
ar
X

iv
:2

20
4.

00
97

9v
1

 [
cs

.D
C

]
 3

 A
pr

 2
02

2

Breaking Blockchain’s Communication

Barrier with Coded Computation
Canran Wang and Netanel Raviv

Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63103.

Abstract

Although blockchain, the supporting technology of various cryptocurrencies, has offered a potentially effective framework
for numerous decentralized trust management systems, its performance is still sub-optimal in real-world networks. With limited
bandwidth, the communication complexity for nodes to process a block scales with the growing network size and hence becomes
the limiting factor of blockchain’s performance.

In this paper, we suggest a re-design of existing blockchain systems, which addresses the issue of the communication burden.
First, by employing techniques from Coded Computation, our scheme guarantees correct verification of transactions while reducing
the bit complexity dramatically such that it grows logarithmically with the number of nodes. Second, with the adoption of
techniques from Information Dispersal and State Machine Replication, the system is resilient to Byzantine faults and achieves
linear message complexity. Third, we propose a novel 2-dimensional sharding strategy, which inherently supports cross-shard
transactions, alleviating the need for complicated communication protocols between shards, while keeping the computation and
storage benefits of sharding.

I. INTRODUCTION

Blockchain is an append-only decentralized system, in which data resides in a chain of blocks that are periodically proposed

and agreed upon by a consensus mechanism. Although it is a promising platform for various applications, its performance is

sub-optimal due to the limited bandwidth and the scaling communication complexity, in terms of message complexity and bit

complexity. Message complexity is measured by the number of transferred messages, and bit complexity is characterized by

the number of communicated bits.

The performance of Bitcoin [2], the first double-spending-resistent cryptocurrency in a public peer-to-peer network, is

inherently limited by its design. For a valid new block to be generated, the competing nodes invest the majority of time

in solving Proof-of-Work (PoW) puzzles. Consensus is reached on the sole block proposed by the winner, which is then

propagated to the remaining nodes and appended to each local chain. Such a concatenated consensus-then-propagation scheme

fails to fully utilize the bandwidth of nodes, since the network remains idle during the PoW puzzle solving period.

Meanwhile, the security of Bitcoin is guaranteed by the fact that the time interval between blocks is sufficiently greater than

the block transmission time [3]. Otherwise, frequent forks, which occur when multiple blocks are proposed simultaneously

cause temporary inconsistency between nodes, and jeopardize the safety of the system. In other words, the PoW puzzle should

take a sufficiently long period of time to solve, compared with the required time for the majority of node to receive a block.

Together, naı̈ve reparameterization such as reducing the difficulty of the PoW puzzle or enlarging the block size degrades

security, and a comprehensive redesign is required to improve Bitcoin’s performance.

A widely adopted paradigm to achieve high-performance blockchain systems is to parallelize consensus and propagation,

and hence to maximize the efficiency of bandwidth usage [4, 5, 6, 46]. Works following this path inherit the PoW mechanism

to periodically select an entity from the public network as a leader, which could be a node or a committee of nodes. The

selected entity is allowed to continuously generate blocks in parallel with the leader election mechanism, until the next entity

is selected. Compared with Bitcoin, this paradigm persistently utilizes the bandwidth of nodes, and hence improves system

performance.

In another direction, researchers attempt to improve Bitcoin by replacing its PoW mechanism, which is seen as the root

cause of the scalability issue and huge energy consumption. Proof-of-Stake (PoS) is a noteworthy alternative used by [7, 8, 9],

which does not involve the computation-intensive PoW puzzle solving. Instead, the chance for each individual node being

selected as the leader, or one of the leaders, is proportional to its stake, referring to the value resides in the blockchain system.

Although the aforementioned attempts improve the performance of blockchain to some extent, a fundamental obstacle

remains. That is, every node must receive every transaction. This requirement is paramount to the safety and decentralization

of blockchain systems, but unfortunately leads to an inevitable Ω(NP) bit complexity for a block B containing P transactions

to be confirmed, given a network of N nodes.

Sharding [23] is a novel paradigm proposed to address this problem. The network is sliced into multiple communities

of a similar sizes, each individually processes a disjoint set of data [24, 25, 26]. The constant community size reduces the

communication complexity as one transaction is only propagated within one community. As a result, the system throughput

scales with the number of nodes, as additional nodes form extra communities and process additional transactions.

Parts of this paper have previously appeared in [1].

1

http://arxiv.org/abs/2204.00979v1

In sharding-based blockchain designs, random node rotation, or even reassignment, is necessary to avoid concentration

of adversaries in one community. Further, sharding creates a distinction between two types of transactions; a transaction is

called intra-shard if the sender and the receiver belong to the same community, and called cross-shard otherwise. Hence, extra

mechanisms are required in this path, which is an added complexity that degrades the system’s performance and diminishes

the benefits of sharding.

Coding has been introduced to bypass the requirement for every node to receive every transaction, which leads to the invention

of coded blockchain. Duan et al. propose BEAT3 [27], a BFT storage system that enables each node to periodically store a

relatively small coded fragment generated from the whole data block. The error-correcting code guarantees reconstruction of

the original data block from sufficiently many of fragments. The AVID-FP [32] protocol is used to assure that fragments stored

by correct nodes correspond to a unique original data block. However, as a BFT storage system, BEAT3 does not concern

external validity, which assures that the stored data is acceptable to a specific application [28]. In Blockchain’s scenario, nodes

in BEAT3 cannot verify the correctness of each stored transaction.

The introduction of coded computation partially alleviates the security problems in sharding, and provides support for external

validity. Li et al. [29] proposed Polyshard, which offers a novel separation between nodes and shards. Polyshard formulates

the verification of transactions as computation tasks, one for each shard, to be solved across all nodes in a distributed manner.

Using Lagrange Coded Computing (LCC) [30], nodes individually compute a polynomial verification function over a coded

chain and a coded block. Since verification is performed in a coded fashion, and a node does not verify or store transactions

for any specific shard, the need for node rotation/reassignment is removed.

Polyshard implicitly assumes that the performance bottleneck stems from insufficient computation resources in nodes, rather

than limited communication bandwidth, and considers the system as a computation cluster with a highly synchronous network.

The bit complexity, however, is again O(NP), as Polyshard requires every node to firstly reach a consensus of the whole

block B and then perform encoding individually. Otherwise, as pointed out in [11], the system can be broken by a discrepancy

attack. Besides, the messages complexity is O(N2), due to the fact that Polyshard involves an all-to-all communication

operation.

Finally, coding has been employed in blockchain system that allows light nodes. Unlike full nodes that validate and store

all transactions, light nodes only download the header of each block, and hence addressing the O(NP) bit complexity. The

header contains the root of a Merkle tree whose transactions are the leaves; it allows light nodes to verify the inclusion of any

transaction in the corresponding block by downloading a Merkle proof from full nodes. However, the data availability problem

arises, i.e., upon receiving a header and Merkle proof, a light node cannot assure the corresponding block is fully available to

the network, while the undisclosed part of the block may be invalid. A coding-based solution to data availability problem has

bee proposed by [47] and further improved by [48]. In this paper, we only consider full nodes, and leave the incorporation of

light nodes for future work.

Our Contributions

In this paper, we propose a fundamental re-design for coded blockchain, which resolves many of the issues in contemporary

coded blockchain systems. In particular, this re-design addresses the issue that every node should receive every transaction,

and hereby resolves the presumably inevitable Ω(NP) bit complexity, that is also prevalent in ordinary (that is, uncoded)

blockchain systems. Further, it achieves linear message complexity by resolving the issue of all-to-all communication, which

is message-heavy but necessary for decoding the results of the computation. On top of this gain, we adopt Lagrange coded

computing—similar to existing designs—to achieve comparable levels of decentralization and security guarantees with respect

to uncoded (i.e., ordinary) blockchain. In detail,

1) By employing techniques from Lagrange Coded Computing [30], our scheme allows nodes to perform verification

on coded transactions, whose size is a fraction of the entire block. Our method incurs O(P log2M logN) bit complexity

to process a block with P transactions, where M is the total number of transactions in one shard. As an alternative

interpretation, the average bit complexity to process a block is O(log2M logN).
2) By devising techniques inspired by Information Dispersal and BFT SMR protocols, our design allows a leader node

to securely distribute coded transactions, under the presence of a certain fraction of Byzantine nodes, with O(N)
message complexity in the partial synchrony model. In the suggested parameter regime and under standard cryptographic

assumptions, our design is provably secure to any attack that aims at breaking the consistency of the system, and in

particular the attack pointed out by [11].

3) We propose 2-Dimensional Sharding, a new technique which partitions the transactions based on their senders and

receivers, respectively. This design provides inherent support for cross-shard transactions, alleviating the need for com-

plicated communication mechanisms. More precisely, in our design there is no difference between the verification process

of cross- and intra-shard transactions.

4) Our design inherits the unspent transaction output (UTXO) model and formulates the verification process as computing

a polynomial function with a degree that scales logarithmically with the number of transactions on a shard. In detail,

our scheme addresses the degree problem by replacing current cryptographic primitives (i.e, ECDSA, SHA256 and

RIPEMD-160) by multivariate cryptography in the generation and verification of a transaction.

2

These contributions bring coded blockchain closer to feasibility. That is, our scheme achieves linear message complexity and

logarithmic bit complexity and removes the boundary between shards with inherent support for cross-shard transactions. The

rest of this paper is organized as follows. Section II introduces necessary background. Section III details the coded verification

scheme. Section IV discusses the communication aspect of our design, including the propagation of transactions and the

exchange of computation results. Section V analyzes the security, communication complexity, and the tradeoff between them.

Section VI discusses the future research directions.

II. BACKGROUND

A. Lagrange Coded Computing

Coded computing broadly refers to a family of coding-inspired solutions for straggler- and adversary-resilient distributed com-

putation. Tasks of interest include matrix-vector multiplication [51], matrix-matrix multiplication [52], gradient-computations [53,

54], and more. Further works on the topic include exploitation of partial stragglers [55], heterogeneous networks [57], and

timely coded computing [56].

Lagrange Coded Computing [30] (LCC) is a recent development in the field of coded computation. The task of interest is

computing a multivariate polynomial f(X) on each of the K datasets {X1, . . . , XK}. LCC employs the Lagrange polynomial

to linearly combine the K datasets with T redundant datasets {Z1, . . . , ZT } chosen uniformly at random, generating N distinct

coded dataset {X̃1, . . . , X̃N} with injected computational redundancy.

The encoding of LCC is performed by first choosing mutually disjoint sets {α1, . . . , αN} and {ω1, . . . , ωK , . . . , ωK+T}
with elements in Fq. The generator matrix GL is then defined as

GL =




Φ1(α1) Φ1(α2) . . . Φ1(αN)
...

...
. . .

...

ΦK+T (α1) ΦK+T (α2) . . . ΦK+T (αN)


 , (1)

where Φk(z) is the Lagrange polynomial

Φk(z) =
∏

j,k∈[K+T],j 6=k

z − ωj

ωk − ωj
. (2)

The coded datasets is generated as (X̃1, . . . , X̃N) = (X1, . . . , XK , Z1, . . . , ZT) ·GL. Every worker node i ∈ [N] computes

and returns a coded result f(X̃i). The leader obtains f(X1), . . . , f(XK) by performing decoding on collected coded results.

LCC achieves the optimal tradeoff between resiliency, security and privacy. It tolerates up to S stragglers and A adversarial

nodes, defined as working nodes that are unresponsive or return erroneous results, respectively. In addition, with proper

incorporation of random keys, it also prevents the exposure of the original datasets to sets of at most T colluding workers, as

long as

(K + T − 1) deg f + S + 2A+ 1 ≤ N.

B. State Machine Replication

The state machine replication (SMR) approach [12, 13] formulates a service, e.g., a network file system, as a state machine

to be replicated in participating nodes. The state can be altered by client-issued service requests. To ensure the consistency of

the states, nodes must agree on a total order of execution for requests.

An SMR implementation must guarantee safety and liveness. Safety suggests that no two nodes confirm different order of

requests, and liveness imposes that the system continuously accepts and executes new requests. Further, an SMR protocol is

said to be Byzantine Fault-Tolerant (BFT) if it is resilient to Byzantine faults, as coined by Lamport et al. [10], which are

defined as arbitrary (and possibly malicious) behaviour of nodes.

Network models plays an important role in the design of SMR protocols. In an asynchronous systems, message can be

delayed by any finite amount of time, but eventual delivery is guaranteed. BFT SMR protocols which operate in this model

employ randomization to bypass the famous FLP impossibility [50]. This impossibility result states that in the presence of

even one faulty node (not necessarily Byzantine), it is impossible to guarantee consensus with a deterministic protocol. Works

following this path include [21, 22, 27].

As proposed by Dwork et al. [49], partial synchrony is another noteworthy network model. In this setting, message delivery

is asynchronous until an unknown Global Stabilization Time (GST). After GST, the system becomes synchronous, where

message delay is bounded by a known constant ∆. PBFT [15] is the first practical implementation of BFT SMR in the the

partial synchrony model. It guarantees safety always, and provides liveness when the system becomes synchronous.

PBFT employs a leader to propose client-issued requests, and it takes two phases of all-to-all communication for the decision

on one request. To prohibit Byzantine leaders from proposing different requests to different nodes, a proposal is considered

valid only after being signed by a quorum of N−f nodes in the first phase, known as a quorum certificate (QC), where f is the

3

number of Byzantine nodes. Next, nodes commit the request after receiving another N−f votes in the second phase. A quorum

contains enough nodes such that any two quorums must intersect on at least one correct node [14]. Such a property guarantees

that correct nodes entering the second phase are consistent on the same request. In addition, it assures that the proposals from

subsequent leaders (should the previous one crash) are consistent in request and hence maintains safety during leader switches.

This celebrated two-phase paradigm serves as the foundation of future leader-based BFT SMR protocols [16, 17, 18, 19].

Bitcoin coined the word blockchain, providing an alternative implementation of SMR, particularly for value transfer systems

in large networks. It maintains an ordered sequence (chain) of blocks (requests), each contains transactions that incur value

(bitcoins) transfers between clients. Nodes invest computation power into PoW puzzle solving for the right to propose the next

block; they are incentived by a reward in values. In particular, nodes look for a new block by trial and error. The new block

must extends the current chain (i.e., contains a hash pointer to the last block on the chain), and the hash value of which must

satisfy a certain rule (e.g., begin with a sequence zeros). The winner of the competition disseminates its block to the network

by gossip protocol, which is then appended to each local chain. Unlike the protocol discussed earlier, the safety of Bitcoin

relies on synchrony. Further, the finality property (i.e., a consensus once reached cannot be reverted) of Bitcoin is probabilistic.

In practice, a block is considered irrevertible after being followed by six new blocks. Numerous blockchain designs have been

introduced to improve Bitcoin (see Section I).

HotStuff [20] bridges PBFT-like protocols and Bitcoin-like protocols. It extends the two-phase paradigm of PBFT to three

phases, each contains a nearly identical communication operation between the leader and the nodes. Due to this remarkable

simplicity, HotStuff can be easily pipelined; i.e., the second phase on a block functions as the first phase on the following

block, as well as the last phase on the preceding block. Therefore, a block is irrevitible after three new blocks being appended

to it, which is similar to the case of Bitcoin. Besides, the extra phase allows HotStuff to be the first protocol that simultaneously

achieves linear message complexity and responsiveness during leader switches. A leader switch is said to be responsive if the

new leader only has to collect a quorum of leader-switch messages, and there is no requirement for it to wait for a predefined

time period.

Due to these merits, we adopt HotStuff as the core consensus protocol, and employ techniques from coded computation

and information dispersal (define next) to reduce bit complexity. Our work can be regarded as a communication-efficient

implementation of coded state machine [58], which simultaneously maintains K state machines (shards) and employ coded

computation to combat Byzantine faults.

Remark 1. BFT SMR protocols focus on the communication complexity induced by reaching a consensus on the order of

the requests. It is generally assumed that each request is broadcast to every node by the issuing client, and this process is out

of the scope of communication complexity analysis. However, blockchain systems usually require the leader to collect and

distribute transactions, which must be considered in analyzing the communication complexity.

C. Information Dispersal

In a coded distributed information system, a file X ∈ F
δK
q to be stored is first partitioned to K parts X = (X⊺

1 , . . . , X
⊺

K)
whereX⊺

k ∈ F
δ×1
q . A Maximum Distance Separable (MDS) error-correcting code C, induced by a generator matrix GC ∈ F

K×N
q ,

is used to generate N coded fragments X̃ = (X̃⊺

1 , . . . , X̃
⊺

N) = X ·GC . Each of the N nodes stores one coded fragment. The

MDS property of C codes guarantees that any K ×K submatrix of GL is of full rank and hence any K coded fragments are

sufficient to reconstruct X , tolerating up to N −K crashes.

Research in this field normally concerns a scenario where an external client wants to disperse a file X to the system. That is,

for every node i to store the corresponding coded fragment X̃i. Byzantine faults can cause inconsistency of coded fragments,

i.e., nodes might store coded fragments that do not correspond to the same file X . Efforts has been made on developing

protocols to combat Byzantine faults in this scenario.

AVID-FP (where FP stands for fingerprinting) [32] enables a client to distribute coded fragments of some file X to nodes in

a distributed system, along with a checksum, i.e., a list of fingerprints of every coded fragment. AVID-FP inherits the properties

of Cachin’s Asynchronous Verifiable Information Dispersal (AVID) protocol [31], with additional fingerprints. The fingerprints,

generated by a homomorphic fingerprinting function (defined formally in the sequel) preserves the structure of error-correcting

codes, and allows node i to verify that the received fragment corresponds to a unique file X . In this paper, we propose an

efficient transaction propagation scheme that integrates the steps of AVID-FP and coding techniques (see Section IV).

D. The Unspent Transaction Output (UTXO) Model

In the UTXO model, value resides in transactions, instead of client accounts. A transaction has inputs and outputs. An

unspent output of an old transaction serves as an input to a new transaction, incurring a value transfer between the two. The

old UTXO is then invalidated, since it has been spent, and new UTXO is created in the new transaction.

The UTXO model makes extensive use of cryptographic hash functions and digital signatures. The uninformed reader is

referred to [2, Sec. 2] for a thorough introduction to the topic. In a nutshell, a transaction output contains the amount of stored

value and the intended receiver’s address, which is the hash value of her public key. Besides, the sender attaches his public

4

key and signs the transaction with his secret key. For a transaction to be valid, the hash value computed from the sender’s

public key must match the address in the referenced UTXO. Also, the signature must be valid when checked by the public

key. This two-step verification process guarantees the sender’s possession of the public and secret keys, proves his identity as

the receiver of the redeemed UTXO, and protects the integrity of the new transaction.

Although a transaction may have multiple inputs and outputs, we adopt a simplified UTXO model in our scheme for clarity,

where a transaction has exactly one input and one output, and transfers one indivisible coin.

E. Cryptographic Primitives

We assume that a public key infrastructure (PKI) exists among nodes. That is, every node i can create a signature 〈m〉σi
on

a message m using its private key σi. Meanwhile, such a signature can be verified by the corresponding public key, which is

shared by all nodes. Further, we employ a threshold signature [34] scheme. A (t, n)-threshold signature scheme π contains a

single public key shared by all nodes. Every node i possess a private key πi which allows it to create a partial signature 〈m〉π,i
on message m. A valid threshold signature 〈m〉π = tcombine(m, {〈m〉π,i}i∈I) can be produced using function tcombine from

a set of partial signatures {〈m〉π,i}i∈I of size |I| = t, but not smaller. Hence, it is guaranteed that the message m has been

signed by t nodes if the signature verification function tverify(m, 〈m〉π) returns true.

In addition, in order to formulate the verification of transactions as the computation of polynomials, clients use a multivariate

public key cryptosystem (MPKC) [36, 37, 38] as a signature scheme. MPKC is based on the multivariate quadratic (MQ)

problem, which is believed to be hard even for quantum computers. An MQ problem involves a system of m quadratic

polynomials {p(1), . . . , p(m)} in n variables {y1, . . . , yn} over some finite field Fq , i.e.,

p(y) =
∑

0<i≤j<n

a(i,j)yiyj +
∑

0<i<n

biyi + c,

where a, b, and c are vectors in F
m
q . The solution is a vector u = (u1, . . . , un) ∈ F

n such that p(u) = (0, . . . , 0) ∈ F
m
q .

In general, the public key of a MPKC is the set of coefficients of the quadratic polynomial system. A valid signature s ∈ F
n
q

on a message w ∈ F
m
q is the solution to the quadratic system p(y) = w. In addition to MQ-based signature schemes, hash

functions based on multivariate polynomials of low degree have been studied [40, 41, 42]. In the remainder of this paper, we

assume a polynomial hash function over Fq of a constant degree.

III. CODED VERIFICATION

In this section, we first introduce our general settings and assumptions. Based on these settings, we discuss the verification

of transactions. As in the UTXO model, the verification process starts from fetching an existing transaction stored in the

chain, and proceeds with the address check and signature verification process. Together, the entire verification is formulated as

computing a polynomial function. Consequently, we demonstrate the incorporation of Lagrange Coded Computing, showing

how verification can be performed in a coded manner.

A. Setting

The system includes N nodes and K client communities of equal size. The nodes are responsible for collecting, verifying

and storing transactions; clients issue transactions and transfer coins between each other. Note that clients are affiliated with

communities, whereas nodes are not. Transactions are proposed by clients and verified by nodes periodically during time

intervals, called epochs, denoted by a discrete time unit t.
We formulate the block containing all transactions in epoch t as a matrix,

B(t) =



b1,1 b1,2 . . . b1,K

...
...

. . .
...

bK,1 bK,2 . . . bK,K


 , (3)

where every bk,r ∈ F
Q×R
q is a tiny block, formed as a concatenation of Q transactions with senders in community k and

receivers in community r; each transaction x ∈ F
R
q is a vector of length R over some finite field Fq.

We partition the block B(t) into outgoing strips and incoming strips, as shown in Fig. 1. An outgoing strip

h
(t)
k = (bk,1, . . . , bk,K) ∈ (FQ×R

q)K

is a vector containing transactions with senders in community k. Similarly, an incoming strip

v
(t)
k = (b1,k, . . . , bK,k) ∈ (FQ×R

q)K

stands for a collection of all transactions in epoch t with receivers in community k. Equivalently, one can view an outgoing

strip h
(t)
k as the k-th row of matrix B(t), and incoming strip v

(t)
k as the transpose of the k-th column of matrix B(t), i.e.,

B(t) =
[
(v

(t)
1)⊺, (v

(t)
2)⊺, . . . , (v

(t)
K)⊺)

]
=

[
(h

(t)
1)⊺, (h

(t)
2)⊺, . . . , (h

(t)
K)⊺

]⊺
.

5

h
(t)
1 F(t)

F(t)

F(t)

F(t)

v
(t)
1

Filter

v
(t)
2 v

(t)
3 v

(t)
4

v
(t−1)
1 � v

(t−2)
1 � . . . � v

(1)
1

v
(t−1)
2 � v

(t−2)
2 � . . . � v

(1)
2

v
(t−1)
3 � v

(t−2)
3 � . . . � v

(1)
3

v
(t−1)
4 � v

(t−2)
4 � . . . � v

(1)
4

h
(t)
2

h
(t)
3

h
(t)
4

Link

Shards

Verification

ResultsBlock B(t)

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

V
(t)
1

V
(t)
2

V
(t)
3

V
(t)
4

Link

Link

Link

Fig. 1. Illustration of 2-Dimensional Sharding in a blockchain system with 4 shards. The block B(t) is horizontally sliced into outgoing strips h
(t)
1 , . . . ,h

(t)
4

and vertically sliced into incoming strips v
(t)
1 , . . . ,v

(t)
4 . The outgoing strip h

(t)
k

is verified against the corresponding shard V
(t)
k

using the verification

function F(t), for k = 1, 2, 3, 4. Together, the verification results reveal the validity of every transaction, and help to filter out the invalid transactions in the
incoming strips, which are finally linked to the corresponding shards.

Formally, we define a shard V
(t)
k =

(
v
(1)
k , . . . ,v

(t)
k

)
as a concatenation of incoming strips associated with community k

from epoch 1 to epoch t, which contains M(t) transactions. Note that our definition of a shard is slightly different from the

existing literature1. This definition provides a inherent support for cross-shard transactions, which will be elaborated in sequel.

Remark 2. A coded outgoing strip h
(t)
k contains transactions redeeming UTXOs from shard V

(t)
k . In later sections, we present

a polynomial function that verifies h
(t)
k against V

(t)
k . The results are used to filter out invalid transactions in the incoming

strip v
(t)
k before they are appended to the shard. As a result, our setting does not differentiate intra- and cross-shard transactions,

alleviating the need for sophisticated cross-shard communication mechanisms.

B. Polynomial Verification Function

In our setting, a new transaction is of the form xnew = (unew,pnew , anew, snew), where:

1) unew ∈ F
T (t−1)×2
q is a lookup matrix used to index the previous transaction, where T (t) = log2M(t).

2) pnew ∈ F
B
q is the sender’s public key, containing all coefficients of an MQ system.

3) anew ∈ F
C
q is the receiver’s address, i.e., the hash value of the receiver’s public key.

4) snew ∈ F
D
q is the senders signature on x′

new = (unew ,pnew, anew)

Verifying xnew includes three crucial parts:

• Transaction Fetching: To fetch the corresponding old transaction xold = (uold,pold, aold, sold) from which xnew redeems

the UTXO.

• Address Checking: To check whether the hash value of pnew matches aold.

• Signature Verification: To verify that snew is a valid signature on the hash value of x′
new by using the public key pnew.

In detail, the above parts are executed as follows.

1Sharding in blockchain broadly refers to the practice of partitioning nodes among different committees (in a possibly random fashion), each individually
handles a portion of verification and storage [23]. On the contrary, we do not assign individual node to any specific committee, but partition clients among
communities. Meanwhile, we partition transactions based on the community of the receivers, and each partition is called a shard.

6

1) Transaction Fetching: The lookup matrix unew has exactly one 1-entry and one 0-entry in each row. Hence, every

transaction in V(t) can be uniquely indexed by a lookup matrix. The verifier views shard V(t) as T (t−1)-dimensional tensor

in (FqR)
2×2×...×2, and therefore every transaction can be conveniently expressed as a tensor entry V

(t)
i1,...,iT (t−1)

∈ FqR .

To fetch a transaction, one computes a multilinear polynomial,

fetch(t)(u,V(t)) =
∑

(i1,...,iT (t−1))∈{1,2}T(t−1)




T (t−1)∏

j=1

uj,ij


V

(t)
i1,...,iT (t−1)

which takes a shard V(t) and a lookup table u as inputs and yields the transaction xu ∈ FqR indexed by u. The degree

of fetch(t) is T (t−1) + 1. Note that the subscript k is omitted in fetch(t) since it can be applied to any shard.

Example 1. In a shard V that contains 8 transactions, to fetch one of them, one would compute

fetch(u,V) = u1,1u2,1u3,1 V1,1,1 + u1,1u2,1u3,2 V1,1,2 + u1,1u2,2u3,1 V1,2,1 + u1,1u2,2u3,2 V1,2,2

+ u1,2u2,1u3,1 V2,1,1 + u1,2u2,1u3,2 V2,1,2 + u1,2u2,2u3,1 V2,2,1 + u1,2u2,2u3,2 V2,2,2.

Since the lookup matrix contains only one 1-entry and one 0-entry, only the entry indexed by u has coefficient 1, while the

rest have coefficients 0.

2) Address Checking: Based on Section II-E, we assume a multivariate polynomial hash1 : FB
q � F

C
q of a constant degree

to serve as our first collision resistant hash function. Having obtained xold = fetch(t)(unew ,V
(t)
k), the verifier then checks

whether hash1(pnew) = aold holds, which is expressed as a polynomial,

checkAddr(p, a) = hash1(p)− a.

Note that pnew is accepted when checkAddr(pnew , aold) ∈ F
C
q is the all-zero vector.

3) Signature Verification: The verifier needs to check the validity of the signature snew. She first computes a hash digest w =
hash2(unew ,pnew, anew) = (w1, . . . , wE) ∈ F

E
q , where hash2 : FA+B+C

q � F
E
q is our second collision resistant hash function

of a constant degree. Later, the verifier checks whether MQ(pnew, snew) = w holds, where,

MQ(p, s) =
∑

0<i≤j<D

a(i,j)sisj +
∑

0<i<D

bisi + c,

and a,b, c ∈ F
E
q are vectors stored in pnew , serving as coefficients of the MQ problem. Equivalently, the verification of a

signature s in a transaction x = (u,p, a, s) can be expressed as a polynomial,

checkSig(x) =MQ(p, s)− hash2(u,p, a).

Note that snew is accepted only when checkSig(xnew) = 0.

The above three parts focus on the verification of an individual transaction. We further employ them to verify the entire

strip as follows.

4) Verification of a strip: Let η ∈ F
C+E
q be the concatenation of checkAddr(pnew , aold) and checkSig(xnew); a transaction x

is accepted if and only if η = f (t)(x,V(t)) = 0. This information is further used to fliter out invalid trancations in the incoming

strip. Since the UTXOs redeemed by transactions in h
(t)
k = (x1, . . . ,xQK) all reside in V

(t)
k , we define a multivariate

polynomial,

F (t)(h(t),V(t−1)) = (f (t)(x1,V
(t−1))⊺, . . . , f (t)(xQK ,V

(t−1))⊺),

of degree d, which yields an outgoing result strip

e
(t)
k = (rk,1, . . . , rk,K) ∈ (FQ×(C+E)

q)K , (4)

defined as the k-th row of the result matrix

R(t) =



r1,1 r1,2 . . . r1,K

...
...

. . .
...

rK,1 rK,2 . . . rK,K


 . (5)

Each tiny result block rk,k′ contains Q entries of length C +E; one per every transaction in the tiny block bk,k′ . The j-th

entry in rk,k′ is the result of computing f (t) on V
(t)
k and the j-th transaction in bk,k′ . Hence, the outgoing result strip e

(t)
k

reveals the validity of every transaction in the outgoing strip h
(t)
k , and the result matrix R(t) reveals the validity of every

transaction in the block B(t). As shown in Fig. 1, the outgoing result strips are used to filter out the invalid transactions in

the incoming strips before they are being appended to the corresponding shards.

7

Similarly, the incoming result strip

s
(t)
k = (r1,k, . . . , rK,k) ∈ (FQ×(C+E)

q)K (6)

is a transpose of the k-th column of the result block. It reveals the validity of every transaction in the incoming strip v
(t)
k . We

will employ this notation in Section III-D.

Remark 3 (The degree of F (t)). The verification result of a transaction is the concatenation of functions checkAddr and checkSig.

By definition, checkAddr(p, a) = hash1(p)−a, where a is the output of function fetch(t). Besides, checkSig(x) =MQ(p, s)−
hash2(u,p, a), where the degree of the multivariate function MQ(p, s) is 3. Together, the degree of polynomial that verifies

a transaction is d = max(T (t−1) + 1, deg hash1, deg hash2, 3), where T (t−1) + 1 is the degree of fetch(t).

As existing works [40, 41, 42] show the existence of secure polynomial hash functions with degree as low as 3, we assume

that the degree of both hash1 and hash2 is less than T (t−1) in realistic blockchain systems (e.g., a blockchain system with 106

transactions in each shard has a verification function of degree d = 20). Hence, the polynomial F (t) has a degree d = T (t−1)+1,

which scales logarithmically with the number of transactions in a shard.

C. Coded Computation

Now that the verification of outgoing strips has been formulated as a low degree polynomial, we turn to describe how it is

conducted in a coded fashion. In detail, every shard k ∈ [K] is assigned a unique scalar ωk ∈ Fq , and every node i ∈ [N] is

assigned a unique scalar αi ∈ Fq.

Setting T = 0, the generator matrix in (1) becomes

GL =



Φ1(α1) Φ1(α2) . . . Φ1(αN)

...
...

. . .
...

ΦK(α1) ΦK(α2) . . . ΦK(αN)


 , (7)

where Φk(z) is the Lagrange polynomial (2). For node i, the coded outgoing strip and coded incoming strip are linear

combinations of outgoing strips and incoming strips, respectively, i.e.,

(h̃
(t)
i)⊺ = ((h

(t)
1)⊺, . . . , (h

(t)
K)⊺) · (GL)i = (B(t))⊺ · (GL)i,

(ṽ
(t)
i)⊺ = ((v

(t)
1)⊺, . . . , (v

(t)
K)⊺) · (GL)i = B(t) · (GL)i,

where (GL)i is the i-th column of GL. Equivalently, h̃
(t)
i and ṽ

(t)
i are evaluations of Lagrange polynomials ψ(t)(z) and φ(t)(z)

at αi, respectively, where

ψ(t)(z) =

K∑

k=1

h
(t)
k

∏

j 6=k

z − ωj

ωk − ωj
and φ(t)(z) =

K∑

k=1

v
(t)
k

∏

j 6=k

z − ωj

ωk − ωj
.

Every node i stores a coded shard Ṽ
(t)
i , i.e., a node-specific linear combination of all shards,

Ṽ
(t)
i =

K∑

k=1

Gk,iV
(t)
k = (φ(1)(αi), . . . , φ

(t)(αi)).

In epoch t, every node i receives the coded strips h̃
(t)
i and ṽ

(t)
i ; protocols for secure encoding and delivery of coded strips

are given in Section IV. Node i computes the polynomial verification function F (t) on h̃
(t)
i and the locally stored Ṽt−1

i , and

obtains a coded outgoing result strip

ẽ
(t)
i = F (t)(h̃

(t)
i , Ṽ

(t−1)
i) = F (t)(ψ(t)(αi), (φ

(1)(αi), . . . , φ
(t)(αi)).

Formally, the coded outgoing result strip ẽ
(t)
i , as well as the (uncoded) outgoing result strip e

(t)
k defined in Equation (4), is

an evaluation of a polynomial F, i.e.,

e
(t)
k = F(t)(ωk) and ẽ

(t)
i = F(t)(αi), (8)

where F(t)(z) = F (t)(ψ(t)(z), (φ(1)(z), . . . , φ(t)(z)). (9)

Since the degree of both ψ(t) and φ(t) is K − 1, it follows that the degree of F(t) is (K − 1)d.

Similar to the outgoing result strip defined in (4), the coded outgoing result strip

ẽ
(t)
i = (ẽ

(t)
i,1, . . . , ẽ

(t)
i,K) ∈ (FQ×(C+E)

q)K (10)

is a length-K vector, in which the k-th element ẽ
(t)
i,k contains Q entries and equals to the verification result of the k-th coded

tiny block in the coded outgoing strip h̃
(t)
i . Note that unlike the coded incoming strip or the coded outgoing strip, the coded

8

outgoing result strip ẽ
(t)
i is not a linear combination of outgoing result strips e

(t)
1 , . . . , e

(t)
K specified by GL. Instead, both of

the coded ẽ
(t)
i = F(αi) and uncoded e

(t)
i = F(ωi) are evaluation of polynomial F(z) at different points (see Equation (12)

and (13) for details).

Nodes further obtain the indicator vector g ∈ {0, 1}QK by exchanging ẽ
(t)
i ; the details are given in Section IV-D. This

data is crucial for the next section, namely coded appending, as each of its entries is associated with a coded transaction

in every coded incoming strip. Specifically, note that every coded transaction is a linear combination of K transactions; the

corresponding entry of the indicator vector g equals to 0 if they are all valid. Otherwise, if invalid transactions are included,

the entry equals to 1.

D. Coded Appending

The appending operation of node i is instructed by the indicator vector g. Following the coded verification, each node i

appends the coded incoming strip ṽ
(t)
i to their coded shard, after setting to zero the parts of it which failed the verification

process. That is, node i zeros out the transactions whose corresponding entry of g equals to 1.

Remark 4. This process of setting to zero the parts which fail verification has an unexpected implication—it invalidates valid

transactions that were linearly combined with invalid ones. We define the Collateral Invalidation (CI) rate as the number of

transactions that are abandoned due to one invalid transaction, normalized by the total number of transactions processed in one

epoch. Polyshard [29] has an CI rate of 1
K , while our scheme has an CI rate of 1

KQ , which is Q times smaller (i.e., better)

than Polyshard.

IV. CODED CONSENSUS

In this section, we discuss the consensus aspect of our design. Due to its coded nature, we propose three conditions that

define coded consensus. Later, we show mechanisms that maintain these conditions. We use f to denote the number of Byzantine

nodes, and define a quorum as a set of N − f nodes. Our scheme tolerates these f Byzantine nodes in the partial synchrony

model, given that N ≥ (K − 1)d + 3f + 1; a discussion on the nature of this assumption is given in the following section.

Note that the communication between nodes is point-to-point, and the communication analysis takes into consideration every

bit that is transmitted through the system.

First, our design must guarantee consistency, i.e, at every epoch t, correct nodes must perform coded verification on coded

outgoing strips generated from the same block B(t). Formally, we propose the following condition.

Condition 1 (Consistency). Every correct node i obtains h̃i, defined as h̃
(t)
i = (GL)

⊺

i ·B(t), where (GL)i denotes the i-th
column of the generator matrix GL.

This condition imposes that correct nodes obtain coded outgoing strips that are consistent with each other, i.e., correspond

to the same block B(t) defined in Equation (3). Otherwise, correct verification is impossible, as suggested in [11]. Moreover,

our design must maintain homology.

Condition 2 (Homology). Every correct node i obtains ṽi, defined as ṽi = (GL)
⊺

i (B
(t))⊺, where both B(t) and GL are as

in Condition 1.

The second condition suggests that every node obtains the coded incoming strip that is homologous to the coded outgoing strip,

i.e., generated from the same block B(t). Otherwise, we say they are nonhomologous; such nonhomology problem can cause

a discrepancy between the verified and the appended, i.e., nodes verify valid transactions, but append invalid ones, nullifying

the verification efforts. Satisfying this condition assures the correct appending of incoming strips. Finally, the blockchain must

not store invalid transactions, which gives rise to the last condition.

Condition 3 (Validity). Every correct node i appends the coded incoming strip ṽ
(t)
i to its local coded chain after setting the

invalid coded transactions to zero, i.e, coded transactions which were not formed exclusively from valid transactions.

This condition requires every node i to obtain the indicator vector g defined in Section III-D. Together, we say that a protocol

provides coded consensus if it simultaneously achieves Condition 1, Condition 2 and Condition 3, i.e., maintains consistency,

homology, and validity at the same time. We propose such a protocol, employing a leader to distribute coded strips and

provide coded consensus. Our approach adopts HotStuff [20], a BFT SMR with linear message complexity, and techniques

from Information Dispersal for consistency and homology. In addition, we employ coded computation that maintains validity

of the system. Further, the superscript (t) is omitted for clarity in the rest of this paper.

A. Overview

In order to maintain the aforementioned three properties, we employ HotStuff to maintain a chain of headers, each

corresponds to a block. HotStuff provides the safety and liveness property of the header chain. Together with information

dispersal techniques, our scheme maintains the consistency property. We provide detailed discussion in Section IV-B. Further,

9

header

ṽt−2
i ṽt−1

i
ṽt
i ṽt+1

i

Header Chain header header header

Coded Shard

Fig. 2. Illustration of the internal storage of node i. We use HotStuff for nodes to reach a consensus on a chain of headers. Meanwhile, each node stores a
distinct chain of coded incoming strips. i.e., the coded shard. The consensus on the chain of headers assures that at any height t (i.e., epoch) of the chain,
nodes store coded outgoing strips that are consistent with each other, i.e., generated from the same block B.

we incorporate extra mechanisms in HotStuff to maintain homology (Section IV-C) and validity (Section IV-D). In Section V,

we show that our scheme indeed provides coded consensus, and inherits the liveness property from HotStuff.

B. Maintaining Consistency (Condition 1)

We first address the consistency problem of coded outgoing strips generated from B (the case for coded incoming strips are

similar). Our method depends on a data structure called checksum, introduced by AVID-FP [32]. A checksum allows nodes to

verify that the received coded strip is consistent with ones received by others, i.e., computed from the same block. It contains a

list of K fingerprints. Each fingerprint is generated from an (uncoded) outgoing strip (a row of B), using some ε-fingerprinting

function fp defined as follows.

Definition 1. [32, Definition 2.1] A function fp : T × F
δ
q � F

γ
q is an ε-fingerprinting function if

max
d,d′∈Fδ

q,d 6=d′

Pr
r∼Unif(T)

[fp(r, d) = fp(r, d′)] ≤ ε.

That is, the probability for two distinct d, d′ ∈ F
δ
q to have the same fingerprint is at most ε, where the key r is chosen uniformly

at random from some input space T .

Examples of ε-fingerprinting functions include division fingerprinting, which generalizes Rabin’s fingerprinting [44] from F2

to any field Fq. With coefficients in Fq , the input d ∈ F
δ
q is regarded as a polynomial d(x) of degree δ, and T is a collection of

monic irreducible polynomials of degree γ. The division fingerprinting function returns the remainder of d(x) divided by p(x),
i.e., d(x) mod p(x), where p(x) is chosen from T uniformly at random.

We let fp : T × F
δ
q � F

γ
q be an ε-fingerprinting function where δ = |B|

K is the size of a strip. As done in AVID-FP [32],

the random selection of r from T is simulated by deterministic cryptographic hash functions [45]; referring to the use of a

hash function as a random oracle is a common practice in blockchain systems, e.g., in [24]. In addition to the K fingerprints,

a list of hash values cc = [hash(h̃1), . . . , hash(h̃N)] is included in the checksum, generated using a cryptographic hash

function hash : F∗
q � F

λ
q (not to be confused with hash1 and hash2 mentioned earlier). The selection of r is achieved by

another cryptographic hash function select : (Fλ
q)

N
� T , which takes the list cc as input and outputs an element in T 2.

Formally, the function CHECKSUM in Algorithm 1 encapsulates the construction of the checksum.

The leader first generates coded outgoing strips (GL)
⊺

1 ·B, . . . , (GL)
⊺

N ·B and constructs the checksum cksH. Similarly, it

creates coded incoming strips (GL)
⊺

1 ·B⊺, . . . , (GL)
⊺

N ·B⊺ and cksV. The leader then sends the checksums to every node i

piggybacked with the coded fragments h̃i = (GL)
⊺

i ·B and ṽi = (GL)
⊺

i ·B
⊺. In order to verify that a coded strip agrees with

the received checksum, i.e., cksH and h̃i are computed from the same B, and cksV and ṽi are computed from the same B⊺,

we require the fingerprinting function to be homomorphic.

Definition 2. [32, Definition 2.5] A fingerprinting function fp : T×F
δ
q � F

γ
q is homomorphic if fp(r, d)+fp(r, d′) = fp(r, d+d′)

and b · fp(r, d) = fp(r, b · d) for any r ∈ T , any b ∈ Fq , and any d, d′ ∈ F
δ
q .

This property enables the node to verify that the coded fragment satisfies the required linear combination (defined by the

generator matrix) with uncoded strips, by having access only to the fingerprints of uncoded strips, and not to the uncoded

strips. As any coded strip is a linear combination of K uncoded strips, the homomorphism guarantees that its fingerprint must

be equal to the same linear combination of K fingerprints of uncoded strips, i.e.,

(GL)
⊺




fp(r,h1)
...

fp(r,hK)


 =




fp(r, h̃1)
...

fp(r, h̃N)


 , and (GL)

⊺




fp(r,v1)
...

fp(r,vK)


 =




fp(r, ṽ1)
...

fp(r, ṽN)


 .

2We point out that Verifiable Random Function (VRF) [33] is an alternative implementation of the random oracle, which is communication-efficient as it
does not require the checksum to contain N hash values. It has been employed in blockchain designs including [9] and [25], but for different purposes.

10

Note that hk is the k-th row of the matrix B, and h̃i is the i-th row of the matrix B̃ = (GL)
⊺

i B. Similarly, vk is the k-th

row of the matrix B⊺, and ṽi is the i-th row of the matrix B̃⊺ = (GL)
⊺

i B
⊺. Thus, each node can confirm the agreement

between the received (coded) strip and the checksum, as long as the fingerprints of the coded strip match the encoding of

the K fingerprints in the checksum; this is guaranteed with high probability, as shown [32, Theorem 3.4].

In this respect, each node can assure that the received coded strip is consistent with ones received by others by reaching a

consensus on the checksum which is in agreement with all coded strips. Treating checksums as requests, we can employ BFT

SMR protocols that allow correct nodes to reach a consensus on the total order of them, and hence maintain the consistency of

strips at any epoch t. Specifically, we adopt HotStuff [20], a leader-based BFT SMR protocol that works in partial synchrony

(see Section II-B). We define a header of a block B as a concatenation of checksums computed from the matrix B and its

transpose B⊺, i.e.,

header = (cksH, cksV).

HotStuff allows nodes to reach a consensus on a chain of header. HotStuff always ensure safety given bounded number of

faulty nodes (N ≥ 3f + 1). That is, no two correct node should accept conflicting headers; by conflicting we mean the chain

led by neither one extends the chain led by the other. Hence, correct nodes will never accept different headers at any epoch t.
When the system becomes synchronous, HotStuff provides the liveness property, such that the consensus on headers will be

reached when the leader is correct. As discussed earlier, such a consensus on a header guarantees the consistency of coded

fragment generated from the corresponding block.

For clarity, the lines in Algorithm 2 and Algorithm 3 are color coded. The pseudocode of HotStuff is provided in black.

The blue lines concern the distribution and verification of coded strips, maintaining validity. The orange lines and green lines

maintain consistency and homology, respectively. We will elaborate the colored lines in sequel. In particular, we argue that

our add-ons do not affect the safety and liveness property of HotStuff algorithm.

Algorithm 1 Utilities

1: function MSG(type, header, qc, payload)
2: m.type = type

3: m.viewNumber = curView

4: m.header = header

5: m.qc = qc
6: m.payload = payload

7: return m

8: function HEADER(prev, checksums)
9: header.prev = prev

10: header.checksums = checksums

// instantiate QC from a set of messages
11: function QC(M)
12: qc.type � m.type : m ∈ M
13: qc.viewNumber � m.viewNumber : m ∈ M
14: qc.header � m.header : m ∈ M
15: qc.sig← tcombine(〈qc.type, qc.viewNumber,

{qc.header〉,m.partialSig | m ∈M})

16: function MATCHINGMSG(m, t, v)
17: return (m.type = t) ∧ (m.viewNumber = v)

18: function MATCHINGQC(qc, t, v)
19: return (qc.type = t) ∧ (qc.viewNumber = v)∧

tverify(〈qc.type, qc.viewNumber, qc.header〉, qc.sig)

20: function ENCODE(G,m) // m:length-K vector
21: return m ·G
22: function ENCODEROW(G,M)
23: return G⊺ ·M
24: function CHECKSUM(G,M)

25: M̃ � ENCODEROW(G,M) // M̃: N ×K matrix
26: for k = 1 to N do

27: cks.CC[i] � hash(m̃i.∗) // the i-th row of M̃

28: r � select(cks.CC)
29: for k = 1 to K do
30: cks.FP[k] � fp(r,mk.∗) // the k-th row of M

31: return cks,M̃

// check if checksum agrees with coded fragment
32: function AGREE(checksum, fragment, i)
33: h � hash(fragment) f � fp(select(cks.CC), fragment)
34: return (h = cks.CC[i]) ∧ (f = ENCODE(GL, cks.FP)[i])

35: function SAFEHEADER(header, qc)
36: return (header extends from lockedQC.header)∨
37: (qc.viewNumber > lockedQC.viewNumber)

38: function SIGNEACH(m, i) // m: length-Nvector
39: for j = 1 to N do result[j] � 〈m[j]〉σi

40: return result

HotStuff runs in consecutive views associated with increasing integer view numbers. In each view there is a designated

node LEADER(viewNumber) that proposes new headers and distribute coded strips. In order to append a header to the chain,

the leader must collect partial signatures on its proposal from a quorum of nodes in each of three phases, namely PREPARE,

PRE-COMMIT and COMMIT. The partial signatures are generated with a (N − f,N)-threshold signature scheme π.

A new leader must collect NEW-VIEW messages from a quorum of nodes; a correct node sends the NEW-VIEW message,

alongside a valid prepareQC (define next) with highest view that it has received, to the leader of the next view if it believes

the current one fails (line 22, Algorithm 3). The new leader chooses the one, called highQC, with the highest view number

within all received prepareQCs. It creates and extends the new header (i.e., containing the hash value of another header) from

the header contained in highQC. If the leader is an incumbent one, it extends the header from its last proposed header.

Incumbent or not, the leader sends the newly created header to every node i piggybacked with the corresponding coded

strips h̃i and ṽi (line 8, Algorithm 2) generated from the block B (line 2, Algorithm 2). Upon receiving the PREPARE message

from the leader, the node i runs the function SAFEHEADER in Algorithm 1 which compares the newly received header with the

header it has locked on (i.e. the header contained in the precommitQC with highest view number it has received, called lockedQC,

which will be defined next). The new header is considered valid if it extends from the locked header, or extends from a header

11

Algorithm 2 Coded Consensus Part 1
⊲ PREPARE PHASE

1: as a leader // i = LEADER(curV iew)
2: B � collect a block of transactions
3: (cksH, B̃) � CHECKSUM(GL,B), (cksV, B̃⊺) � CHECKSUM(GL,B

⊺)
4: wait for N − f NEW-VIEW messages: M � {m | MATCHINGMSG(m, NEW-VIEW, curView − 1)}

5: highQC � (argmax
m∈M

{m.qc.viewNumber}).qc // QC with highest view number

6: header � HEADER(highQC.header, [cksH, cksV])
7: for i = 1 to N do
8: payload � [h̃i, ṽi] // the i-th rows of B̃ and B̃⊺

9: send MSG(PREPARE, header, highQC, payload) to node i

10: as node i
11: wait for message m from LEADER(curView): m � MATCHINGMSG(m, PREPARE, curView)

12: if (m.header extends from m.qc.header)∧ (SAFEHEADER(m.header, header.qc)) then

13: if ¬(AGREE(header.checksum[1],m.payload[1], i) ∧ AGREE(header.checksum[2],m.payload[2], i) then

14: codedResults � F (Ṽi, h̃i)
15: wi,∗ � ENCODE(GL,m.payload[1]), pxi � SIGNEACH(wi,∗)
16: ui,∗ � ENCODE(GL,m.payload[2])
17: results � ENCODE(GL, codedResults), sigResults � SIGNEACH(ENCODE(GL, codedResults))
18: ack � MSG(PREPARE,m.header,⊥, payload � (pxi, results, sigResults)
19: ack.partialSig � 〈PREPARE, curView,m.header〉π,i

20: send ack to LEADER(curView) // acknowledge the PREPARE message

⊲ PRE-COMMIT PHASE

21: as a leader
22: wait for ack’s on PREPARE from a quorum I: A � {ack | MATCHINGMSG(ack, PREPARE, curView)}

23: prepareQC � QC(A)
24: for i = 1 to N do

25: payload[1] � COLUMN({ack.payload[1] | ack ∈ A}, i)
26: payload[3] � COLUMN({ack.payload[3] | ack ∈ A}, i)
27: payload[4] � COLUMN({ack.payload[4] | ack ∈ A}, i)
28: m � MSG(PRE-COMMIT,⊥, prepareQC, payload), m.quorumIdentifier � QI(I)
29: send m to node i
30: as node i
31: wait for message m from LEADER(curView): m � MATCHINGQC(m.qc, PRE-COMMIT, curView)

32: prepareQC � m.qc

33: if VERIFYSIG(m.payload[1]), ui,∗) ∧ VERIFYSIG(m.payload[2],m.payload[3]) then
34: decoded � DECODE(m.payload[3])
35: binaryResults � BINARY(decoded)
36: payload � PARTIALINDICATOR(binaryResults)
37: ack � MSG(PRE-COMMIT,m.qc.header,⊥, payload)
38: ack.partialSig � 〈PRE-COMMIT, curView,m.qc.header〉π,i, ack.partialSigQI � 〈QI〉π,i

39: send ack to LEADER(curView) // acknowledge the PRE-COMMIT message

in a prepareQC with a higher view number than the lockedQC (line 37, Algorithm 1). Such a check guarantees both safety [20,

Theorem 2] and liveness [20, Theorem 4].

Further, a valid checksum in the header must agree with the coded strip, and we implement the checking process in the

function AGREE in Algorithm 1. In particular, we add another predicate in line 13 of Algorithm 2 to verify such agreements.

If the aforementioned two predicates both return true, node i responds with a partial signature 〈PREPARE, curView, header〉π,i
acknowledging the header from the leader of the current view (line 19, Algorithm 2). The leader then enters the PRE-COMMIT

phase, and instantiates a prepareQC (where QC stands for quorum certificate) from the replies using the constructor function QC

in Algorithm 1. The prepareQC contains a valid signature 〈PREPARE, curView, header〉π, showing a quorum of N − f nodes

has acknowledged the PREPARE message from the current leader.

The leader broadcasts prepareQC. Every node verifies the signature 〈PREPARE, curView, header〉π using the function MATCH-

INGQC in Algortithm 1. After that, node i replies with a partial signature 〈PRE-COMMIT, curView, header〉π,i. From the replies the

leader creates a precommitQC, and broadcast it in the COMMIT phase. Similarly, from the replies the leader creates commitQC;

nodes only link the coded outgoing strip ṽi to the local chain after receiving the commitQC.

C. Maintaining Homology (Condition 2)

Although [20] allows nodes to reach a consensus on the chain of headers, which guarantees the consistency property of strips,

the homology problem remains. With a Byzantine leader, even though a correct node i may obtain a consistent coded outgoing

strip h̃i = (GL)
⊺

i B and consistent coded incoming strip ṽi = (GL)
⊺

i (B
′)⊺, they might correspond to different blocks B 6= B′.

To solve this problem, we integrate the following design (in green) with Hotstuff’s three-phase protocol to maintain homology.

12

Algorithm 3 Coded Consensus Part 2
⊲ COMMIT PHASE

1: as a leader
2: wait for (N − f) ack’s on PRE-COMMIT: A � {ack | MATCHINGMSG(ack, PRE-COMMIT, curView)}

3: payload � MERGEINDICATORS(A)
4: precommitQC � QC(A)
5: m � MSG(COMMIT,⊥, precommitQC, payload)
6: m.signatureQI � tcombine(〈QI〉, {ack.partialSigQI | ack ∈ A})
7: broadcast m

8: as node i
9: wait for message m from LEADER(curView): m � MATCHINGQC(m, COMMIT, curView)

10: if tverify(〈QI(I)〉,m.signatureQI) then

11: lockedQC � m.qc

12: ṽi � UPDATE(ṽi,m.payload) // update coded incoming strip using g
13: ack � MSG(COMMIT,m.qc.header,⊥,⊥), ack.partialSig � 〈COMMIT, curView,m.qc.header〉π,i

14: send ack to LEADER(curView) // acknowledge the PRE-COMMIT message

⊲ DECIDE PHASE

15: as a leader
16: wait for (N − f) ack’s on COMMIT: A � {ack | MATCHINGMSG(ack, COMMIT, curView)}

17: commitQC � QC(A)
18: broadcast MSG(DECIDE,⊥, commitQC,⊥)

19: as node i
20: wait for message m from LEADER(curView): m � MATCHINGQC(m, COMMIT, curView)

21: append ṽi to local chain

⊲ NEXTVIEW INTERRUPT

22: send MSG(NEW-VIEW,⊥, prepareQC,⊥) to LEADER(curView + 1)

Upon receiving the coded outgoing strip h̃i = (GL)
⊺

i B from the leader in the PREPARE phase, node i multiplies it from

the right with GL, creating a length-N vector wi,∗, which equals to the i-th row of the matrix W = G⊺

LBGL (line 15,

Algorithm 2). Similarly, it creates a vector ui,∗ = (GL)
⊺

i ṽi as the i-th row of U = (GL)
⊺(B′)⊺GL (line 16, Algorithm 2).

Node i then defines a length-N signature vector pxi, whose j-th entry stores its digital signature (not to be confused with

partial signature) on 〈wi,j , j〉. Formally, we have

pxi[j] = 〈wi,j , j〉σi
, for j ∈ [N]. (11)

Node i sends back pxi in the acknowledgement of the PREPARE message received from the leader. For every received pxi,

the leader first verifies if pxi[j] is indeed a valid signature on wi,j , for each j ∈ [N]. This step is omitted in the pseudocode

for clarity, and the leader ignores messages that fail the verification. After collecting such vectors from nodes in a quorum I
of size |I| = N − f , the leader stacks the pxi’s in an (N − f)×N matrix ordered by the indices of nodes. It sends the j-th
column of the resulting matrix to every node j ∈ [N] in the PRE-COMMIT message together with a quorum identifier QI(I)
that specifies the members of I.3 (line 28, Algorithm 2).

Upon receiving the PRE-COMMIT message from the leader, node j learns the members of I from the quorum identifier QI(I).
Meanwhile, node j receives 〈wi,j〉σi

, for every i ∈ I, and verifies if the received 〈wi,j , j〉σi
is a valid signature on 〈uj,i, j〉

(line 33, Algorithm 2). The process is encapsulated in function VERIFYSIG, whose simple implementation (see above) is omitted

for brevity. If the verification passes, node j creates partial signature 〈QI(I)〉π,i on the quorum identifier and sends it back to

the leader as an acknowledgement of the PRE-COMMIT message (line 38, Algorithm 2).

The leader verifies the received partial signature; this verification is omitted in the pseudocode. Upon receiving acknowl-

edgements from a quorum J of nodes, the leader combines partial signatures and broadcasts a COMMIT message with a valid

signature 〈QI(I)〉π (line 6–7, Algorithm 3). Nodes can be convinced that B = B′ after verifying 〈QI(I)〉π in the COMMIT

message, due to the following lemma.

Lemma 1. A valid signature 〈QI(I)〉π implies B = B′.

Proof. The signature 〈QI(I)〉π reveals the existence of a quorum J such that for every correct node j ∈ J and every correct

node i ∈ I, we have

wi,j = (GL)
⊺

i B(GL)j = (GL)
⊺

j (B
′)⊺(GL)i = uj,i.

Since we assume that N = (K − 1)d+ 3f + 1, the quorums I and J intersect on at least

2(N − f)−N = (K − 1)d+ f + 1− (K − 1) + (K − 1) = (K − 1)(d− 1) + f +K ≥ f +K

nodes, which contains at least K correct ones.

3Since there are
(
N

f

)
possible quorums, log

(
N

f

)
< log[

∑N
f=1

(
N

f

)
] = log 2N = N bits suffice to uniquely present either of them; this is negligible in

size compared to the N − 2f digital signatures sent along with it.

13

Let K be a set containing these K correct nodes, and let GK be a K ×K matrix containing the corresponding K columns

of the Lagrange matrix GL. Since g⊺kBgk′ = g⊺k′(B′)⊺gk for every k, k′ ∈ [K], it follows that G⊺

KBGK = G⊺

KB
′GK. By the

MDS property of GL, the matrix GK is invertible, and hence B = B′.

D. Maintaining Validity (Condition 3)

So far, we have developed mechanisms that maintain homology and consistency. Together, every correct node i is performing

verification on the coded outgoing strip h̃i = (GL)
⊺

i B and appending the coded incoming strip ṽi = (GL)
⊺

i B
⊺. We now present

a communication-efficient scheme that employs coded computation to guarantee validity, such that no invalid transactions in

the block can be appended to the blockchain.

Specifically, we weave a mechanism into the existing protocol. It allows nodes to securely obtain the indicator vector g ∈
{0, 1}QK . Note that each of the entries of g is associated with a coded transaction in every coded incoming strip. A coded

transaction should be zeroed-out if the corresponding entry is 1 (see Section III-C).

Recall that the degree of the polynomial verification function F(z) is (K−1)d, and hence it is uniquely defined by evaluations

at any L = (K − 1)d+ 1 distinct points. That is, for any distinct β1, . . . , βL, one may represent F(z) as a linear combination

of L Lagrange basis polynomials Ψ1(z), . . . ,ΨL(z), i.e.,

F(z) =
∑

ℓ∈[L]

F(βi)Ψℓ(z), where Ψℓ(z) =
∏

l,ℓ∈[L],l 6=ℓ

z − βl
βℓ − βl

.

As a result, the coded outgoing result strips F(α1), . . . ,F(αN) can be represented as



ẽ1
...

ẽN


 (8)
=



F(α1)

...

F(αN)


 = G⊺

F ,α ·



F(β1)

...

F(βL)


 =




Ψ1(α1) Ψ1(α2) . . . Ψ1(αN)
Ψ2(α1) Ψ2(α2) . . . Ψ2(αN)

...
...

. . .
...

ΨL(α1) ΨL(α2) . . . ΨL(αN)




⊺

·



F(β1)

...

F(βL)


 , (12)

and the (uncoded) outgoing result strips can be represented as



e1
...

eK


 (8)
=



F(ω1)

...

F(ωK)


 = G⊺

F ,ω ·



F(β1)

...

F(βL)


 =




Ψ1(ω1) Ψ1(ω2) . . . Ψ1(ωK)
Ψ2(ω1) Ψ2(ω2) . . . Ψ2(ωK)

...
...

. . .
...

ΨL(ω1) ΨL(ω2) . . . ΨL(ωK)




⊺

·



F(β1)

...

F(βL)


 . (13)

Upon receiving the message from the leader in the PREPARE phase, node i computes the verification function F and obtains its

coded outgoing result strip ẽi (line 14, Algorithm 2). Node i multiplies it from the right with the Lagrange matrix GL ∈ F
K×N
q ,

and obtains ci,∗ = (ẽi,1, . . . , ẽi,K) ·GL, which equals to the i-th row of the matrix

C = G⊺

F ,α ·
[
F(β1)

⊺, . . . ,F(βL)
⊺
]⊺

·GL. (14)

In the acknowledgment of the PREPARE message, node i replies the leader with ci,∗ with its signatures on each entry

(line 17, Algorithm 2). The leader verifies if the signatures matches ci,∗; this step is omitted in the pseudocode for clarity.

Upon receiving a quorum of N − f such vectors, the leader stacks them on top of each other to form a (N − f) × N
matrix (which is a submatrix of C), and sends the j-th column to every node j ∈ [N] in the PRE-COMMIT phase (line 26,

Algorithm 2). Note that the j-th column of C is the encoding of the j-th column of matrix [F(β1)
⊺, . . . ,F(βL)

⊺]⊺ ·GL using

the generator matrix GF ,α, which generates a Lagrange code of length N and dimension L. As a result, every node can

perform Reed-Solomon decoding after verifying the signature of each entry (line 33, Algorithm 2), and obtain the j-th column

of matrix [F(β1)
⊺, . . . ,F(βL)

⊺]⊺ · GL (line 34, Algorithm 2). The decoding is given in the function DECODE which calls a

Reed-Solomon decoder. Since we have N ≥ (K − 1)d+3f +1, decoding from N − f elements will be successful since there

are at most f Byzantine nodes.

By left multiplying the decoded column with G⊺

F ,ω, every correct node i obtains the j-th column of the matrix G⊺

F ,ω ·[
F(β1)

⊺, . . . ,F(βL)
⊺
]⊺

· GL. This vector equals to the j-th column of
[
e
⊺

1 , . . . , e
⊺

K

]⊺
· GL by Equation (13), which further

equals to the j-th coded incoming result strip by Equation (5) and Equation (6), i.e., s̃j = R · (GL)j .

Recall that the result block R is a K×K matrix whose each element rk,k′ stores the verification results of the Q transactions

in the tiny block bk,k′ . Therefore, a coded incoming results strip s̃i contains K coded tiny result blocks; the k-th one is a

linear combination of rk,1, . . . , rk,K defined by (GL)k. Hence, for l ∈ [Q], the l-th entry in the k-th coded tiny result block

is a linear combination of verification results of transactions in Sk,l; a set containing every l-th transaction in bk,1, . . . , bk,K .

If the entry is not a zero vector, it suggests that at least one of these verification results is not a zero vector, which further

suggests at least one transaction in Sk,l is invalid. On the other hand, if the entry is a zero vector, node i cannot conclude the

validity of transactions in Sk,l, as a linear combination of non-zero vectors might be the zero vector.

14

Recall that in an MDS code of dimension K , every codeword is either the zero codeword, or has at most K − 1 zeros. In

this regard, the l-th entries in the k-th coded tiny result block from all s̃1, . . . , s̃N form a codedword of an [N,K] MDS code,

and hence contains either all zero vectors, or at most K − 1 zero vectors (note that a vector is an element in the codeword).

The former case implies that each of the l-th transactions in bk,1, . . . , bk,K passes verification. The latter case implies that at

least one of theses transactions is invalid, and the l-th coded transaction in the k-th coded tiny block of every coded incoming

strip must be set to zero before being appended. To simplify the problem, every node i creates a binary results vector g∗,i,
which is the i-th column of matrix G ∈ {0, 1}QK×N . Each entry of g∗,i is associated with an entry of s̃i; it equals to 0 if the

corresponding entry in s̃i is a zero vector, and equals to 1 otherwise (line 35, Algorithm 2). This operation is encapsulated

in the function BINARY, whose pseudocode implementation is omitted for its simplicity. Note that each row of G is either

all zeros, or contains at most K − 1 zeros. Clearly, the indicator vector g equals to the reduction of all columns of G with

operator bitwise OR.

Let λ be a (K + f,N) threshold signature scheme, and let τ be a (f + 1, N) threshold signature scheme. Using the binary

results vector g∗,i, node i obtains a partial indicator as the output of the function PARTIALINDICATOR (line 36, Algorithm 2).

This function defines a length-QK vector, denoted by gwi, such that for every ℓ ∈ [QK],

gwi[ℓ] =

{
〈ℓ, 0, header〉λ,i gℓ,i = 0

〈ℓ, 1, header〉τ,i gℓ,i = 1
.

Node i sends gwi back to the leader in the acknowledgment of the PRE-COMMIT message. The leader collects gwi’s from a

quorum of N −f nodes and merges them into a length-QK vector gw using function MERGEINDICATORS (line 3, Algorithm 3);

the details are given as follows.

Among the ℓ-th entries of the collected vectors {gwj}j∈J , if there exist K + f partial signatures endorsing 0 (generated

by the λ scheme), the leader generates and stores a valid signature 〈ℓ, 0, header〉λ in the ℓ-th entry of gw. Otherwise, if there

exists f + 1 partial signatures endorsing 1 (generated by the τ scheme), the leader stores a valid signature 〈ℓ, 1, header〉τ .

Notice that exactly one of these cases must hold due to the following lemma. Note that we implicitly assume that the leader is

guaranteed to obtain responses from a quorum J in the PRE-COMMIT phase; such an assumption will be justified in Theorem 2

on the liveness property of our scheme.

Lemma 2. Among the ℓ-th entries of the collected vectors {gwj}j∈J from a quorum of size |J | = N − f , the leader is

guaranteed to obtain K + f partial signatures endorsing 0, or f + 1 partial signatures endorsing 1, but not both.

Proof. For any ℓ ∈ [QK], if the ℓ-th row of G is all-zero, then at least

N − 2f = (K − 1)d+ f + 1 ≥ (K − 1)d+ f + 1− (K − 1) + (K − 1) = (K − 1)(d− 1) + f +K ≥ f +K

vector gwi’s are from correct nodes; they all have zero ℓ-th entry and sign using the λ scheme. Meanwhile, there exist at

most f 1’s, all from the Byzantine nodes.

If the ℓ-th row of G is not all-zero, then the number of nodes (at least N − (K − 1)) having 1’s must intersect with the

quorum on at least (N − f) +N − (K − 1)−N nodes, which equals to

N − f − (K − 1) = (K − 1)d+ 2f + 1− (K − 1) = (K − 1)(d− 1) + 2f + 1 ≥ 2f + 1

nodes, out of which at least f + 1 are correct; they all endorse 1 and sign the entry using the τ scheme. Also, there exist at

most (K − 1 + f) 0’s, out of which K − 1 are from correct nodes, and at most f are from Byzantine nodes.

The leader then broadcasts the vector gw to every node in the COMMIT phase. Every node i can learn the indicator vector g
from gw, i.e., for every ℓ ∈ [QK],

g[ℓ] =

{
0 gw[ℓ] = 〈ℓ, 0, header〉λ

1 gw[ℓ] = 〈ℓ, 1, header〉τ
.

It then uses the indicator variable to “filter out” invalid transactions in the coded incoming strip ṽi (line 12, Algorithm 3).

V. DISCUSSION

In this section, we discuss the security, liveness, and the communication complexity aspects of our design. In particular, we

investigate the tradeoff between bit complexity and security level.

A. Security

The security level of our scheme is reflected by the upper bound of f compared with N , i.e., the maximum fraction of

Byzantine nodes that can be tolerated in the system. The following theorem shows that, for correct verification of transactions, f
depends on the total number of nodes N , the number of shards K , and the degree d of the verification function.

15

Theorem 1. If N ≥ (K − 1) · d+ 3f + 1, our design provides coded consensus.

Proof. First, HotStuff guarantees safety [20, Theorem 2] (see Section IV for definitions) of the header chain when N ≥ 3f+1,

which is a weaker assumption than N ≥ (K − 1)d + 3f + 1. Note that the added mechanisms are irrelevant to the safety

property, as no extra conditions on which nodes can accept a header are introduced. The property of homomorphic fingerprinting

function assures the consistency between the coded fragments received by each node [32, Theorem 3.4]. Together, consistency

is maintained.

Second, as seen in Lemma 1, our method maintains homology between the coded incoming strips and the coded outgoing

strips when N ≥ (K − 1) · d+ 3f + 1.

Finally, in order to obtain the indicator vector g, every node needs to decode an [N,L] Reed-Solomon code from N − f
elements in the codeword, where L = (K − 1)d+ 1 (see Section IV-D). Since N − f ≥ (K − 1)d+ 2f + 1, the property of

Reed-Solomon code guarantees correct decoding in this case. Thus, validity is maintained.

B. Liveness

Although the proposed algorithm provides coded consensus, adversaries may conduct a liveness attack, i.e., prevent the

system from processing new transactions. In this section, we show that the proposed algorithm also provides liveness.

Theorem 2. In the partial synchrony model, the proposed algorithm provides liveness after Global Stabilization Time (GST,

see Section II-B).

Proof. As shown in [20, Theorem 4], HotStuff provides liveness after GST. That is, a decision is reached given that there is

a bounded duration Tf , in which all correct nodes remain in the same view, and the view-leader is correct. We show that this

property is preserved with the added mechanisms. Specifically, in our modified algorithm, there are precisely three occasions,

one in each phase, in which liveness can be affected: line 13, Algorithm 2, line 33, Algorithm 2, and line 10, Algorithm 3. In

these occasions, a correct leader might fail to collect sufficiently many responses, and thus liveness might not be guaranteed.

We show that each of these occasions depends on a Boolean predicate which is guaranteed to be satisfied when the leader is

correct, and thus liveness is preserved.

The first predicate (line 13, Algorithm 2) checks if the received header agrees with the received strips. It is true in every

correct node since a correct leader follows the protocol. Therefore, a correct leader is guaranteed to receive valid responses in

the PREPARE phase from N − f nodes.

For the second predicate (line 33, Algorithm 2), given the N − f valid responses from the PREPARE phase, a correct leader

is able to construct two (N − f)×N matrices. The j-th row of these matrices will make the green-colored function calls in

line 33, Algorithm 2 to return true for node j. For the same reason, a correct leader is able to construct an (N−f)×N matrix,

whose j-th row will make the blue-colored function call in the same line true. Therefore, every correct node will respond in

the PRE-COMMIT phase, and hence the correct leader will receive responses, each containing a valid partial signature on QI,

from N − f nodes.

Finally, the leader is able to generate a valid signature 〈QI(I)〉π on the quorum identifier from the partial signatures.

Therefore, the third predicate (line 10, Algorithm 3) is true as well.

C. Communication Complexity

We analyze the communication complexity for the system to process a block B that contains P = QK2 transactions, and

then compare it to ordinary blockchain designs. The bit complexity of the different stages of our protocol is analyzed next,

and sumarized in Table I. Note also that the message complexity is linear thanks to the HotStuff protocol in use.

PREPARE PRE-COMMIT COMMIT DECIDE

Leader O(N logN + dQK logN) O(NQ logN) O(QK) O(1)
Node O(NQ logN) O(QK) O(1) N/A

TABLE I
BIT COMPLEXITIES OF A SINGLE MESSAGE FROM THE LEADER TO A NODE, AND FROM A NODE TO THE LEADER, IN EACH OF THE STAGES.

In the PREPARE phase, the leader sends a checksum and two coded fragments to each of the N nodes. A checksum contains N
signatures over Fq, and a coded fragment contains

|B|
K bits. Recall that a block B contains QK2 transactions, and each contains

a lookup table whose size scales logarithmically with the number of transactions in a shard, same as the degree of the polynomial

verification function d (see Section III-B). Further, since the underlying field Fq must contain at least N distinct elements,

it follows that the size of a field element is O(logN) bits. Together, the size of a block is O(dQK2 logN), and the size

of a coded strip is O(dQK logN). Note that the leader also broadcast the header, which contains 2N hash values and 2K
fingerprints, each has a constant number of field elements. Therefore, the message from the leader to a single node in this step

is O(N logN + dQK logN).

16

Also in the PREPARE phase, every node i sends N signatures (line 15, Algorithm 2), as well as N coded tiny result

blocks (line 17), to the leader. Recall that every coded tiny result block contains Q verification results, each is a length-

(C + E) vector, where C + E is the outputs of hash functions and hence constant. Therefore, each message from a node to

the leader in the PREPARE phase has a size of O(N +NQ(C + E) logN) = O(NQ logN).
In the PRE-COMMIT phase, node i receives (N − 2f) signatures (line 25, Algorithm 2) and N − 2f coded tiny result

blocks (line 26) back from the leader. Therefore, the size of a message from the leader to a node is also O(N +NQ logN) =
O(NQ logN). Next, still in the PRE-COMMIT phase, every node i sends a partial indicator vector (line 36) to the leader, whose

size is O(QK) as it contains QK partial signatures. In the COMMIT phase, every node receives a length-QK vector of threshold

signatures (line 3). In addition, every message sent to the leader contains a partial signature and hence has a size of O(1).
Similarly, every message sent from the leader in the DECIDE phase contains a threshold signature (in commitQC), and hence

has size O(1). Together, the bit complexity of our design is as follows.

Corollary 1. For µ < 1/3, to tolerate µN Byzantine nodes in a system with N nodes, the overall bit complexity for verifying

a block of P = K2Q transactions is O(Pd2 logN
(1−3µ)2).

Proof. From Table I, the overall bit complexity is

O(N2 logN + dNQK logN +N2Q logN +NQK +N) = O(N2Q logN + dNQK logN).

Taking the maximum possible f given the parameter restriction in Theorem 1, we have that N = (K − 1) · d + 3f + 1, and

hence for n = (K−1)d
f we have

N

K
≈
N − 1

K − 1
=

(3 + n)f

nf/d
= d

(
1 +

3

n

)
, (15)

Further, since N2Q logN
dNQK logN = N

Kd ≈ 1 + 3
n ≥ 1, it follows that the overall bit complexity is O(N2Q logN). As we have N =

(K − 1)d+3f +1 by Theorem 1, the system tolerates a fraction µ = f
N = 1

3+n+1/f ≈ 1
3+n of Byzantine nodes. We can now

express the overall bit complexity as a function of µ:

O(N2Q logN) = O((N/K)2K2Q logN) = O(Pd2(1 + 3/n)2 logN) = O

(
P
d2 logN

(1− 3µ)2

)
.

That is, for a system of N nodes and the verification function of degree d, the system designer can choose a value for µ,

and the bit complexity for verifying a block scales quadratically with d and logarithmically with N . Note that the degree d
scales logarithmically with the number of transactions on one shard. We hereby rewrite the bit complexity for verifying one

block as

O(P log2M(t) logN),

where M(t) equals to the number of transactions on one shard at epoch t.
To show the novelty of our design, we define the communication gain G as the ratio between the bit complexity common

in ordinary blockchain systems, which require every node to receive every transaction, and the bit complexity of our design;

the former leads to an inevitable O(NP) bit complexity assuming that each transaction requires a constant amount of bits,

and a block contains P transactions. Specifically, if the system in our design tolerates µN Byzantine nodes, where µ < 1
3 , the

communication gain is

G =
NP

P d2 logN
(1−3µ)2

=
N(1− 3µ)2

d2 logN
. (16)

It is evident from (16) that the communication gain is significant for any fixed value of µ and d. Moreover, increasing the

number of nodes in the system while keeping the remaining parameters fixed improves the overall communication gain with

respect to traditional designs; this is a highly desirable property of blockchain systems.

D. Communication-Security Tradeoff

By Corollary 1, the overall bit complexity is O(P d2 logN
(1−3µ)2), from which a tradeoff between security and communication is

evident. A lower µ value yields low bit complexity, but degrades the security level (since µ = f/N). In contrast, a higher µ
value allows the system to tolerate more Byzantine nodes, but inevitably leads to a higher bit complexity. In Figure 3 we

illustrate the function µ 7→ 1
(1−3µ)2 , which describes the tradeoff between µ and the bit communication complexity, measured

relative to the baseline Pd2 logN in Corollary 1.

VI. FUTURE WORK AND CONCLUDING REMARKS

This paper focuses on verifying the validity of new transactions, but does not discuss how nodes can learn if an old transaction

has already been redeemed. Directions for future work include incorporating light nodes, and developing algorithms for them

17

0 5 10 15 20 25 30

0

50

100

Security Level µ (%)

B
it

C
o

m
p

le
x

it
y

(P
d
2
lo
g
N

)

Fig. 3. An illustration of the tradeoff between the security level µ = f
N

and communication bit complexity.

to access raw data by querying a coded distributed system with Byzantine nodes. Finally, as this paper adopts a simplified

UTXO model, the generalized multi-input multi-output setting is an interesting direction for future research. In spite of these

disadvantages, our work shows that coded computation can alleviate the communication burden in blockchain systems, while

maintaining the computations and storage benefits of sharding.

REFERENCES

[1] C. Wang and N. Raviv, “Low Latency Cross-Shard Transactions in Coded Blockchain,” in IEEE International Symposium

on Information Theory, pp. 2678–2683, 2021.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[3] K. Croman, et al., “On scaling decentralized blockchains,” in International Conference on Financial Cryptography and

Data Security, pp. 106–125, 2016.

[4] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-NG: A scalable blockchain protocol,” USENIX Symp.

Networked Systems Design and Implementation, pp. 45–59, 2016.

[5] R. Pass and E. Shi, “Hybrid Consensus: Efficient consensus in the permissionless model,” International Symposium on

Distributed Computing, 2017

[6] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, “Enhancing Bitcoin security and performance

with strong consistency via collective signing”, USENIX Security Symposium, pp. 279–296, 2016.

[7] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure proof-of-stake blockchain protocol,”

Annu. Int. Cryptology Conference. pp. 357–388, 2017.

[8] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfigurable consensus and applications to provably secure proof

of stake,” in International Conference on Financial Cryptography and Data Security, 2019, pp. 23–41.

[9] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling Byzantine Agreements for Cryptocur-

rencies”, Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51–68, 2017.

[10] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Transactions on Programming Languages

and Systems, vol, 4, no. 3 pp. 382–401, 1982.

[11] N. A. Khooshemehr and M. A. Maddah-Ali, “The Discrepancy Attack on Polyshard-ed Blockchains,” in IEEE Int. Symp.

Information Theory, pp. 2672–2677, 2021.

[12] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” Communications, vol. 21, no. 7,

pp. 558–565, 1978.

[13] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: A tutorial,” ACM Computing

Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[14] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Distributed Computing, vol. 11, no. 4, pp. 203–213, 1998.

[15] C. Miguel and L. Barbara, “Practical byzantine fault tolerance,” Symposium on Operating Systems Design and

Implementation, vol. 99, pp. 173–186, 1999.

[16] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative byzantine fault tolerance,” in ACM

SIGOPS Symp. Operating Systems Principles, pp. 45–58, 2007.

[17] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700 BFT protocols,” in Proceedings of the 5th European

conference on Computer systems, pp. 363–376, 2010.

[18] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT consensus,” 2017. [Online]. Available:

arXiv:1807.04938.

18

http://arxiv.org/abs/1807.04938

[19] G. G. Gueta, , I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K. Reiter, D.-A. Seredinschi, O. Tamir, and A.

Tomescu, “Sbft: a scalable and decentralized trust infrastructure,” in 49th Annual IEEE/IFIP international conference on

dependable systems and networks (DSN), pp. 568–580, 2019.

[20] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “HotStuff: BFT consensus with linearity and

responsiveness,” Proceedings of ACM Symposium on Principles of Distributed Computing (PODC), pp. 347–356. 2019.

[21] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of BFT protocols,” in ACM SIGSAC Conference

on Computer and Communications Security, pp. 31–42. 2016.

[22] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster asynchronous bft protocols,” in ACM SIGSAC Conf.

Computer and Communications Security, pp. 803–818. 2020.

[23] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on blockchain,” Proceedings of the 1st ACM Conference on

Advances in Financial Technologies, pp. 41–61, 2019.

[24] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A secure sharding protocol for open blockchains,”

ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30, 2016.

[25] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Omniledger: A secure, scale-out, decentralized

ledger via sharding,” IEEE Symposium on Security and Privacy (SP), pp. 583–598, 2018.

[26] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” ACM SIGSAC Conference

on Computer and Communications Security, pp. 931–948, 2018.

[27] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: Asynchronous BFT made practical,” in ACM SIGSAC Conference on

Computer and Communications Security, pp. 2028–2041, 2018.

[28] C. Cachin, K. Kursawe, F. Petzold and V. Shoup, “Secure and efficient asynchronous broadcast protocols,” in Annu. Int.

Cryptology Conference, pp. 524–541, 2001.

[29] S. Li, M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan, and P. Viswanath, “Polyshard: Coded sharding achieves linearly

scaling efficiency and security simultaneously,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 249–

261, 2020.

[30] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange coded computing: Optimal

design for resiliency, security, and privacy,” in International Conference on Artificial Intelligence and Statistics, pp. 1215–

1225, 2019.

[31] C. Cachin and S. Tessaro, “Asynchronous verifiable information dispersal,” in 24th IEEE Symposium on Reliable

Distributed Systems (SRDS), pp. 191–201, 2005.

[32] J. Hendricks, G.R. Ganger, and M. K. Reiter, “Verifying distributed erasure-coded data,” Proceedings of ACM symposium

on Principles of distributed computing, pp. 139–146, 2007.

[33] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in 40th Annual Symposium on Foundations of Computer

Science, pp. 120–130, 1999.

[34] A. Boldyreva, “Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature

scheme,”, in International Workshop on Public Key Cryptography, pp. 31–46, 2003.

[35] J. Ding and A. Petzoldt, “Current state of multivariate cryptography,” IEEE Security & Privacy, vol. 15, no. 4, pp. 28–36,

2017.

[36] A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced oil and vinegar signature schemes,” in Int. Conf. Theory and Applications

of Cryptographic Techniques, pp. 206–222, 1999.

[37] A. Petzoldt, M.-S. Chen, B.-Y. Yang, C. Tao, and J. Ding, “Design Principles for HFEv- Based Multivariate Signature

Schemes,” International Conference on the Theory and Application of Cryptology and Information Security, pp. 311–334,

2015.

[38] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial signature scheme,” Int. Conf. Applied Cryptography

and Network Security, pp. 164–175, 2005.

[39] A. Gervais, G.O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Čapkun, “On the security and performance of

proof of work blockchains,” ACM SIGSAC Conference on Computer and Communications Security, pp. 3–16, 2016.

[40] B. Applebaum, N. Haramaty-Krasne, Y.I shai, E. Kushilevitz, and V. Vaikuntanathan, “Low-complexity cryptographic

hash functions,” Innovations in Theoretical Computer Science Conference (ITCS), 2017.

[41] J-P. Aumasson and W. Meier, “Analysis of multivariate hash functions” in International Conference on Information

Security and Cryptology, pp. 309–323, 2007.

[42] J. Ding and B.-Y. Yang, “Multivariates polynomials for hashing,” in International Conference on Information Security

and Cryptology, pp. 358–371, 2007.

[43] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,” Journal of the ACM

(JACM) 36, no. 2, pp. 335–348, 1989.

[44] M. O. Rabin, “Fingerprinting by random polynomials,“ Technical report, 1981.

[45] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing efficient protocols,” in Proceedings

of the 1st ACM Conference on Computer and Communications Security, pp. 62–73,1993.

[46] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism: Deconstructing the blockchain to approach physical

19

limits”, in ACM SIGSAC Conference on Computer and Communications Security, pp. 585–602, 2019.

[47] M. Al-Bassam, A. Sonnino, V. Buterin, and I. Khoffi, “Fraud and data availability proofs: Detecting invalid blocks in

light clients,” in International Conference on Financial Cryptography and Data Security, pp. 279–298, 2021.

[48] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and S. Viswanath, “Coded merkle tree: Solving data availability

attacks in blockchains,” in International Conference on Financial Cryptography and Data Security, pp. 114–134, 2020.

[49] C. Dwork, N. A. Lynch, and L. J. Stockmeyer, ”Consensus in the presence of partial synchrony,“ Journal of the ACM,

vol. 35, no. 2, pp. 288–323, 1988.

[50] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with one faulty process,” Journal

of the ACM, vol. 32, no. 2, pp. 374–382, 1985.

[51] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot

products,” Advances In Neural Information Processing Systems, 2016.

[52] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix

multiplication,” Advances in Neural Information Processing Systems, 2017.

[53] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding stragglers in distributed learning,”

in Proc. 34th Int. Conf. Mach. Learn. (ICML), Aug. 2017, pp. 3368-–3376.

[54] N. Raviv, I. Tamo, R. Tandon, A. G. Dimakis, “Gradient coding from cyclic MDS codes and expander graphs,” IEEE

Transactions on Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.

[55] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation schemes that leverage partial stragglers,” IEEE

Transactions on Information Theory, 2022.

[56] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely coded computing,” in IEEE International Symposium on

Information Theory (ISIT), pp. 2798–2802, 2019.

[57] N. Woolsey, R.-R. Chen, and M. Ji, “Cascaded coded distributed computing on heterogeneous networks,” in IEEE

International Symposium on Information Theory (ISIT), pp. 2644–2648, 2019.

[58] S. Li, S. Sahraei, M. Yu, S. Avestimehr, S. Kannan, and P. Viswanath, “Coded State Machine–Scaling State Machine

Execution under Byzantine Faults,” in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,

pp. 150–152, 2019.

20

	I Introduction
	II Background
	II-A Lagrange Coded Computing
	II-B State Machine Replication
	II-C Information Dispersal
	II-D The Unspent Transaction Output (UTXO) Model
	II-E Cryptographic Primitives

	III Coded Verification
	III-A Setting
	III-B Polynomial Verification Function
	III-B1 Transaction Fetching
	III-B2 Address Checking
	III-B3 Signature Verification
	III-B4 Verification of a strip

	III-C Coded Computation
	III-D Coded Appending

	IV Coded Consensus
	IV-A Overview
	IV-B Maintaining Consistency (Condition 1)
	IV-C Maintaining Homology (Condition 2)
	IV-D Maintaining Validity (Condition 3)

	V Discussion
	V-A Security
	V-B Liveness
	V-C Communication Complexity
	V-D Communication-Security Tradeoff

	VI Future Work and Concluding Remarks

