̂L,2

f̂L,1

Fig. 4: NFGs used in Appendix B. Visualization of permuta-
tions σ ∈ Sn. For i, j ∈ [n], the edge connecting f̂L,i to f̂R,j

is colored in green if and only if σ(i) = j. (Here, n = 5.)

(It can be readily verified that, indeed, x̂ ∈ C
(
N̂(A)

)
.)

Example 2. One can verify that if σ1, σ2 ∈ Sn are such that

σ1(1) = 1, σ1(2) = 3, σ1(3) = 2, σ1(4) = 5, σ1(5) = 4,

σ2(1) = 1, σ2(2) = 4, σ2(3) = 2, σ2(4) = 3, σ2(5) = 5,

then h(σ1, σ2) equals the valid configuration that is high-
lighted in the NFG in Fig. 3. Note that σ1 and σ2 are visualized
in Fig. 4 (left) and Fig. 4 (right), respectively.

Example 3. Similarly, one can verify that if σ1, σ2 ∈ Sn are
such that

σ1(1) = 1, σ1(2) = 4, σ1(3) = 2, σ1(4) = 3, σ1(5) = 5,

σ2(1) = 1, σ2(2) = 3, σ2(3) = 2, σ2(4) = 5, σ2(5) = 4,

then h(σ1, σ2) equals the valid configuration that is high-
lighted in the NFG in Fig. 3. Note that σ1 and σ2 are visualized
in Fig. 4 (right) and Fig. 4 (left), respectively.

As can be seen from Examples 2 and 3, a (0, 1)-cycle in the
valid configuration h(σ1, σ2) arises from alternatingly picking
an edge selected by σ1 and an edge selected by σ2.

Toward proving the upcoming Lemmas 1 and 2, we consider
the following examples.

Example 4. Consider again the selection of σ1, σ2 ∈ Sn in
Example 2. Let σ , σ1 ◦ σ−1

2 , i.e., the permutation obtained
by first applying the inverse of σ2 and then σ1. Then

σ(1) = 1, σ(2) = 2, σ(3) = 5, σ(4) = 3, σ(5) = 4,

which in cycle notation is

σ = (1)(2)(354).

Note that
• the cycle (1) of σ of length 1 corresponds to the blue-

colored edge ending in f̂R,1 in Fig. 3,
• the cycle (2) of σ of length 1 corresponds to the blue-

colored edge ending in f̂R,2 in Fig. 3,
• the cycle (354) of σ of length 3 corresponds to the blue-

colored (0, 1)-cycle in Fig. 3 of length 2 · 3 = 6 going
through the right-hand side vertices f̂R,3, f̂R,5, f̂R,4.

Example 5. Consider again the selection of σ1, σ2 ∈ Sn in
Example 3. Let σ , σ1 ◦ σ−1

2 . Then

σ(1) = 1, σ(2) = 2, σ(3) = 4, σ(4) = 5, σ(5) = 3,

which in cycle notation is

σ = (1)(2)(345).

Note that
• the cycle (1) of σ of length 1 corresponds to the blue-

colored edge ending in f̂R,1 in Fig. 3,
• the cycle (2) of σ of length 1 corresponds to the blue-

colored edge ending in f̂R,2 in Fig. 3,
• the cycle (345) of σ of length 3 corresponds to the blue-

colored (0, 1)-cycle in Fig. 3 of length 2 · 3 = 6 going
through the right-hand side vertices f̂R,3, f̂R,4, f̂R,5.

For σ1, σ2 ∈ Sn, recall from Proposition B that c(σ1, σ2) is
defined to be the number of cycles of length larger than one
in the cycle notation expression of the permutation σ1 ◦ σ−1

2 .

Lemma 1. For any σ1, σ2 ∈ Sn, the number of (0, 1)-cycles
in the valid configuration h(σ1, σ2) equals c(σ1, σ2).

Proof. This follows from generalizing Examples 4 and 5.
In particular, note that a cycle of length L, L ≥ 2, of
σ1 ◦ σ−1

2 corresponds to a (0, 1)-cycle of length 2L in the
valid configuration h(σ1, σ2)

Lemma 2. Fix an arbitrary x̂ ∈ C
(
N̂(A)

)
. The number of

pre-images of x̂ under the mapping h equals 2c(σ1,σ2), i.e.,∣∣∣{(σ1, σ2) ∈ Sn × Sn
∣∣ h(σ1, σ2) = x̂

}∣∣∣ = 2c(σ1,σ2).

Proof. This follows from generalizing Examples 2–5. In par-
ticular, note that for every (0, 1)-cycle in x̂ there are two
walk directions for going around the (0, 1)-cycle, and with
that two different ways of defining the relevant function
values of σ1 and σ2. Because the walk direction can be
chosen independently for every (0, 1)-cycle in x̂, there are,
ultimately, 2c(σ1,σ2) ways of selecting σ1, σ2 ∈ Sn such that
h(σ1, σ2) = x̂.

Lemma 3. For any σ1, σ2 ∈ Sn, it holds that

ĝ
(
h(σ1, σ2)

)
=

∏
i∈[n]

ai,σ1(i)

 ·
∏
i∈[n]

ai,σ2(i)

 .



Proof. Fix some σ1, σ2 ∈ Sn. Let x̂ , h(σ1, σ2). Then

ĝ
(
h(σ1, σ2)

)
= ĝ(x̂)

=

∏
i∈[n]

f̂L,i(x̂i,1, . . . , x̂i,n)


·

∏
j∈[n]

f̂R,j(x̂1,j , . . . , x̂n,j)


=

∏
i∈[n]

ai,σ1(i)

 ·
∏
i∈[n]

ai,σ2(i)

 .

where the second equality follows from the specification of
N̂(A) in Proposition 1 and where the third equality is a
consequence of the following observations:

• As seen above (see the text before Example 1), every
vertex of N̂(A) is either the endpoint of exactly one
(1, 1)-edge or the vertex of exactly one (0, 1)-cycle.

• Consider a (1, 1)-edge of x̂ connecting f̂L,i and f̂R,j .
Because

f̂L,i(x̂i,1, . . . , x̂i,n) = ai,j ,

f̂R,j(x̂1,j , . . . , x̂n,j) = ai,j ,

we get a contribution of a2
i,j from the two endpoints of

this (1, 1)-edge. Note that

a2
i,j = ai,σ1(i) · ai,σ2(i).

• Consider a (0, 1)-cycle of length 2L, L ≥ 2, of x̂ through
f̂L,i1 , f̂R,j1 , f̂L,i2 , f̂R,j2 , . . . , f̂L,iL , f̂R,jL , f̂L,i1 , where

σ1(i1) = j1, σ1(i2) = j2, . . . , σ1(iL) = jL,

σ2(i1) = jL, σ2(i2)= j1, . . . , σ2(iL) = jL−1.

Because

f̂L,i1(x̂i1,1, . . . , x̂i1,n) =
√
ai1,jL · ai1,j1 ,

f̂R,j1(x̂1,j1 , . . . , x̂n,j1) =
√
ai1,j1 · ai2,j1 ,

f̂L,i2(x̂i2,1, . . . , x̂i2,n) =
√
ai2,j1 · ai2,j2 ,

f̂R,j2(x̂1,j2 , . . . , x̂n,j2) =
√
ai2,j2 · ai3,j2 ,

...
...

f̂L,iL(x̂iL,1, . . . , x̂iL,n) =
√
aiL,jL−1

· aiL,jL ,
f̂R,jL(x̂1,jL , . . . , x̂n,jL) =

√
aiL,jL · ai1,jL ,

we get a contribution of(
L∏
`=1

ai`,σ1(i`)

)
·

(
L∏
`=1

ai`,σ2(i`)

)

from the 2L vertices of this (0, 1)-cycle.

Putting together the above results, we can finally prove
Proposition B. Namely, we obtain

Z(N̂
(
A)
)

=
∑

x̂∈C(N̂(A))

ĝ(x̂)

=
∑

x̂∈C(N̂(A))

∑
σ1,σ2∈Sn:
h(σ1,σ2)=x̂

2−c(σ1,σ2) · ĝ
(
x̂
)

=
∑

σ1,σ2∈Sn

2−c(σ1,σ2) · ĝ
(
h(σ1, σ2)

)
=
∑

σ1,σ2∈Sn

2−c(σ1,σ2) ·

∏
i∈[n]

ai,σ1(i)

·
∏
i∈[n]

ai,σ2(i)

,
where the second equality follows from Lemma 2 and where
the fourth equality follows from Lemma 3. This proves the
validity of (21), and with that the validity of Proposition B.

APPENDIX C
PROOF OF THEOREM 1

Let G be a subgroup of Sn. The cycle index of G is defined
to be (see, e.g., [26, Section 6.6])

Z(G) ,
1

|G|
∑
σ∈G

∏
k∈[n]

z
ck(σ)
k ,

where ck(σ), k ∈ [n], denotes the number of cycles of length k
in the cycle notation expression of the permutation σ, and
where zk, k ∈ [n], are indeterminates. If G = Sn, which is
the case of interest here, then

Z(Sn) ,
1

|Sn|
∑
σ∈Sn

∏
k∈[n]

z
ck(σ)
k

=
1

n!

∑
σ∈Sn

∏
k∈[n]

z
ck(σ)
k .

The following well-known result gives a convenient recursive
expression for Z(Sn).

Lemma 4. Define Z(S0) , 1. For n ≥ 1 it holds that

Z(Sn) =
1

n

∑
`∈[n]

z` · Z(Sn−`). (22)

Proof. For ` ∈ [n], let Sn(`) be subset of Sn that contains
all permutations σ such that n is contained in a cycle of σ
of length `. Note that

∣∣Sn(`)
∣∣/∣∣Sn−`∣∣ =

(
n−1
`−1

)
· (` − 1)!.

Therefore,

Z(Sn) =
1

n!

∑
σ∈Sn

∏
k∈[n]

z
ck(σ)
k

=
1

n!

∑
`∈[n]

∑
σ∈Sn(`)

∏
k∈[n]

z
ck(σ)
k

=
1

n!

∑
`∈[n]

(
n− 1

`− 1

)
· (`− 1)! · z` ·

∑
σ∈Sn−`

∏
k∈[n−`]

z
ck(σ)
k

=
1

n

∑
`∈[n]

z` · Z(Sn−`).



For n ∈ N ∪ {0}, define Zn , Z(Sn), where

zk ,

{
1 if k = 1
1
2 if k ≥ 2

Rewriting (22) for this choice of zk, k ≥ 1, we obtain

Zn =
1

n
Zn−1 +

1

2n

n∑
`=2

Zn−`. (23)

Contemplating Fig. 5, it appears that Zn = Θ( 1√
n

). In the
following, we will prove this observation. In fact, we will
prove

Cl√
n
≤ Zn ≤

Cu√
n
, n ≥ 1, and Zn ∼

C√
n
,

where

Cl ,
1√
2
, Cu ,

3

2
√

2
, C ,

√
e

π
. (24)

Lemma 5. For all n ∈ N it holds that

Zn ≤
Cu√
n
,

where Cu was defined in (24). Thus Zn = O
(

1√
n

)
.

Proof. The proof is by strong induction.
Base cases (n = 1 and n = 2): Z1 = 1 ≤ 3

2
√

2
= Cu√

1
and

Z2 = 3
4 = 3

2
√

2
· 1√

2
= Cu√

2
.

Induction step (n = k+ 1 for some k ∈ N, k ≥ 2): Assume
the claim is true for every j ∈ [k]. Using (23), we obtain

Zk+1 =
Zk
k + 1

+
1

2(k + 1)

k+1∑
j=2

Zk+1−j

=
2 + Zk

2(k + 1)
+

1

2(k + 1)

k−1∑
j=2

Zk+1−j

=
2 + Zk

2(k + 1)
+

1

2(k + 1)

k∑
j=2

Zj

≤ 1

k + 1
·
(

1 +
Cu

2
√
k

)
+

1

2(k + 1)

k∑
j=2

Cu√
j

≤ Cu

k + 1
·
( 1

Cu
+

1

2
√
k

)
+

Cu

2(k + 1)

∫ k

1

1√
x

dx

=
Cu

k + 1
·
(

1

Cu
+

1

2
√
k

+ (
√
k − 1)

)
≤ Cu

k + 1
·
√
k + 1

=
Cu√
k + 1

.

Notice that the last inequality is valid since the function
f : R>0 → R, x 7→

√
x+ 1 −

√
x − 1

2
√
x

+ 1 − 2
√

2
3 is

positive for x ≥ 2, which can be proven by the observing that
f(2) ≈ 0.0215 > 0 and that f is strictly increasing because

Fig. 5: Graph comparing the functions n 7→ Zn with n 7→ 1√
n

for n ∈ [250].

Fig. 6: Graph comparing the functions n 7→ Zn with n 7→ Cu√
n

and n 7→ Cl√
n

for n ∈ [250].

its derivative satisfies f ′(x) = 1
2
√
x+1
− 1

2
√
x

+ 1
4x3/2 > 0 for

all x > 0.

Lemma 6. For all n ∈ N it holds that

Zn ≥
Cl√
n
,

where Cl was defined in (24). Thus Zn = Ω
(

1√
n

)
.

Proof. The proof is by strong induction.
Base cases (n = 1 and n = 2): Z1 = 1 ≥ 1√

2
= Cl√

1
and

Z2 = 3
4 = 3

2 ·
1√
2
· 1√

2
≥ Cl√

2
.

Induction step (n = k+ 1 for some k ∈ N, k ≥ 2): Assume



the claim is true for every j ∈ [k]. Using (23), we obtain

Zk+1 =
Zk
k + 1

+
1

2(k + 1)

k+1∑
j=2

Zk+1−j

=
2 + Zk

2(k + 1)
+

1

2(k + 1)

k−1∑
j=2

Zk+1−j

≥ 1

k + 1
·
(

1 +
Cl

2
√
k

)
+

1

2(k + 1)

k∑
j=2

Cl√
j

≥ Cl

k + 1
·
( 1

Cl
+

1

2
√
k

)
+

Cl

2(k + 1)

∫ k+1

2

1√
x

dx

=
Cl

k + 1
·
( 1

Cl
+

1

2
√
k

+ (
√
k + 1−

√
2)
)

≥ Cl

k + 1
·
√
k + 1

=
Cl√
k + 1

.

Notice that the last inequality is valid since the function f :
R>0 → R, x 7→ 1

2
√
x

is positive for x ≥ 2.

Proposition 3. It holds that

Zn = Θ
( 1√

n

)
.

Proof. This follows immediately from Lemmas 5 and 6.

A comparison of the function n 7→ Zn with the upper and
lower bounds in Lemmas 5 and 6 is shown in Fig. 6.

Toward proving Zn ∼ C√
n

, where C ,
√

e
π , we use the

following ingredients:

• It holds that

Z(Sn) =
1

n!
·Bn

(
0! · z1, 1! · z2, . . . , (n− 1)! · zn

)
,

where Bn denotes the n-th complete exponential Bell
polynomial. (This relationship follows from the fact that
a permutation is, by definition, bijective, and from iden-
tifying each monomial in Z(Sn) with a partitioning of
[n].) Consequently,

Zn =
1

n!
·Bn

(
0! · 1, 1! · 1

2
, . . . , (n− 1)! · 1

2

)
.

• It holds that (see, e.g., [25, Theorem 4.38])

Z(Sn) =

(
∂

∂t

)n
C(t)

∣∣∣∣
t=0

,

where

C(t) , exp

( ∞∑
k=1

zkt
k

k

)
is the generating function of the cycle index of the
symmetric group.

• We recall the following well-known power series, which
are convergent in a neighborhood around t = 0:

ln(1− t) = −
∞∑
k=1

tk

k
,

et =

∞∑
k=0

tk

k!
,

(1− t)−1/2 =

∞∑
k=0

(2k)!

4k · (k!)2
tk.

• We recall the following bounds on the k-th central
binomial coefficient for k ∈ N:

4k√
(k + 1

2 )π
≤
(

2k

k

)
≤ 4k√

kπ
. (25)

Lemma 7. It holds that

lim
n→∞

Zn ·
√
n ≥ C.

Proof. Substituting

zk ,

{
1 if k = 1
1
2 if k ≥ 2

into C(t), we get

C(t) = exp

(
t+

1

2

∞∑
k=2

tk

k

)

= exp

(
t+

1

2
(− ln(1− t)− t)

)
= exp

(
1

2
(t− ln(1− t))

)
= et/2(1− t)−1/2

=

( ∞∑
k=0

( t2 )k

k!

)
·

( ∞∑
k=0

(2k)!

4k · (k!)2
tk

)

=

∞∑
n=0

n∑
`=0

1

2` · `!
· 1

4n−`
·
(

2(n− `)
n− `

)
· tn.

Letting τ , 1
2 , we obtain for all n ∈ N

Zn =

n∑
`=0

τ `

`!
· 1

4n−`
·
(

2(n− `)
n− `

)
(a)

≥ τn

n!
+

n−1∑
`=0

τ `

`!
· 1

4n−`
· 4n−`√

(n− `+ 1
2 )π

≥ τn

n!
+

n−1∑
`=0

τ `

`!
· 1√

(n+ 1
2 )π

≥ 1√
n
· 1√

(1 + 1
2n )π

n∑
`=0

τ `

`!
,



where step (a) is due to (25). It follows that

lim
n→∞

Zn ·
√
n ≥ lim

n→∞

1√
(1 + 1

2n )π

n∑
`=0

τ `

`!
=

exp(τ)√
π

=

√
e

π
.

Lemma 8. It holds that

lim
n→∞

Zn ·
√
n ≤ C.

Proof. The proof is similar to the proof of Lemma 7. In
particular, from the proof of Lemma 7 we know that for all
n ∈ N it holds that

Zn =

n∑
`=0

τ `

`!
· 1

4n−`
·
(

2(n− `)
n− `

)
.

Using (25), we obtain

Zn ≤
τn

n!
+

n−1∑
`=0

τ `

`!
· 1

4n−`
· 4n−`√

(n− `)π

=
τn

n!
+

1√
π

n−1∑
`=0

τ `

`!
· 1√

n− `

=
τn

n!
+

1√
π

h(n)∑
`=0

τ `

`!
· 1√
n− `

+

n−1∑
`=h(n)+1

τ `

`!
· 1√
n− `


≤ τn

n!
+

1√
π

h(n)∑
`=0

τ `

`!
· 1√

n− h(n)
+

n−1∑
`=h(n)+1

τ `

`!
· 1√
n− `


=
τn

n!
+

(1− h(n)
n )−1/2

√
n ·
√
π

h(n)∑
`=0

τ `

`!
+

n∑
`=h(n)+1

τ `

`!
· 1√

n− `
,

where h : N → N is a function satisfying h(n) = ωn
(
1
)

and
h(n) = o(n). In particular, there exists an N ∈ N such that
∀ n ≥ N , it holds that 1 < h(n) < n. Then notice that

0 ≤
n−1∑

`=h(n)+1

τ `

`!
·
√
n√

n− `

(a)

≤
n−1∑

`=h(n)+1

τ ` ·
√
n√

n− `
· 1√

2π`

(e

`

)`
e−1/(12`+1)

≤ 1√
2π

n−1∑
`=h(n)+1

√
n√

`(n− `)

(τe

`

)`
e−0

(b)

≤ 1√
2π

n−1∑
`=h(n)+1

√
n√

(n− 1)(n− (n− 1))

(τe

`

)`
≤ 1√

2π

(
1− 1

n

)−1/2 n−1∑
`=h(n)+1

(
τe

h(n)

)`

=
1√
2π

(
1− 1

n

)−1/2

(
τe
h(n)

)h(n)+1

−
(

τe
h(n)

)n
1− τe

h(n)

, (26)

where step (a) is due to Robbins’ approximations for factorial
function [27], and where step (b) is due to the observation that
x = n − 1 is a global minimum for the polynomial function
x 7→ x · (n−x) on [n−1].

Note that the limit of the right-hand side of (26) equals 0
as n → ∞ since τe

h(n) < 1 for sufficiently large n, which is
guaranteed by h(n) = ωn(1). So, we obtain

lim
n→∞

Zn ·
√
n

≤ lim
n→∞

(√
n · τn

n!
+

(1− h(n)
n )−1/2

√
π

h(n)∑
`=0

τ `

`!

+

n∑
`=h(n)+1

τ `

`!
·
√
n√

n− `

)

= 0 +
(1− 0)−1/2

√
π

· exp

(
1

2

)
+ 0 =

√
e

π
.

Proposition 4. It holds that

Zn ∼ C ·
1√
n
,

where C was defined in (24).

Proof. This follows directly from Lemmas 7 and 8.

APPENDIX D
PROOF OF THEOREM 2

Given Assumption 1, we are interested in the expectation
value of perm(A), perm(A)2, and permB,2(A)2.

The expectation value of the permanent of A is given by5

E
[
perm(A)

]
= E

∑
σ∈Sn

∏
i∈[n]

ai,σ(i)


(a)
=
∑
σ∈Sn

E

∏
i∈[n]

ai,σ(i)


(b)
=
∑
σ∈Sn

∏
i∈[n]

E
[
ai,σ(i)

]
= n! · µn1 ,

where step (a) is due to the linearity of the expectation value,
and where step (b) is due to the independence between the
entries of A. Similarly, we obtain

E
[
perm(A)2

]
=

∑
σ1,σ2∈Sn

∏
i∈[n]

E
[
ai,σ1(i) · ai,σ2(i)

]
=

∑
σ1,σ2∈Sn

∏
i∈[n]

hi(σ1, σ2)

where

hi(σ1, σ2) , E
[
ai,σ1(i) · ai,σ2(i)

]
=

{
µ2 if σ1(i) = σ2(i)

µ2
1 otherwise

.

5Note that we actually do not need this result in the following.



Because

hi(σ1, σ2) = hi(σ1 ◦ σ−1
2 , σ2 ◦ σ−1

2 ) = hi(σ1 ◦ σ−1
2 , id),

where id is the identity permutation, we obtain

E
[
perm(A)2

]
=

∑
σ1,σ2∈Sn

∏
i∈[n]

hi(σ1, σ2)

=
∑

σ1,σ2∈Sn

∏
i∈[n]

hi(σ1 ◦ σ−1
2 , id)

= n! ·
∑
σ∈Sn

∏
i∈[n]

hi(σ, id),

where

hi(σ, id) =

{
µ2 if σ(i) = i

µ2
1 otherwise

.

Note that every cycle of length 1 of σ contributes a factor of µ2

to
∏
i∈[n] hi(σ, id). Similarly, every cycle of length k, k ≥ 2,

contributes a factor of (µ2
1)k to

∏
i∈[n] hi(σ, id). Therefore,

using the cycle index of Sn, we can write

E
[
perm(A)2

]
= Z(Sn),

where

zk =

{
µ2 if k = 1

(µ2
1)k if k ≥ 2

.

Applying the generation function technique as in the proofs
of Lemmas 7 and 8, we obtain

E
[
perm(A)2

]
= (n!)2 ·

n∑
`=0

(µ2 − µ2
1)`µ

2(n−`)
1

`!

= (n!)2 · µ2n
1 ·

n∑
`=0

(µ2

µ2
1
− 1)`

`!

∼ (n!)2 · µ2n
1 · exp

(
µ2

µ2
1

− 1

)
. (27)

Similarly, one obtains

E
[
permB,2(A)2

]
= (n!)2 · µ2n

1 ·
n∑
`=0

(µ2

µ2
1
− 1

2 )`

`!
· (2(n− `))!

4n−` · ((n− `)!)2
. (28)

By carefully reusing some calculations in the proofs of Lem-
mas 7 and 8, the summation appearing in (28) can then be
bounded between

µ2n
1√

(n+ 1
2 )π
·
n∑
`=0

τ `

`!

and

µ2n
1

τn
n!

+
(1− h(n)

n )−1/2

√
nπ

·
h(n)∑
`=0

τ `

`!
+

n−1∑
`=h(n)+1

τ `

`!
· 1√

n− `

,

where τ , µ2

µ2
1
− 1

2 . Finally, we obtain

E
[
permB,2(A)2

]
(n!)2

∼ eτ√
π
· µ

2n
1√
n
. (29)

Combining (27) and (29), we get

E
[
perm(A)2

]
E
[
permB,2(A)2

] ∼ (n!)2 · µ2n
1 · exp

(
µ2

µ2
1
− 1
)

(n!)2 · eτ√
π
· µ

2n
1√
n

=
√
πn · exp

(
τ − 1

2
− τ
)

=

√
πn

e
,

which, surprisingly, does not depend on the chosen distribu-
tion!

We remark that the results in Appendix C can be regarded as
a special case of the results in this section. Indeed, if the entries
of A are chosen i.i.d. according to the (degenerate) distribution
that assigns ai,j = 1 with probability 1, then µ1 = 1 and
µ2 = 1, and with that the right-hand side of (29) simplifies
to
√

e
π ·

1√
n

.

APPENDIX E
UNIFICATION OF THE RESULTS IN APPENDICES C AND D

In this appendix, we show that the results in Appendices C
and D can be obtained as special cases of a more general
result.

Recall that for n ∈ N, we defined [n] , {1, 2, . . . , n}.
More generally, for n1, n2 ∈ Z such that n1 ≤ n2, we define
Jn1, n2K , {n1, n1+1, . . . , n2}.

Definition 2. Let n ∈ N. We define the function

Ψn : R3
≥0 → R≥0,

(θ1, θ2, θ3) 7→ (n!)2 ·θn2 ·
n∑
`=0

(
n−`+θ3−1

n−`

)
·
( θ1θ2−θ3)`

`!
,

where the binomial coefficient here is the generalized binomial
coefficient, which, for α ∈ R and k ∈ N ∪ {0}, is defined to
be (

α

k

)
,
α · (α− 1) · · · (α− k + 1)

k!
.

Lemma 9. For all n ∈ N it holds that

1) Ψn(θ1, θ2, θ3)=n!·Bn(0!·θ1, 1!·θ3θ
2
2, . . . , (n−1)!·θ3θ

n
2 ),

2) Ψn(θ1, θ2, θ3) ∼ (n!)2 · θn2 ·
nθ3−1

Γ(θ3)
· exp

(
θ1

θ2
− θ3

)
,

where Item 1 holds for θ3 ∈ R>0, Item 2 holds for θ3 ∈ (0, 1]
(possibly for θ3 ∈ R>0, but we did not need this generaliza-
tion), and where Γ(·) denotes the Gamma function.



Proof. Item 1 follows from analyzing C(t), the generating
function of the cycle index of the symmetric group, with the
substitution

zk =

{
θ1 if k = 1

θ3θ
k
2 if k ≥ 2

.

In the following, we will use the binomial series, i.e.,

(1 + t)α =

∞∑
k=0

(
α

k

)
tk,

which is convergent for any α ∈ R and t ∈ (−1, 1). (Note
that the binomial coefficient here is the generalized binomial
coefficient.)

Adapting some calculations in the proof of Lemma 7, we
obtain

C(t) = exp

(
θ1t+

∞∑
k=2

θ3θ
k
2

k
tk

)
= exp(θ1t+ θ3(− ln(1− θ2t)− θ2t))

= e(θ1−θ3θ2)t(1− θ2t)
−θ3

=

( ∞∑
k=0

(
(θ1 − θ3θ2)t

)k
k!

)
·

( ∞∑
k=0

(
−θ3

k

)
(−θ2t)

k

)

=

( ∞∑
k=0

(θ1 − θ3θ2)k

k!
tk

)
·

( ∞∑
k=0

θk2

(
k + θ3 − 1

k

)
tk

)

=

∞∑
n=0

n∑
`=0

θn−`2 (θ1 − θ3θ2)`

`!
·
(
n− `+ θ3 − 1

n− `

)
· tn.

Then we can verify that

n! ·Bn(0! · θ1, 1! · θ3θ
2
2, . . . , (n− 1)! · θ3θ

n
2 )

= (n!)2θn2

n∑
`=0

(
n− `+ θ3 − 1

n− `

)
·

( θ1θ2 − θ3)`

`!

= Ψn(θ1, θ2, θ3).

For Item 2, we first notice that for any n ∈ N, ` ∈ J0, n−1K,
θ3 ∈ (0, 1], we have(

n− `+ θ3 − 1

n− `

)
=

Γ((n− `+ θ3 − 1) + 1)

Γ((n− `) + 1)Γ((n− `+ θ3 − 1)− (n− `) + 1)

=
Γ(n− `+ θ3)

Γ(n− `+ 1)Γ(θ3)
.

In the following, we will need Wendel’s double inequalities
for the ratio of two Gamma function values [28]:(

x

x+ s

)1−s

≤ Γ(x+ s)

xsΓ(x)
≤ 1, (30)

where x > 0 ∈ R, s ∈ [0, 1]. This double inequalities can be
rewritten as (

x

x+ s

)1−s

≤ Γ(x+ s)

xs−1Γ(x+ 1)
≤ 1, (31)

or as

(x+ s)s−1 ≤ Γ(x+ s)

Γ(x+ 1)
≤ xs−1. (32)

Notice that (31) is due to the property Γ(x + 1) = x · Γ(x)
of the Gamma function. Substituting x = n − ` and s = c
into (32), we obtain

(n− `+ θ3)θ3−1 ≤ Γ(n− `+ θ3)

Γ(n− `+ 1)
≤ (n− `)θ3−1.

Moreover,

(n− n+ θ3)θ3−1

Γ(θ3)
=

Γ(1)

θ1−θ3
3 Γ(θ3)

=
Γ(c+ (1− θ3))

θ1−θ3
3 Γ(θ3)

≤ 1,

where the inequality is obtained from substituting x = θ3 and
s = 1− θ3 into (30). Observe that, because Γ is decreasing in
(0, 1] and because Γ(1) = 1, it holds that 1

Γ(θ3) ≤
1

Γ(1) = 1.
Then, letting τ , θ1

θ2
− θ3, one obtains the expression in (33)

(see top of the next page) and the expression in (34) (see top
of the next page), where h : N → N is a function satisfying
h(n) = ωn

(
1
)

and h(n) = o(n). In summary, we obtain the
expression in (35) (see top of the next page).

Finally, by using parts of the proof of Lemma 8, we obtain

n−1∑
`=h(n)+1

n1−θ3

(n− `)1−θ3
· τ

`

`!

≤ 1√
2π

n−1∑
`=h(n)+1

n1−θ3

(n− `)1−θ3
· 1√

`

(τe

`

)`
· e−0

≤ 1√
2π

n−1∑
`=h(n)+1

(
n

`(n− `)

)1−θ3
·
(

τe

h(n)

)`

≤ 1√
2π
·
(

1− 1

n

)−(1−θ3)

·

(
τe
h(n)

)h(n)+1

−
(

τe
h(n)

)n
1− τe

h(n)

for any θ3 ∈
[

1
2 , 1
]

since `−1/2 ≤ `−(1−θ3) and

n−1∑
`=h(n)+1

n1−θ3

(n− `)1−θ3
· τ

`

`!

≤ 1√
2π

n−1∑
`=h(n)+1

n1−θ3

(n− `)1−θ3
· 1√

`

(τe

`

)`
=

1√
2π

n−1∑
`=h(n)+1

(
n

`(n− `)

)1−θ3
· τe

`1/2+θ3

(τe

`

)`−1

≤ τe√
2π
·
(

1− 1

n

)−(1−θ3)

(
τe
h(n)

)h(n)

−
(

τe
h(n)

)n−1

1− τe
h(n)

for any θ3 ∈
(
0, 1

2

)
. The desired result is then obtained by

letting n→∞ and applying the sandwich theorem.



Ψn(θ1, θ2, θ3) = (n!)2 · θn2 ·
τn

n!
+ (n!)2 · θn2 ·

n−1∑
`=0

Γ(n− `+ θ3)

Γ(n− `+ 1)Γ(θ3)
· τ

`

`!

≥ (n!)2 · θn2 ·
τn

n!
· (n− n+ θ3)θ3−1

Γ(θ3)
+ (n!)2 · θn2

n−1∑
`=0

(n− `+ θ3)θ3−1

Γ(θ3)
· τ

`

`!

≥ (n!)2 · θn2 ·
(n+ θ3)θ3−1

Γ(θ3)

n∑
`=0

τ `

`!

= (n!)2 · θn2 ·
nθ3−1

Γ(θ3)
·
(

1 +
θ3

n

)θ3−1

·
n∑
`=0

τ `

`!
, (33)

Ψn(θ1, θ2, θ3) ≤ (n!)2 · θn2 ·
τn

n!
+ (n!)2 · θn2 ·

n−1∑
`=0

(n− `)θ3−1

Γ(θ3)
· τ

`

`!

= (n!)2 · θn2 ·
τn

n!
+ (n!)2 · θn2 ·

h(n)∑
`=0

(n− `)θ3−1

Γ(θ3)
· τ

`

`!
+

n−1∑
`=h(n)+1

(n− `)θ3−1

Γ(θ3)
· τ

`

`!


≤ (n!)2 · θn2 ·

τn

n!
+ (n!)2 · θn2 ·

h(n)∑
`=0

(n− h(n))θ3−1

Γ(θ3)
· τ

`

`!
+

n−1∑
`=h(n)+1

(n− `)θ3−1

Γ(1)
· τ

`

`!


= (n!)2 · θn2

τn
n!

+
nθ3−1

Γ(θ3)
·
(

1− h(n)

n

)c−1

·
h(n)∑
`=0

τ `

`!
+

n−1∑
`=h(n)+1

1

(n− `)1−θ3
· τ

`

`!

 , (34)

(1 + θ3
n )θ3−1

Γ(θ3)

n∑
`=0

τ `

`!
≤ Ψn(θ1, θ2, θ3)

(n!)2θn2 · nθ3−1

≤ τn · n1−θ3

n!
+

(
1− h(n)

n

)θ3−1

Γ(θ3)

h(n)∑
`=0

τ `

`!
+

n−1∑
`=h(n)+1

n1−θ3

(n− `)1−θ3
· τ

`

`!
. (35)

Corollary 3. Given Assumption 1, it holds that

E
[
perm(A)2

]
= Ψn(µ2, µ

2
1, 1),

E
[
permB,2(A)2

]
= Ψn

(
µ2, µ

2
1,

1

2

)
,

perm(1n×n)2 = Ψn(1, 1, 1),

permB,2(1n×n)2 = Ψn

(
1, 1,

1

2

)
.

Proof. These expressions follow from expressing the quanti-
ties on the left-hand side in terms of Bell polynomials and
using Lemma 9.
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