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Abstract—In this paper, we study bounds on the minimum
length of (k, n, d)-superimposed codes introduced by Agarwal et

al. [1], in the context of Non-Adaptive Group Testing algorithms
with runlength constraints. A (k, n, d)-superimposed code of
length t is a t× n binary matrix such that any two 1’s in each
column are separated by a run of at least d 0’s, and such that
for any column c and any other k − 1 columns, there exists
a row where c has 1 and all the remaining k − 1 columns
have 0. Agarwal et al. proved the existence of such codes with
t = Θ(dk log(n/k) + k2 log(n/k)). Here we investigate more in
detail the coefficients in front of these two main terms as well
as the role of lower order terms. We show that improvements
can be obtained over the construction in [1] by using different
constructions and by an appropriate exploitation of the Lovász
Local Lemma in this context. Our findings also suggest O(nk)
randomized Las Vegas algorithms for the construction of such
codes. We also extend our results to Two-Stage Group Testing
algorithms with runlength constraints.

Index Terms—Lovász Local Lemma, superimposed codes,
runlength-constrained codes.

I. INTRODUCTION

Group Testing refers to the scenario in which one has a

population I of individuals, and an unknown subset P of I ,

commonly referred to as “positives”. The goal is to determine

the unknown elements of P by performing tests on arbitrary

subsets A of I (called pools), and the outcome of the test is

assumed to return the value 1 (positive) if A contains at least

one element of the unknown set P , the value 0 (negative),

otherwise. The problem was first introduced by Dorfman [5]

during WWII, in the context of mass blood testing. Since then,

Group Testing techniques have found applications in a large

variety of areas, ranging from DNA sequencing to quality

control, data security to network analysis, and much more.

We refer the reader to the excellent monographs [6], [9] for

an account of the vast literature on the subject.

Group Testing procedures can be adaptive or non-adaptive.

In adaptive Group Testing, the tests are performed sequentially,

and the content of the pool tested at the generic step i might

depend on the previous i−1 test outcomes. Conversely, in non-

adaptive Group Testing all pools are a-priori set, and tests are

carried out in parallel. Non-adaptive Group Testing (NAGT)

schemes typically require more tests to discover the positives,

but they are faster since tests can be performed in parallel. To

combine the advantages of both techniques, while mitigating

their limitations, it is sometimes preferable to implement a

hybrid approach, where a first screening is performed via a

NAGT algorithm, followed by a simple one-by-one testing of

the members that are identified in the first stage as potentially

positives. This latter approach is usually called Two-Stage

Group Testing [4].

In NAGT, the algorithm to determine the positives is usually

represented by means of a t×n binary matrix M , where each

row of M represents a test while each column is associated to

a distinct member of the population I = {1, 2, . . . , n}. More

precisely, we have Mij = 1 if and only if the member j ∈ I
belongs to the i-th test. In general, one assumes a known upper

bound k on the cardinality of the unknown set of positives P .

Having said that, the property one usually requires for M to

represent a correct (and efficiently decodable) NAGT is the

following [6]: for any k-tuple of the n columns of M we

demand that for any column c of the given k-tuple, there exists

a row i ∈ {1, . . . , t} such that c has symbol 1 in row i and

all the remaining k − 1 columns of the k-tuple have a 0 in

the same row i. This condition renders matrices M with such

a property equivalent to the well known superimposed codes

introduced in the seminal paper by Kautz and Singleton [10]

and, independently, by Erdös et al. in [7].

Motivated by applications in topological DNA-based data

storage, the authors of [1] introduced an interesting new

variant of NAGT, in which the associated test matrix M
has to satisfy additional constraints, in order to comply with

the biological constraints of the problem they want to solve.

Informally, one of the main problems studied in [1] is to

show the existence of a superimposed code M with a ”small”

number t of rows and satisfying the following additional

property: any two 1’s in each column are separated by a run

of at least d 0’s. We refer the reader to [1] for the rationale

behind this run-length constraint. The main achievability result

obtained in [1] says that codes with these properties exist for

t = Θ(dk log(n/k) + k2 log(n/k)).
Our results. We study the achievable coefficients in front

of the dk log(n/k) and k2 log(n/k) terms and on lower order

terms in k, whose values are of importance as they determine

the achievable rates of such codes for fixed values of d and k.

We show that better results than those derived in [1] can be

obtained using different random coding constructions which
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also admit simpler analyses. Also, we show that improved

results can be obtained by an appropriate use of the Lovász

Local Lemma (see, e.g., [2]). By exploiting the celebrated

result by Moser and Tardos [12], this directly implies a O(nk)
randomized Las Vegas algorithm to construct such codes. In

the final part of this paper, we also extend our results to Two

Stages Group Testing algorithms.

II. NEW UPPER BOUNDS

Throughout the paper, the logarithms without subscripts

are in base two, and we denote with ln(·) the natural loga-

rithm. For notation convenience we denote with [a, b] the set

{a, a+ 1, . . . , b}.

Definition II.1. [1] Let k, n, d be positive integers, k ≤ n.

A (k, n, d)-superimposed code is a t × n binary matrix M
such that any two 1’s in each column of M are separated by

a run of at least d 0’s, and for any k-tuple of the columns

of M we have that for any column c of the given k-tuple,

there exists a row i ∈ [1, t] such that c has symbol 1 in row i
and all the remaining k − 1 columns of the k-tuple are equal

to 0. The number of rows t of M is called the length of the

(k, n, d)-superimposed code.

Definition II.2. A (k, n, d, w)-superimposed code is a

(k, n, d)-superimposed with the additional constraint that each

column has weight w (number of ones).

First, we need the following enumerative lemma.

Lemma II.3. Let S ⊆ {0, 1}t be the set of all distinct binary

vectors of length t such that each vector has Hamming weight

w ≥ 1 and any two 1’s in each vector are separated by a run

of at least d 0’s. If t ≥ (w − 1)d+ w, then

|S| =
(

t− (w − 1)d

w

)

.

Proof. Let A be the set of all distinct binary vectors of length

t− (w− 1)d and weight w. One can see that |S| = |A| since

each element of S can be obtained from an element a ∈ A by

adding between each pair of consecutive ones in a exactly d
0’s. Conversely, each element of A can be obtained from an

element s ∈ S by removing between each pair of consecutive

ones in s exactly d 0’s.

We also need the following technical lemma and an easy

corollary, which have been proved in [8]. We report here the

proofs for the reader’s convenience.

Lemma II.4. Let a, b, c be positive integers such that c ≤ a ≤
b. We have that

a

b
· a− c

b− c
≤
(

a− c
2

b− c
2

)2

.

Proof. Clearly a(a − c)c2 ≤ b(b − c)c2. Then adding the

quantity 4ab(a − c)(b − c) to both members implies that

a(a− c)(2b− c)2 ≤ b(b− c)(2a− c)2. Therefore Lemma II.4

follows.

Corollary II.5. Let a, b, c be positive integers such that c ≤
a ≤ b. We have that

(

a
c

)

(

b
c

) ≤
(

a− c−1
2

b− c−1
2

)c

. (1)

Proof. Expanding the LHS of (1) we get

(

a
c

)

(

b
c

) =
a

b
· a− 1

b− 1
· · · a− c+ 1

b− c+ 1
. (2)

Let us group the terms in (2) into pairs as follows

a− i

b− i
· a− (c− i− 1)

b− (c− i− 1)
for i = 0, . . . ,

⌈

c− 1

2

⌉

− 1 . (3)

If c is odd then we leave alone the term (a− c−1
2 )/(b− c−1

2 ).
By Lemma II.4, each term in (3) can be upper bounded by

a− i

b− i
· a− (c− i− 1)

b− (c− i− 1)
≤
(

a− c−1
2

b− c−1
2

)2

.

Hence Corollary II.5 follows.

The main tool to prove Theorem II.7 is the Lovász Local

Lemma for the symmetric case. We state here the lemma.

Lemma II.6. [2] Let E1, E2, . . . , Em be events in an

arbitrary probability space. Suppose that each event Ei is

mutually independent of a set of all other events Ej but at

most d, and that Pr(Ei) ≤ p for all 1 ≤ i ≤ m. If

edp ≤ 1

then Pr(∩m
i=1Ei) > 0.

Now, we are ready to state our main result.

Theorem II.7. There exists a (k, n, d, w)-superimposed code

of length t, where t is the minimum integer such that the

following inequality holds

ek

[(

n

k

)

−
(

n− k + 1

k

)](

w(k − 1)− w−1
2

t− (w − 1)d− w−1
2

)w

≤ 1.

(4)

Proof. Let M be a t×n binary matrix, where each column c

is picked uniformly at random between the set of all distinct

binary vectors of length t such that each column has weight

w and any two 1’s in each column of M are separated by a

run of at least d 0’s. Therefore by Lemma II.3 we have that

Pr(c) =

(

t− (w − 1)d

w

)−1

.

For a given index i ∈ [1, n] and a set of column-indices B,

|B| = k − 1, i 6∈ B, let Ei,B be the event such that for every

row in which ci (the i-th column) has 1, there exists an index

j ∈ B such that cj has 1 in that same row. We can write this

event in terms of supports as Supp(ci) ⊆ Supp(cB). There



are n
(

n−1
k−1

)

such events. We can express the probability of

such an event as follows

Pr(Ei,B) =
∑

c′=(c′1,...,c
′

k−1)

Pr(cB = c′)·

Pr(Supp(ci) ⊆ Supp(cB)|cB = c′), (5)

where we have denoted with cB the vector (cj1 , . . . , cjk−1
) in

which j1, . . . , jk−1 are the elements of B. The sum in (5) is

over all the possible configurations of k− 1 vectors of length

t, weight w and the distance between ones in each column is

at least d. Then, we can upper bound (5) by the maximum

of Pr(Supp(ci) ⊆ Supp(cB)|cB = c′) over all k − 1 vectors

c′ = (c′1, . . . , c
′
k−1). Therefore, we can consider the worst-

case scenario where the k − 1 columns of M with indices in

B maximize this probability. It can be seen that the maximum

is achieved when the w(k − 1) ones of the k − 1 columns

indexed by B are placed in w(k − 1) different rows. Hence,

Pr(Ei,B) ≤
(

w(k−1)
w

)

(

t−(w−1)d
w

)
. (6)

Using Corollary II.5 we upper bound (6) as follows

Pr(Ei,B) ≤
(

w(k − 1)− w−1
2

t− (w − 1)d− w−1
2

)w

. (7)

Proceeding as in [8], it can be proved that an arbitrary event

Ei,A is mutually independent from all the events Ej,C , where

C ⊆ [1, n] \ (A∪ {i}) and j 6∈ C. Since the number of events

Ej,C is equal to

(

n− k

k − 1

)

(n− k + 1) = k

(

n− k + 1

k

)

,

each event Ei,A is dependent of at most

f = k

[(

n

k

)

−
(

n− k + 1

k

)]

(8)

other events. If the probability that none of the events Ei,A

occurs is strictly positive then there exists a matrix M that is

a (k, n, d, w)-superimposed code of length t. Therefore, using

Lemma II.6 and taking p equal to the RHS of (7) and f as

defined in equation (8), Theorem II.7 follows.

Remark II.8. We note that in Theorem II.7 we could use

the union bound instead of the Local Lemma. Since the total

number of events is n
(

n−1
k−1

)

, we have that there exists a

(k, n, d, w)-superimposed code of length t, provided that

n

(

n− 1

k − 1

)(

w(k − 1)− w−1
2

t− (w − 1)d− w−1
2

)w

< 1 . (9)

In [1] the authors proved that a (k, n, d, w)-superimposed

code of length t exists, provided that

n

(

n− 1

k − 1

)(

w(k − 1)

t− (2d+ 1)(w − 1)

)w

< 1 . (10)

It is clear that our bound given in Remark II.8 is better than

the bound given in (10) since

w(k − 1)− w−1
2

t− (w − 1)d− w−1
2

≤ w(k − 1)

t− (2d+ 1)(w − 1)

for all positive integers w, k, d.

If we compare the bounds of Theorem II.7 and Remark II.8

then it has been proved in [8] that

ek

[(

n

k

)

−
(

n− k + 1

k

)]

≤ n

(

n− 1

k − 1

)

(11)

for all k ≤ 0.667
√
n. Therefore when k is much smaller

than n (which is indeed the case in circumstances of interest),

the Local Lemma performs better than the union bound. It

is important to note that a conjecture of Erdős, Frankl and

Füredi [7] says that for k ≥ √
n optimal superimposed codes

have length equal to n. The current best known result has

been proved in [13] which states that if k ≥ 1.157
√
n then

the minimum length of superimposed codes is equal to n.

Corollary II.9. There exists a (k, n, d, w)-superimposed code

of length t, where

t ≤
⌈

(w − 1)d+
w − 1

2
+

(

w(k − 1)− w − 1

2

)

·

(

min

{

n

(

n− 1

k − 1

)

, ek

[(

n

k

)

−
(

n− k + 1

k

)]})
1
w

⌉

.

(12)

Proof. It easily follows rearranging the terms in equation (4)

and in equation (9).

Corollary II.10. There exists a (k, n, d)-superimposed code

of length t with k ≤ n/e, where

t ≤ ln 2 · dk log(n/k) + e2 · k2 log(n/k)

−
(

3e2 − ln 2
)

2
k log(n/k)− d+O(1) .

Proof. Substitute w = k ln(n/k) in (12) and upper bound

min

{

n

(

n− 1

k − 1

)

, ek

[(

n

k

)

−
(

n− k + 1

k

)]}

< k
(en

k

)k

.

Therefore we obtain

t ≤ d (k ln(n/k)− 1) +
k

2
ln(n/k)

+ e · (kek) 1
k ln(n/k) k

(

k − 3

2

)

ln(n/k) +O(1). (13)

Hence Corollary II.10 follows since n ≥ ek and k1/k ≤ 1
ln 2

for every integer k ≥ 1.

We note that in the explicit bound given in Corollary II.10

the leading coefficient of the term k log(n/k) can be improved,

for k ≤ 0.667
√
n, by using a better estimation of the minimum

in equation (12) that comes from the use of the Local Lemma.



By exploiting the celebrated result by Moser and Tardos

[12], this directly implies a O(nk) randomized Las Vegas

algorithm to construct the codes of Corollary II.10

From the inequality (10) we can derive an explicit upper

bound on the length of the codes whose existence was showed

in [1] when w = k ln(n/k) by upper bounding n
(

n−1
k−1

)

with

k
(

en
k

)k
. We report here the obtained result.

Theorem II.11. [1] There exists a (k, n, d)-superimposed

code of length t, where

t ≤ 2d (k ln(n/k)− 1) + k ln(n/k)

+ e · (kek) 1
k ln(n/k) k(k − 1) ln(n/k) +O(1).

It is clear that our result given in equation (13) improves

the one of Theorem II.11.

Remark II.12. We note that it was proved in [1] that every

(k, n, d)-superimposed code of length t must satisfy

t ≥ min {n, 1 + (k − 1)(d+ 1)} .

This implies that if k ≥ n−1
d+1 + 1 then t = n, so we cannot

construct a (k, n, d)-superimposed code of length t that is

better than the identity matrix of size n× n.

By Remark II.12, it is clear that the constraint k ≤ n/e in

Corollary II.10 is reasonable since 1 + (k − 1)(d + 1) ≥ ek
for every k, d ≥ 2.

We also note that a simple generalization of the method

given by Cheng et al. in [3] provide the following result.

Theorem II.13. There exists a (k, n, d)-superimposed code of

length t, t ≤ 1
Bk

(

k log(n/k) + log(kek)
)

, where

Bk = max
q≥2

Bk,q , (14)

Bk,q =

− log

[

1−
(

1− 1
q

)k−1
]

q + d
.

For k → ∞, the point q that maximize (14) is linear in k.

The proof of Theorem II.13 is similar to the one in [3], we

only need to ensure that when we construct a binary matrix

M starting from a random q-ary matrix each column c of M
has a run of at least d 0’s between any two 1’s. This can be

done by mapping each q-ary symbol into a binary vector of

length q + d where the last d elements are fixed to 0.

If we lower bound Bk with Bk,q for the choice

q = 1
ln 2 (k − 1) then, for k sufficiently large, Theorem II.13

gives the following explicit bound on the minimum length t
of (k, n, d)-superimposed codes

t ≤ dk log(n/k) +
1

ln 2
· k(k − 1) log(n/k)

+

(

1

ln 2
(k − 1) + d

)

log
(

kek
)

+O(1). (15)

One can see that this bound already improves, for k sufficiently

large, the one given in Theorem II.11 but not the one obtained

in Corollary II.10 for k < d.

III. SELECTORS

Selectors were introduced in [4] and they can be seen as

a generalization of superimposed codes. Like superimposed

codes, selectors find applications in many circumstances, like

Group Testing [4], efficient conflict resolution in the transmis-

sion model of [11], etc.. In this section, we introduce selectors

in which the weight of each column is equal to some fixed

value w and where any two 1’s in each column of M are

separated by a run of at least d 0’s, so that they can be applied

to the scenario of [1]. Successively, we will show that selectors

can be used to construct efficient two-stage procedure for

Group Testing with runlength constraints, that require a much

smaller number of tests, with respect to the NAGT considered

in [1] and in the previous section of the present paper. Let us

start by giving some definitions.

Definition III.1. Let k, n, d, p be positive integers, 1 ≤ p ≤
k ≤ n. A (k, n, d, p)-selector is a t×n binary matrix M such

that any two 1’s in each column of M are separated by a run

of at least d 0’s, and for any k-tuple of the columns of M we

have that at least p rows of the identity matrix of size k × k
are contained in that k-tuple of columns. The number of rows

t of M is called the length of the (k, n, d, p)-selector.

One can see that for p = k we get the definition of (k, n, d)-
superimposed codes studied in Section II.

Definition III.2. A (k, n, d, p, w)-selector is a (k, n, d, p)-
selector with the additional constraint that each column has

weight w.

It can be seen (see [8, Lemma 2]) that Definition III.1 is

equivalent to requiring that for any k-tuple of columns of a

(k, n, d, p)-selector and any k− p+1 columns among the se-

lected k-tuple, there exists a row of the identity matrix of size

k×k where the 1 is contained in one of the k−p+1 columns.

Therefore, thanks to this equivalence, we can generalize the

proof of Theorem II.7 to obtain the following.

Theorem III.3. There exists a (k, n, d, p, w)-selector of length

t, where t is the minimum integer such that the following

inequality holds

e

(

k

p− 1

)[(

n

k

)

−
(

n− k

k

)]

·
(

w(k − 1)− w−1
2

t− (w − 1)d− w−1
2

)w(k−p+1)

≤ 1. (16)

Proof. Let M be a t×n binary matrix, where each column c

is picked uniformly at random between the set of all distinct

binary vectors of length t such that each column has weight

w and with distance between ones in each column at least d.

As in Theorem II.7, by Lemma II.3 we have that

Pr(c) =

(

t− (w − 1)d

w

)−1

.

For a given pair of sets B1, B2 ⊆ [1, n] where |B1| = k−p+1,

|B2| = p− 1 and B1 ∩B2 = ∅, let EB1,B2 be the event such



that for each column ci with i ∈ B1 and every row r where

ci(r) = 1 there exists an index j ∈ (B1 ∪B2 \ {i}) such that

cj has 1 in that same row r. There are
(

k
p−1

)(

n
k

)

such events.

Then, by the same argument used in the proof of Theorem

II.7 we can easily upper bound the probability of such events

as follows

Pr(EB1,B2) ≤
(

(

w(k−1)
w

)

(

t−(w−1)d
w

)

)k−p+1

. (17)

Using Corollary II.5 we upper bound (17) as follows

Pr(EB1,B2) ≤
(

w(k − 1)− w−1
2

t− (w − 1)d− w−1
2

)w(k−p+1)

. (18)

Let us fix an arbitrary event EA1,A2 then it is easy to see that it

is mutually independent from all the events EA′

1,A
′

2
such that

A′
1 ⊆ [1, n] \ (A1 ∪ A2), A

′
2 ⊆ [1, n] \ (A1 ∪ A2 ∪ A′

1). The

number of events EA′

1,A
′

2
is equal to

(

k
p−1

)(

n−k
k

)

. Therefore

each event EA1,A2 is dependent of at most

f =

(

k

p− 1

)[(

n

k

)

−
(

n− k

k

)]

(19)

other events. If the probability that none of the events EA1,A2

occurs is strictly positive then there exists a matrix M that

is a (k, n, d, p, w)-selector of length t. Using Lemma II.6 and

taking p equal to the RHS of (18) and f as defined in equation

(19), Theorem III.3 follows.

Corollary III.4. There exists a (k, n, d, p, w)-selector of

length t, where

t ≤
⌈

(w − 1)d+
w − 1

2
+

(

w(k − 1)− w − 1

2

)

·
(

e

(

k

p− 1

)[(

n

k

)

−
(

n− k

k

)])
1

w(k−p+1)

⌉

. (20)

Proof. It follows rearranging the terms in equation (16).

Again, by exploiting the result by Moser and Tardos [12],

we get a O(nk) randomized Las Vegas algorithm to construct

the codes of Corollary III.4

Thanks to Corollary III.4 we obtain the following upper

bound on the minimum length of (k, n, d, p)-selectors.

Corollary III.5. There exists a (k, n, d, p)-selector of length

t with k ≤ n/e, where

t ≤ ln 2 · dk

k − p+ 1
log(n/k)

+ ln 2 · e3+ 1
e

k2

k − p+ 1
log(n/k) +O(k log(n/k)) .

Proof. Substituting w = k
k−p+1 ln(n/k) in (20) and using the

well-known inequality
(

m
s

)

≤
(

em
s

)s
, we get

t ≤ dk

k − p+ 1
ln(n/k)

+ e

[

e1+
p
k

(

k

p− 1

)

p−1
k

]

1
ln(n/k)

k2

k − p+ 1
ln(n/k)

+O(k ln(n/k)) .

Hence Corollary III.5 follows since p ≤ k, n ≥ ek and since

the function x1/x takes its maximum at x = e.

A. Application of (k, n, d, p)-selectors to two-stage Group

Testing with runlength constraints

We need the following result, whose proof for ”classical”

selectors (that is, for selectors without the runlength constraint

studied in this paper) is implicit in the discussion before

Theorem 3 of [4]. It is trivial to see that the proof carries

out also in the present scenario.

Lemma III.6. Let M be a (k, n, d, p)-selector with t rows,

and let f be the t× 1 columns vector obtained by the bitwise

OR of at most q, q ≤ p− 1, columns ci1 , . . . , ciq of M . Then,

apart from ci1 , . . . , ciq , there are at most other k − q − 1
columns of M whose 1’s are in a subset of the positions in

which the vector f also has 1’s.

Now we proceed as follows. Let k be an upper bound

on the number of possible positives in the Group Testing

problem. We perform all the tests corresponding to the rows of

a (2k, n, d, k+1)-selector M , as explained in the introduction.

More precisely, the generic i-th pool Ti, for i = 1, . . . , t,
contains all elements j ∈ [1, n] for which Mij = 1. After

having performed (in parallel) all tests on pools T1, . . . , Tt,

we get a ”sindrome” vector f (of dimension t × 1) equal to

the bitwise OR of the (at most) k columns that correspond

to the unknown positive elements. The number of columns

of M that are ”covered” by f (that is, that have their 1’s in

a subset of the positions in which the vector f also has 1’s)

is upper bounded by 2k (by Lemma III.6). In other words,

there are at most s ≤ 2k potentially positive elements, and the

true positive are among them. Hence, one can test individually

those s elements to discover the true positives. Altogether, we

have used t+ 2k tests.

By using Corollary III.5 to estimate t, we get that we can

discover all the positive elements by performing a number of

tests upper bounded by a quantity that is

2d ln(n/k) +O(k ln(n/k)). (21)

The bound (21) shows that our two-stage Group Testing

algorithm outperforms both the NAGT algorithm presented in

[1] and also our improved one given in the previous section of

the present paper. It is interesting to notice that the bound (21)

is information-theoretic optimal, for d = O(k), and that this

optimality can be achieved by introducing the least amount of

adaptivity in the testing algorithm.
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