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Abstract—A notable result from analysis of Boolean functions
is the Basic Invariance Principle (BIP), a quantitative nonlinear
generalization of the Central Limit Theorem for multilinear
polynomials. We present a generalization of the BIP for bivariate
multilinear polynomials, i.e., polynomials over two n-length se-
quences of random variables. This bivariate invariance principle
arises from an iterative application of the BIP to bound the
error in replacing each of the two input sequences. In order to
prove this invariance principle, we first derive a version of the
BIP for random multilinear polynomials, i.e., polynomials whose
coefficients are random variables. As a benchmark, we also state
a naive bivariate invariance principle which treats the two input
sequences as one and directly applies the BIP. Neither principle
is universally stronger than the other, but we do show that for
a notable class of bivariate functions, which we term separable
functions, our subtler principle is exponentially tighter than the
naive benchmark.

Index Terms—Basic Invariance Principle, Boolean functions,
functional approximation

I. INTRODUCTION

Boolean functions are ubiquitous in the fields of complexity
theory [1], [2], cryptography [3], [4], social choice theory [5],
[6], and digital electronics [7], [8]. One particularly significant
result from the field of analysis of Boolean functions is the
Basic Invariance Principle (BIP) [9]. The BIP is a nonlinear
generalization of the Berry-Esseen Theorem [10], [11], which
is in turn a quantitative version of the Central Limit Theorem.
The Berry-Esseen Theorem provides an explicit bound on the
difference between the distribution of a finite sum of indepen-
dent random variables and a standard Gaussian distribution.
The BIP, given a multilinear polynomial and two differently
distributed sequences of independent random variables X =
(X1, . . . , Xn) and Y = (Y1, . . . , Yn), bounds the expected
difference between f(X) and f(Y). This difference can be
interpreted as the expected error incurred by approximating
f(X) as f(Y).

In order for the bound given by the BIP to be close
to 0, the function under consideration must have relatively
low influences. The influence of a coordinate on a Boolean
function quantifies how sensitive the output is to a change
in that particular input coordinate, and the same concept
can be generalized to multilinear polynomials. The notion of
influence originated in social choice and voting theory [12].
Qualitatively, the BIP states that low-influence functions are
invariant to the distribution of the input sequence. One notable

This work was supported by MIT Welcome Trust Fellowship 2389724,
Lincoln Lab Grant 6944494, MIT Portugal Grant 6942770, and NFS-CNS
Grant 6944400.

application of the BIP is to “replace bits by Gaussians:”
whether the input is a sequence of uniform random bits or
a sequence of standard Gaussians, the expected output of a
low-influence function does not change too much.

One natural generalization of the BIP would be an in-
variance principle which treats functions of two sequences
of random variables. Such bivariate functions open up new
options and ideas in applications involving two distinct data
sources, such as in multi-party communication networks,
e.g., [13], [14]. In the context of these models, some functions
are inherently bivariate, even if they could be equivalently
written as univariate functions. In those cases, a bivariate
generalization of the BIP may achieve a tighter bound by
exploiting the bivariate structure of the function.

We present one such invariance principle which follows
from iteratively applying the BIP to bound the error in
replacing the first input sequence and then again to bound
the error in replacing the second. In order to do so, we treat
the bivariate function as a univariate function with random
coefficients which are determined by the input sequence that
is not being replaced at a given step. To this end, we propose
a variation of the BIP which can be applied to such random
functions. For the sake of comparison, we also derive a
naive bivariate invariance principle directly by treating the
two input sequences as a single sequence, effectively viewing
the bivariate function as univariate. We refer to our subtler
invariance principle as BVIP-1 and to this naive benchmark
as BVIP-2. Neither principle is universally stronger than the
other, but we do offer one notable example of a family of
functions for which BVIP-1 is exponentially tighter: functions
of the form F (x,y) = f(x) + g(y) + h(xy), which we
term separable functions. These functions are particularly
interesting because they generalize many different notions of
noise that arise in communication channels, including simple
models like the binary symmetric channel [14], [15].

The remainder of this paper is organized as follows. In
Section II, we summarize concepts and review key results
from analysis of Boolean functions. In Section III, we consider
multilinear random polynomials and propose a version of the
BIP for those random functions in anticipation of Section IV,
in which we propose and prove BVIP-1. In Section V, we
compare BVIP-1 to the naive benchmark of BVIP-2, present
corollary invariance principles for the special case of separable
functions, and offer concluding thoughts.
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II. PRELIMINARIES

We denote random variables with uppercase letters, e.g., X .
We denote vectors (often referred to as sequences in our
context) with bold-faced letters, e.g., x. Accordingly, vectors
of random variables are denoted with uppercase bold-faced
letters, e.g., X. We denote the coordinates (or elements) of
vectors with indexed letters, e.g., xi. We sometimes specify the
coordinates of a vector like x = (x1, x2, . . . , xn). Multipli-
cation of two vectors is performed elementwise and results in
a new vector, i.e., xy = (x1y1, x2y2, . . . , xnyn). We denote
the set containing the element i with S 3 i. We denote the set
{1, 2, . . . , n} with [n] and its power set with 2[n].

A. Results from Analysis of Boolean Functions

We begin with Boolean functions f : {−1, 1}n → {−1, 1}
and real-valued Boolean functions f : {−1, 1}n → R. All re-
sults in the following sections in fact hold for general multilin-
ear polynomials f : Rn → R (the domain is Rn × Rn = R2n

in the bivariate case), but because many of the key tools are
defined in the context of Boolean functions, we briefly discuss
those functions here before generalizing. All definitions and
results in this section other than Definition 3 are from [16].

Theorem 1. Every Boolean function f : {−1, 1}n → R can
be uniquely expressed as an n-variate multilinear polynomial,

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

This expression is called the Fourier expansion of f and
is determined by the Fourier coefficients of f on S which
are given by the function f̂ : 2[n] → R. Collectively, the
coefficients of f are referred to as the Fourier spectrum of
f . When we refer to the degree of a Boolean function, we
are referring to the degree of its Fourier expansion. Since
every such expansion is multilinear, the degree k of a Boolean
function f (or of any multilinear polynomial f ) is

k = max
f̂(S)6=0

|S|.

An important property of a Boolean function is the influence
of each coordinate of the input on the output of the function.
The influence of a coordinate quantifies how likely a particular
coordinate is to be pivotal. A coordinate i is pivotal for a
particular input x if negating xi negates the output f(x).

Definition 1. The influence of a coordinate i on a function
f : {−1, 1}n → {−1, 1} is defined to be the probability that
i is pivotal for a random input drawn uniformly:

Inf i[f ] = Pr
X∼{−1,1}n

[
f(X) 6= f(X⊕i)

]
,

where x⊕i = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

Informally, if we consider f to be a voting rule in a two-
party election, the influence of the ith coordinate can be
thought of as the “influence” or “power” of the ith voter. The
influences of a real-valued Boolean function can be defined
in a more analytical fashion, but with a very similar meaning.

Such an approach leads to a relation between the influences
and the Fourier spectrum which we treat as a definition.

Definition 2. For f : {−1, 1}n → R and i ∈ [n], the influence
of coordinate i on f is

Inf i[f ] =
∑
S3i

f̂(S)2.

We also use Definition 2 for general multilinear polynomials,
a choice which is justified by Lemma 2 below.1

We now present a few statements in anticipation of the BIP.
First, the BIP only holds for sequences of random variables
with well-behaved distributions. In particular, we make the
following assumption on each random variable in the two
sequences with which we are concerned.2

Assumption 1. The random variable Xi satifies E[Xi] = 0,
E
[
X2

i

]
= 1, E

[
X3

i

]
= 0, and E

[
X4

i

]
≤ 9.

Two examples of random variables satisfying Assumption 1
are a uniform ±1 random bit and a standard Gaussian.

The following two lemmas are used to prove the BIP by
the replacement method, and we use them to similar effect in
Section III. Lemma 1 is a simple hypercontractivity result.

Lemma 1 (Bonami Lemma). Let X = (X1, . . . , Xn) be
a sequence of independent but not necessarily identically
distributed random variables satisfying E[Xi] = E

[
X3

i

]
= 0

and E
[
X4
]
≤ 9E

[
X2
]2

. Let f be a multilinear polynomial
of degree at most k. Then

E
[
f(X)4

]
≤ 9k ·E

[
f(X)2

]2
.

Lemma 2. Let f : Rn → R be an n-variate multilinear poly-
nomial over the sequence of indeterminates x = (x1, . . . , xn),

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

When considering a sequence of independent random vari-
ables X = (X1, . . . , Xn) with E[Xi] = 0 and E

[
X2

i

]
= 1,

the parity functions χS =
∏

i∈S Xi are orthonormal, and
hence

E
[
f(X)2

]
=
∑
S⊆[n]

f̂(S)2.

This leads us to the formal statement of the BIP.

Theorem 2 (BIP). Let f : Rn → R be an n-variate mul-
tilinear polynomial of degree at most k. Let X and Y be
n-length sequences of independent random variables satisfying
Assumption 1. Let ψ : R → R be C4, i.e., the derivatives
ψ′, . . . , ψ′′′′ exist and are continuous, with ‖ψ′′′′‖∞ ≤ C.
Then

|E[ψ(f(X))]−E[ψ(f(Y))]| ≤ C

12
· 9k ·

n∑
t=1

Inf t[f ]2.

1Lemma 2 states that Parseval’s theorem holds for multilinear polynomials
which are applied to sequences satisfying Assumption 1. It is because of this
that we are justified in using Definition 2. See [16, ch. 8.2] for more detail.

2A slightly different form of the BIP holds for a looser set of assumptions.
Assumption 1 is a simpler hypothesis which keeps the bounds tidy and will
suffice for our purposes. See [9, sec. 3.3] for more detail.



The function ψ used in the BIP is called a test function
or a distinguisher, and is used to specify a particular notion
of “closeness” between two random variables. A natural
measure is cdf-closeness, which is used in the Berry-Esseen
Theorem. Two random variables X and Y are cdf-close if
Pr{X ≤ u} ≈ Pr{Y ≤ u} for all u ∈ R. Equivalently, two
random variables are cdf-close if E[ψ(X)] ≈ E[ψ(Y )] with
ψ(s) = 1s≤u for all u ∈ R. The BIP is powerful enough
to give bounds on cdf-closeness and many other notions of
closeness.3

B. Bivariate Functions

Finally, we specify the class of functions which we will
refer to throughout this paper simply as bivariate functions.

Definition 3. An n-bivariate multilinear polynomial func-
tion f : Rn × Rn → R over the sequences of indeterminates
x1 = (x1,1, . . . , x1,n) and x2 = (x2,1, . . . , x2,n) is a func-
tion of the form

f(x1,x2) =
∑

S1,S2⊆[n]

f̂(S1, S2)
∏
i∈S1

x1,i
∏
j∈S2

x2,j .

The form given in Definition 3 suggests that f̂(S1, S2) is
Fourier coefficient. Indeed, if we consider f to instead be
a function of the concatenated sequence x = x1‖x2, then
f̂(S1, S2) is the Fourier coefficient on the set S1 ∪S+

2 , where
S+
2 = {i+ n : i ∈ S2}. Nonetheless, we will not consider any

subtleties of Fourier theory for bivariate functions and we do
not make any claims about any of the classic Fourier identities
in this bivariate basis.

III. RANDOM FUNCTIONS

In anticipation of BVIP-1, we introduce in this section
the concept of random multilinear polynomials and prove a
version of the BIP for these functions.

Definition 4. A random n-variate multilinear polynomial
fZ : Rn → R is a multilinear polynomial over the sequence
of indeterminates x = (x1, . . . , xn) whose coefficients
f̂Z(S) ∈ R are random variables which are wholly determined
by the random variable Z:

fZ(x) =
∑
S⊆[n]

f̂Z(S)
∏
i∈S

xi.

The influence of coordinate i on fZ is a random variable which
is defined to be

Inf i[fZ] =
∑
S3i

f̂Z(S)2.

We think of Z as the random variable which controls fZ or,
alternatively, which describes the randomness of fZ. We will
sometimes refer to random multilinear polynomials simply as
random functions. Such functions will always be univariate.

3Note that continuity of ψ′′′′ is required. Smoothing techniques can be used
to approximate functions like ψ(s) = 1s≤u. There is of course a tradeoff
between the quality of the approximation and the magnitude of the fourth
derivative of the smoothed function. See [16, ch. 11] for more detail.

In pursuit of a version of the BIP for random functions, we
start with appropriate corollaries of Lemma 1 and Lemma 2.

Corollary 1. Let X = (X1, . . . , Xn) be a sequence of
independent but not necessarily identically distributed random
variables satisfying the requirement that E[Xi] = E

[
X3

i

]
= 0

and E
[
X4

i

]
≤ 9E

[
X2

i

]2
. Let fZ be a random multilinear

polynomial of degree at most k. Then

E
X,Z

[
fZ(X)4

]
≤ 9k · E

X,Z

[
fZ(X)2

]2
.

Proof. We expand the expectation over Z using the law of
total expectation. Without loss of generality, assume that Z is
a random variable over a discrete sample space Z . Then we
can write

E
X,Z

[
fZ(X)4

]
=
∑
z∈Z

Pr{Z = z}E
X

[
fZ(X)4 | Z = z

]
=
∑
z∈Z

Pr{Z = z}E
X

[
fz(X)4

]
,

where fz is the function fZ given that Z = z. Conditioning
on Z = z fixes the coefficients of fZ, allowing us to apply
Lemma 1 directly.

E
X,Z

[
fZ(X)4

]
≤
∑
z∈Z

Pr{Z = z} · 9k ·E
X

[
fz(X)2

]2
= 9k · E

X,Z

[
fZ(X)2

]2
.

If Z is a continuous space, then we must integrate over Z
and consider the pdf of Z, but the argument is otherwise
identical.

Corollary 2. Let fZ be a random n-variate multilinear poly-
nomial. When considering a sequence of independent random
variables X = (X1, . . . , Xn) satisfying E[Xi] = 0 and
E
[
X2

i

]
= 1, the parity functions χS =

∏
i∈S Xi are orthonor-

mal, and hence

E
X,Z

[
fZ(X)2

]
= E

Z

 ∑
S⊆[n]

f̂Z(S)2

.
Proof. As in the proof of Corollary 1, we expand the expec-
tation over Z using the law of total expectation.

E
X,Z

[
fZ(X)2

]
=
∑
z∈Z

Pr{Z = z}E
X

[
fZ(X)2 | Z = z

]
=
∑
z∈Z

Pr{Z = z}E
X

[
fz(X)2

]
.

Conditioning on Z = z, we apply Lemma 2 directly.

E
X,Z

[
fZ(X)2

]
=
∑
z∈Z

Pr{Z = z}
∑
S⊆[n]

f̂z(S)2


= E

Z

 ∑
S⊆[n]

f̂Z(S)2

.
Again, if Z is a continuous space, we must instead integrate
over Z and consider the pdf of Z to the same effect.



Our BIP for random functions is identical in spirit to
Theorem 2, but the resulting upper bound is in terms of the
expected influences of the given function.

Theorem 3 (BIP for Random Functions). Let fZ be a ran-
dom n-variate multilinear polynomial of degree at most k.
Let X and Y be n-length sequences of independent random
variables satisfying Assumption 1. Let ψ : R→ R be C4. Then∣∣∣∣ EX,Z

[ψ(fZ(X))]− E
Y,Z

[ψ(fZ(Y))]

∣∣∣∣ ≤ C

12
·9k·

n∑
t=1

E
Z

[Inf t[fZ]]
2
.

Proof. The proof closely follows the proof of the BIP given
in [16, ch. 11.6], so we omit some exposition which can be
found there. Nonetheless, for completeness we summarize the
arguments and highlight the points where the random functions
affect the process.

We use the replacement method and define

Ht = fZ(Y1, . . . , Yt, Xt+1, . . . , Xn),

such that H0 = fZ(X) and Hn = fZ(Y). We show that∣∣∣∣ E
X,Y,Z

[ψ(Ht−1)− ψ(Ht)]

∣∣∣∣ ≤ C

12
· 9k ·E

Z
[Inf t[fZ]]

2
. (1)

Summing over t and applying the triangle inequality will
complete the proof.

Let the random functions EtfZ and DtfZ be defined as

EtfZ(x) =
∑
S 63t

f̂Z(S)
∏
i∈S

xi

DtfZ(x) =
∑
S3t

f̂Z(S)
∏

i∈S\{t}

xi,

such that fZ(x) = EtfZ(x) +xtDtfZ(x). Since neither EtfZ
nor DtfZ depends on xt, we can define

Ut = EtfZ(Y1, . . . , Yt−1, ·, Xt+1, . . . , Xn),

∆t = DtfZ(Y1, . . . , Yt−1, ·, Xt+1, . . . , Xn),

so that

Ht−1 = Ut + ∆tXt, Ht = Ut + ∆tYt.

We can then bound (1) by taking 3rd-order Taylor expan-
sions of ψ(Ht−1) and ψ(Ht) and then taking the difference
between them. After subtracting and taking expectations over
X, Y, and Z, the 0th-order terms cancel directly, and the
1st-, 2nd-, and 3rd-order terms cancel because Xt and Yt are
independent of Ut and ∆t and Xt and Yt have matching 1st,
2nd, and 3rd moments. For the 4th-order error term, we apply
the triangle inequality and make use of the assumption that
|ψ′′′′(U∗t )|, |ψ′′′′(U∗∗t )| ≤ C to upper bound the left-hand side
of (1) by

C

24
·
(

E
X,Y,Z

[
(∆tXt)

4
]

+ E
X,Y,Z

[
(∆tYt)

4
])
.

All that remains is to bound

E
X,Y,Z

[
(∆tXt)

4
]
, E
X,Y,Z

[
(∆tYt)

4
]
≤ 9k ·E

Z
[Inf t[fZ]]

2
,

which can be done using Corollary 1. We give details for the
case of EX,Y,Z

[
(∆tXt)

4
]
. The case for EX,Y,Z

[
(∆tYt)

4
]

is
identical. Define

LtfZ(x) = xtDtfZ(x) =
∑
S3t

f̂(S)
∏
i∈S

xi.

Then, ∆tXt = LtfZ(Y1, . . . , Xt, . . . , Xn). Since LtfZ has
degree at most k we can apply Corollary 1 to obtain

E
X,Y,Z

[
(∆tXt)

4
]
≤ 9k · E

X,Y,Z

[
(∆tXt)

2
]2
. (2)

Finally, since the elements of X and Y all have mean 0 and
2nd moment 1, by Corollary 2

E
X,Y,Z

[
(∆tXt)

2
]

= E
Z

 ∑
S⊆[n]

L̂tfZ(S)2


= E

Z

[∑
S3t

f̂Z(S)2

]
= E

Z
[Inf t[fZ]]. (3)

Combining (2) and (3), we have that

E
X,Y,Z

[
(∆tXt)

4
]
≤ 9k ·E

Z
[Inf t[fZ]]

2
,

which completes the proof.

IV. A BIVARIATE INVARIANCE PRINCIPLE

We now present BVIP-1. To derive it, we iteratively apply
the BIP to replace each input sequence in turn. The first step in
this process is to treat the input sequence which is not currently
being replaced as a random parameter of the function, allowing
us to view the bivariate function as a random univariate
function. We can then use the BIP for random functions to
bound the error incurred by this replacement.

Theorem 4 (BVIP-1). Let f be an n-bivariate multilinear
polynomial in which each term includes at most k elements
from each input sequence:

f(x1,x2) =
∑

S1,S2⊆[n]

f̂(S1, S2)
∏
i∈S1

x1,i
∏
j∈S2

x2,j ,

where f̂(S1, S2) = 0 if |S1| > k or |S2| > k. Let X1, X2,
Y1, and Y2 be n-length sequences of independent random
variables satisfying Assumption 1. Assume ψ : R → R is C4
with ‖ψ′′′′‖∞ ≤ C. Then

|EX − EY | ≤
C

12
· 9k ·

n∑
t=1

(
Σ̃2

1,t + Σ̃2
2,t

)
, (4)

where

EX = E
X1,X2

[ψ(f(X1,X2))]

EY = E
Y1,Y2

[ψ(f(Y1,Y2))]

Σ̃1,t =
∑
S13t
|T2(S1)|

∑
S2∈T2(S1)

f̂(S1, S2)2

Σ̃2,t =
∑
S23t
|T1(S2)|

∑
S1∈T1(S2)

f̂(S1, S2)2,



and T2(S1) and T1(S2) are the sets

T2(S1) =
{
S2 ⊆ [n] : |S2| ≤ k, f̂(S1, S2) 6= 0

}
T1(S2) =

{
S1 ⊆ [n] : |S1| ≤ k, f̂(S1, S2) 6= 0

}
.

Proof. As described above, our strategy is to define random
functions fX2

and fY1
such that fX2

(X1) = f(X1,X2) and
fY1(X2) = f(Y1,X2). Applying Theorem 3 to fX2 bounds
the error incurred by replacing X1 with Y1. An application
of the same theorem to fY1

bounds the error in replacing X2

and Y2. Computing the expected influences of the random
functions and using the triangle inequality will complete the
proof.

We begin by constructing the desired random functions. Let
fX2

: Rn → R be defined as

fX2
(t) = f(t,X2)

=
∑

S1⊆[n]

 ∑
S2⊆[n]

f̂(S1, S2)
∏
j∈S2

X2,j

 ∏
i∈S1

ti

=
∑

S1⊆[n]

f̂X2
(S1)

∏
i∈S1

ti.

Similarly, let fY1
: Rn → R be defined as

fY1
(t) = f(Y1, t)

=
∑

S2⊆[n]

 ∑
S1⊆[n]

f̂(S1, S2)
∏
i∈S1

Y1,j

 ∏
i∈S2

ti

=
∑

S2⊆[n]

f̂Y1
(S2)

∏
i∈S2

ti.

Note that both fX2
and fY1

are of degree at most k and that
fX2(Y1) = fY1(X2). From the definitions of EX and EY ,

EX = E
X1,X2

[ψ(fX2(X1))]

EY = E
Y1,Y2

[ψ(fY1(Y2))].

By analogy, let

EXY = E
Y1,X2

[ψ(f(Y1,X2)]

= E
Y1,X2

[ψ(fX2(Y1)]

= E
Y1,X2

[ψ(fY1(X2)].

We upper bound the quantity of interest as

|EX − EY | ≤ |EX − EXY |+ |EXY − EY |. (5)

Applying Theorem 3 to each term on the right-hand side of
(5) yields

|EX − EXY | ≤
C

12
· 9k ·

n∑
t=1

E
X2

[Inf t[fX2 ]]
2 (6)

|EXY − EY | ≤
C

12
· 9k ·

n∑
t=1

E
Y1

[Inf t[fY1
]]
2
. (7)

All that remains is to bound the expected influences of
fX2

and fY1
. We handle the case of fX2

explicitly, with the
argument for fY1 being identical. For convenience, define

σ2(S1) =
∑

S2∈T2(S1)

f̂(S1, S2)2.

We have

E
X2

[Inf t[fX2
]] = E

X2

[∑
S13t

f̂X2
(S1)2

]

= E
X2

∑
S13t

 ∑
S2⊆[n]

f̂(S1, S2)
∏
j∈S2

X2,j

2


=
∑
S13t

E
X2


 ∑

S2∈T2(S1)

f̂(S1, S2)
∏
j∈S2

X2,j

2
 (8)

≤
∑
S13t

E
X2

σ2(S1)

 ∑
S2∈T2(S1)

∏
j∈S2

X2
2,j

 (9)

=
∑
S13t

σ2(S1)

 ∑
S2∈T2(S1)

E
X2

∏
j∈S2

X2
2,j

 (10)

=
∑
S13t

σ2(S1)

 ∑
S2∈T2(S1)

∏
j∈S2

E
X2

[
X2

2,j

] (11)

=
∑
S13t
|T2(S1)| · σ2(S1) (12)

= Σ̃1,t, (13)

where (8) follows from linearity of expectation and the
fact that for a given S1, we have f̂(S1, S2) 6= 0 only
if S2 ∈ T2(S2); (9) follows from the Cauchy-Schwarz in-
equality; (10) again follows from linearity of expectation;
(11) follows from the assumption that the elements of X2

are independent; and (12) follows from the assumption that
E
[
X2

2,j

]
= 1 for all j ∈ [n]. The same argument applied to

fY1
gives

E
Y1

[Inf t[fY1
]] ≤ Σ̃2,t. (14)

Substituting (13) and (14) into (6) and (7) respectively yields

|EX − EXY | ≤
C

12
· 9k ·

n∑
t=1

Σ̃2
1,t

|EXY − EY | ≤
C

12
· 9k ·

n∑
t=1

Σ̃2
2,t,

which, combined with (5), completes the proof.

V. DISCUSSION AND CONCLUSION

As a baseline against which we can compare the bound
of Theorem 4, we state as a corollary the bound which the
BIP yields when we treat a bivariate function as a univariate
function. Such a univariate interpretation takes as input the
concatenation of the two sequences which are the inputs to



the original bivariate function. We refer to this naive bivariate
invariance principle as BVIP-2.

Corollary 3 (BVIP-2). Let f be an n-bivariate multilinear
polynomial in which each term includes at most k elements
from each input sequence:

f(x1,x2) =
∑

S1,S2⊆[n]

f̂(S1, S2)
∏
i∈S1

x1,i
∏
j∈S2

x2,j ,

where f̂(S1, S2) = 0 if |S1| > k or |S2| > k. Let X1, X2,
Y1, and Y2 be n-length sequences of independent random
variables satisfying Assumption 1. Assume ψ : R → R is C4
with ‖ψ′′′′‖∞ ≤ C. Then

|EX − EY | ≤
C

12
· 92k ·

n∑
t=1

(
Σ2

1,t + Σ2
2,t

)
, (15)

where EX , EY , T2(S1) and T1(S2) are as defined in Theo-
rem 4, and

Σ1,t =
∑
S13t

∑
S2∈T2(S1)

f̂(S1, S2)2

Σ2,t =
∑
S23t

∑
S1∈T1(S2)

f̂(S1, S2)2.

Proof. The strategy is to define a univariate function g which
is equivalent to f when the two input sequences are considered
as a single sequence so that we may then apply the BIP
to g. Given a particular subset S ⊆ [2n], let S∗1 = S ∩ [n],
S̃∗2 = S ∩ {n+ 1, . . . , 2n}, and S∗2 = {i : n+ i ∈ S̃∗2}. Then
let g be a 2n-variate multilinear polynomial of degree such that

g(x) =
∑

S⊆[2n]

f̂(S∗1 , S
∗
2 )
∏
i∈S

xi.

For any n-length sequences x1 and x2, it is clear that
g(x1‖x2) = f(x1,x2), where x1‖x2 is the concatentation of
x1 and x2. Furthermore, since f̂(S1, S2) = 0 when |S1| > k
or |S2| > k, by construction g is of degree at most 2k.

Applying the BIP to g for the concatenations X = X1‖X2

and Y = Y1‖Y2 yields

|E[ψ(g(X))]−E[ψ(g(Y))]| ≤ C

12
· 92k ·

2n∑
t=1

Inf t[g]2. (16)

We now compute Inf t[g] in terms of the coefficients of f . By
definition, ĝ(S) = f̂(S∗1 , S

∗
2 ). Thus, for t ∈ [n],

Inf t[g] =
∑
S3t

Ĝ(S)2

=
∑
S13t

∑
S2⊆[n]

f̂(S1, S2)2

=
∑
S13t

∑
S2∈T2(S1)

f̂(S1, S2)2 (17)

= Σt,1.

where (17) follows from the definition of the set T2(S1). By
a parallel argument, for t ∈ {n+ 1, . . . , n},

Inf t[g] =
∑
S3t

Ĝ(S)2

=
∑

S23t−n

∑
S1⊆[n]

f̂(S1, S2)2

=
∑

S23t−n

∑
S1∈T1(S2)

f̂(S1, S2)2 (18)

= Σt−n,2.

Combining (17) and (18),

2n∑
t=1

Inf t[g]2 =

n∑
t=1

Inf t[g]2 +

2n∑
t=n+1

Inf t[g]2

=

n∑
t=1

Σ2
t,1 +

2n∑
t=n+1

Σ2
t−n,2

=

n∑
t=1

Σ2
t,1 + Σ2

t,2. (19)

Substituting (19) into (16) yields the desired inequality after
replacing g(X) and g(Y) on the left-hand side of (16) with
f(X1,X2) and f(Y1,Y2).

Note that in the context of BVIP-2, k is not strictly speaking
the degree of f , as it is in the BIP. Indeed, the degree of f
can be as large as 2k here, and as such, the bound incurs a
factor of 92k directly from the BIP.

Comparing the bounds of BVIP-1 and BVIP-2 given in (4)
and (15) respectively, the main differences are a factor of 9k

versus 92k and the quantity Σ̃i,t versus Σi,t (for i ∈ {1, 2}),
which we recall are defined (for i = 1) as

Σ̃1,t =
∑
S13t
|T2(S1)|

∑
S2∈T2(S1)

f̂(S1, S2)2

Σ1,t =
∑
S13t

∑
S2∈T2(S1)

f̂(S1, S2)2.

Thus, BVIP-1 trades a factor of 9k compared to BVIP-2 in
exchange for counting |T2(S1)| for each S1 (and likewise
|(T1(S2)| for each S2). We can conceptualize |T2(S1)| and
|T1(S2)| as measuring the “strength” of the interaction in f
between the inputs X1 and X2. If those cardinalities are large,
then there are many terms of f in which some coordinates
of X2 are multiplied with the coordinates of X1. Note that
|(T1(S2)| and |T2(S1)| both arise from applying the Cauchy-
Schwarz inequality, as in (9), and are hence upper bounds on
this interaction strength.

The question of whether BVIP-1 outperforms BVIP-2 for
a particular f is thus a question of whether the interaction
between X1 and X2 is “small enough” to beat the extra factor
of 9k incurred by BVIP-2. As a concrete example of a family
of functions for which BVIP-1 is always tighter than BVIP-2,
consider separable bivariate functions.



Definition 5. An n-bivariate multilinear polynomial function
F : Rn × Rn → R is separable into f , g, and h if it can be
written in terms of n-variate multilinear polynomials f, g, h :
Rn → R like

F (x1,x2) = f(x1) + g(x2) + h(x1x2).

For separable functions, the bounds of both bivariate in-
variance principles can be cleanly expressed in terms of the
influences of f , g and h, resulting in a form which is very
close to that of the BIP.

Corollary 4 (Separable BVIP-1). Let F be an n-bivariate
multilinear polynomial which is separable into f , g, and h,
each of which is of degree at most k. Let X1, X2, Y1, and
Y2 be n-length sequences of independent random variables
satisfying Assumption 1. Assume ψ : R → R is C4 with
‖ψ′′′′‖ ≤ C. Then

|EX − EY | ≤
2C

3
·9k·

n∑
t=1

(
Inf t[f ]2 + Inf t[g]2 + 2 Inf t[h]2

)
,

where EX and EY are as defined in Theorem 4.

Proof. By assumption, F is of the form

F (x1,x2) = f(x1) + g(x2) + h(x1x2).

Since f , g, and h are each of degree at most k, each term
of F includes at most k elements from each input sequence.
Thus, we can apply Theorem 4.

For separable functions, we can compute T2(S1) and T1(S2)
directly. We have

T2(S1) = {∅, S1}, T1(S2) = {∅, S2},

Hence, for a given S ⊆ [n], the only (possibly) non-zero
coefficients of F are

F̂ (S, ∅) = f̂(S), F̂ (∅, S) = ĝ(S), F̂ (S, S) = ĥ(S).

Computing Σ̃1,t, we have

Σ̃1,t =
∑
S13t
|T2(S1)|

∑
S23T2(S1)

F̂ (S1, S2)2

=
∑
S13t

2
(
F̂ (S1, ∅)2 + F̂ (S1, S1)2

)
=
∑
S13t

2
(
f̂(S1)2 + ĥ(S1)2

)
= 2

∑
S13t

f̂(S1)2 + 2
∑
S13t

ĥ(S1)2

= 2 Inf t[f ] + 2 Inf t[h].

Similarly, we have

Σ̃2,t = 2 Inf t[g] + 2 Inf t[h].

A simple application of Cauchy-Schwarz yields

Σ̃2
1,t + Σ̃2

2,t ≤ 8 Inf t[f ]2 + 8 Inf t[g]2 + 16 Inf t[h]2. (20)

Substituting (20) into the bound of Theorem 4 yields the
desired inequality.

Corollary 5 (Separable BVIP-2). Let F be an n-bivariate
multilinear polynomial which is separable into f , g, and h,
each of which is of degree at most k. Let X1, X2, Y1, and
Y2 be n-length sequences of independent random variables
satisfying Assumption 1. Assume ψ : R → R is C4 with
‖ψ′′′′‖ ≤ C. Then

|EX − EY | ≤
C

6
·92k ·

n∑
t=1

(
Inf t[f ]2 + Inf t[g]2 + 2 Inf t[h]2

)
,

where EX and EY are as defined in Theorem 4.

Proof. As in the proof of Corollary 4, we again have

T2(S1) = {∅, S1}, T1(S2) = {∅, S2},
with the possibly non-zero coefficients for a given S ⊆ [n]
being

F̂ (S, ∅) = f̂(S), F̂ (∅, S) = ĝ(S), F̂ (S, S) = ĥ(S).

Computing Σ1,t, we have

Σ1,t =
∑
S13t

∑
S2∈T2(S1)

F̂ (S1, S2)2

=
∑
S13t

F̂ (S1, ∅)2 + F̂ (S1, S1)2

=
∑
S13t

f̂(S1)2 +
∑
S13t

ĥ(S1)2

= Inf t[f ] + Inf t[h].

Similarly, we have

Σ2,t = Inf t[g] + Inf t[h].

A simple application of Cauchy-Schwarz yields

Σ2
1,t + Σ2

2,t ≤ 2 Inf t[f ]2 + 2 Inf t[g]2 + 4 Inf t[h]2. (21)

Substituting (21) into the bound of Corollary 3 yields the
desired inequality.

Clearly, for separable functions BVIP-1 yields a bound
which is asymptotically tighter than that of BVIP-2 by a factor
of 9k. This is due to the fact that |T2(S1)| and |T1(S2)| are
constants for the case of separable functions. Note that this is
not a general phenomenon: we can define functions such that
|T2(S1)|, |T1(S2)| ≥ 9k, in which case BVIP-2 would provide
a tighter bound. Nonetheless, for bivariate functions in which
the interaction between inputs is not too strong or for functions
of high degree, BVIP-1 will be tighter than the naive baseline
of BVIP-2.

The fact that BVIP-1 is looser than BVIP-2 for some
functions is evidence that our analysis is not perfect. It is
left to future work to investigate and quantify the effect of
the maximum degree and the interaction of the two inputs
on the relative performance of these invariance principles.
Furthermore, it is possible that other methods for proving
the BIP would naturally lead to other bivariate invariance
principles which may further elucidate this tradeoff or reveal
new aspects of the problem. Finally, we also note that the
bivariate method in this paper could potentially be extended
to address multivariate, multilinear polynomials.



REFERENCES

[1] S. Skyum and L. G. Valiant, “A complexity theory based on Boolean
algebra,” Journal of the ACM, vol. 32, no. 2, pp. 484–502, 1985.

[2] L. Babai, P. Frankl, and J. Simon, “Complexity classes in communication
complexity theory,” in 27th Annual Symposium on Foundations of
Computer Science (SFCS 1986), 1986, pp. 337–347.

[3] C. Carlet, Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press, 2021.

[4] T. W. Cusick and P. Stanica, Cryptographic Boolean Functions and
Applications. Academic Press, 2017.

[5] G. Kalai and E. Mossel, “Sharp thresholds for monotone non-Boolean
functions and social choice theory,” Mathematics of Operations Re-
search, vol. 40, no. 4, pp. 915–925, 2015.

[6] A. M. Alturki and A. M. Ali Rushdi, “Weighted voting systems: A
threshold-Boolean perspective,” Journal of Engineering Research, vol. 4,
no. 1, pp. 1–19, 2016.

[7] C. E. Shannon, “A symbolic analysis of relay and switching circuits,”
Electrical Engineering, vol. 57, no. 12, pp. 713–723, 1938.

[8] R. E. Bryant, “On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multi-
plication,” IEEE transactions on Computers, vol. 40, no. 2, pp. 205–213,
1991.

[9] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, “Noise stability of
functions with low influences: invariance and optimality,” in 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’05),
2005, pp. 21–30.

[10] A. C. Berry, “The accuracy of the Gaussian approximation to the sum
of independent variates,” Transactions of the american mathematical
society, vol. 49, no. 1, pp. 122–136, 1941.

[11] C.-G. Esseen, “On the Liapounoff limit of error in the theory of
probability,” Arkiv för matematik, astronomi och fysik, vol. 28, no. 9,
pp. 1–19, 1942.

[12] L. S. Penrose, “The elementary statistics of majority voting,” Journal of
the Royal Statistical Society, vol. 109, no. 1, pp. 53–57, 1946.

[13] V. Abdrashitov, M. Médard, and D. Moshkovitz, “Matched filter decod-
ing of random binary and gaussian codes in broadband gaussian chan-
nel,” in 2013 IEEE International Symposium on Information Theory.
IEEE, 2013, pp. 2528–2523.

[14] R. G. L. D’Oliveira, S. El Rouayheb, and M. Médard, “The computa-
tional wiretap channel,” in 2018 56th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2018, pp. 1136–
1140.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 2006.

[16] R. O’Donnell, Analysis of Boolean Functions. Cambridge University
Press, 2014.


	I Introduction
	II Preliminaries
	II-A Results from Analysis of Boolean Functions
	II-B Bivariate Functions

	III Random Functions
	IV A Bivariate Invariance Principle
	V Discussion and Conclusion
	References

