
1

Sequential Decoding of Multiple Sequences for
Synchronization Errors

Anisha Banerjee, Andreas Lenz and Antonia Wachter-Zeh

Abstract—Sequential decoding, commonly applied to substitu-
tion channels, is a sub-optimal alternative to Viterbi decoding
with significantly reduced memory costs. In this work, a sequen-
tial decoder for convolutional codes over channels that are prone
to insertion, deletion, and substitution errors, is described and
analyzed. Our decoder expands the code trellis by a new channel-
state variable, called drift state, as proposed by Davey and
MacKay. A suitable decoding metric on that trellis for sequential
decoding is derived, generalizing the original Fano metric. The
decoder is also extended to facilitate the simultaneous decoding of
multiple received sequences that arise from a single transmitted
sequence. Under low-noise environments, our decoding approach
reduces the decoding complexity by a couple orders of magnitude
in comparison to Viterbi’s algorithm, albeit at slightly higher bit
error rates. An analytical method to determine the computational
cutoff rate is also suggested. This analysis is supported with
numerical evaluations of bit error rates and computational
complexity, which are compared with respect to optimal Viterbi
decoding.

I. INTRODUCTION

Most error-control systems operate under the assumption
of perfect synchronization between transmitter and receiver,
while their respective decoders are designed to detect and cor-
rect substitution errors alone. However, when this assumption
does not hold, as in the case of some networking and data
storage channels [2, 3], some transmitted symbols may be lost
or random ones may be inserted into the received stream. Such
errors are referred to as deletions and insertions.

There exists rich literature dedicated to the study of channels
that are susceptible to insertion, deletion and substitution
errors, and suitable error-correcting codes to increase trans-
mission reliability under such environments [4–11]. In this
work, we are interested in the use of convolutional codes for
the purpose of correcting these errors. Prior work in [12, 13]
suggested new trellis structures that helped in adapting the
conventional Viterbi and MAP decoders to handle insertions
and deletions. Concatenated schemes [14] with inner convo-
lutional codes have built on these trellis structures to decode
from multiple sequences over insertion and deletion channels.
One drawback of these decoding approaches however, lies in
their memory requirements and computational complexity. In
particular, the trellis grows rapidly with factors like constraint
length of the code, number of information blocks per codeword

This work has been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(Grant Agreement No. 801434).

The authors are with the Institute for Communications Engineer-
ing, Technical University of Munich, DE-80333 Munich, Germany,
Emails: anisha.banerjee@tum.de, andreas.lenz@mytum.de, antonia.wachter-
zeh@tum.de

A part of this work was presented at 2022 IEEE Information Theory
Workshop (ITW) [1].

and maximum allowable insertions and deletions per block.
This motivated us to look into an alternative approach, namely
sequential decoding with the goal to achieve a low-complexity
decoding approach.

First proposed by Wozencraft [15], sequential decoders
constitute a decoding strategy that is suited to convolutional
codes with high constraint lengths. This is primarily owed to
the fact that a typical sequential decoder will only examine
those codewords that seem likely to have been transmitted,
unlike the Viterbi decoder which assesses all possibilities,
regardless of noise levels. Although this leads to a worse
error-correcting performance in sequential decoding compared
to Viterbi decoding, the resulting decoding complexity is
effectively independent of the encoder’s memory.

The main objective of this work is to tailor the sequential
decoding approach for use in channels that experience inser-
tions, deletions as well as substitution errors. This problem
was first addressed by Gallager [10], who used Wozencraft’s
original algorithm to implement the sequential decoder, and
subsequently analyzed its complexity. Mansour and Tewfik
[16] also worked on this problem, by adopting a new trellis
structure and specifically limiting their focus to the stack
algorithm. However, unlike [10, 16], this work formulates
a new decoding metric, wherein the likelihood component
is computed using the lattice metric [17], and an additional
bias term accounts for probability of the predicted message
sequence and that of the received bit sequence. Furthermore,
we employ the trellis structure proposed in [13] and limit our
attention to Fano’s algorithm, which typically performs fewer
computations and explores more paths compared to other
variants of sequential decoding. Using the approach in [18], an
analytical assessment of the algorithm’s average complexity is
also performed.

Since DNA storage typically involves the synthesis of data
into numerous short DNA strands, it is also crucial to study the
problem of recovering the stored data from multiple erroneous
copies of the original strand. In this regard, [14] proposed
concatenated coding schemes for transmitting a single DNA
sequence over multiple parallel channels and also decoding
algorithms for multiple received sequences. The authors of
[19] also suggested a sub-optimal decoding algorithm of lower
complexity for multiple sequences. Likewise, we also extend
our sequential decoding framework to enable the simultaneous
decoding of multiple received sequences.

The structure of this paper is as follows. We start by briefly
considering the modeling of channels which are vulnerable
to insertions, deletions and substitution errors, followed by a
discussion on the decoding algorithm in Section II. Follow-
ing this, Section III demonstrates how we adapt sequential

ar
X

iv
:2

20
1.

11
93

5v
2

 [
cs

.I
T

]
 2

5
Se

p
20

23

2

xi xi+1· · · · · ·

Pd

Delete

Transmit with no error

Pt(1− Ps)

Insert

Pi

Transmit with substitution
PtPs

Figure 1. Allowed transitions in the state machine model for the insertion,
deletion, and substitution channel [6]

decoders to our specific channel model by deriving a new
decoding metric that suitably generalizes the original metric
proposed by Fano [20]. An asymptotic approximation of this
decoding metric is also derived to assist in the analytical
assessment of the average computational complexity of this
decoder, which is detailed in Section IV. Additionally in
Section V, we suggest how this decoder can be extended
to permit the simultaneous decoding of multiple sequences,
while also repeating the computational analysis for the same.
Finally, Section VI presents simulation results that compare the
performance of our decoder to the Viterbi decoder, specifically
in regard to bit error rates and computational effort.

II. PRELIMINARIES

A. Channel model

As in [6, 17], we adopt a finite-state-machine model for our
channel, specified by three parameters Pi, Pd and Ps, which
denote the insertion, deletion and substitution probabilities of
the channel, respectively. Let xR

1 = (x1, . . . xR) ∈ {0, 1}R
denote a sequence of bits awaiting transmission. From Fig. 1,
we observe that under this construct, for each input bit, one
of four events may occur: a random bit is inserted into the
received stream with probability Pi and xi remains in the
transmission queue; or the next bit queued for transmission,
i.e., xi, is deleted with probability Pd; or xi is received at
output end, either erroneously or correctly, with probabilities
PtPs and Pt(1 − Ps) respectively. Here, Pt = 1 − Pi − Pd

simply refers to the transmission probability (possibly with a
substitution error).

B. Convolutional codes

Before describing the decoding framework, we shortly
recapitulate the basics of convolutional codes. These codes
constitute a special category of tree codes, that incorporate
memory and aim to encode a stream of input bits in a block-
wise manner, by means of shift registers. They are typically
specified by three parameters: [c, b,m], indicating that for
every b input bits received, the encoder generates c output
bits, which are a function of the last b(m+ 1) input bits.

To exemplify this, Fig. 2 depicts the encoder for a binary
[3, 1, 1] convolutional code. It accepts b = 1 input, has c = 3
outputs, and includes m = 1 memory unit, the contents of
which indicate the encoder state. Thus, a total of two states
are possible.

+u

+

x(1)

x(2)

x(3)

Figure 2. A [3, 1, 1] binary convolutional encoder

C. Joint code and channel tree structure

As in [13], the vector obtained at the receiving end of the
channel is viewed as the output of a hidden Markov model
(HMM), where each hidden state is a pair of the encoder state
and the drift value. In this context, we define the drift [6] as the
difference between number of bits received and transmitted.
In particular, di is used to signify the net drift accumulated
after the transmission of i bits. For more details about the drift
variable, we refer the reader to [6].

The decoder works on a tree representation of this HMM,
such that any path in this tree describes how the encoder state
and net drift value could change over time. As a demonstration,
Fig. 3 depicts the joint code and channel tree for a [3, 1, 1]
convolutional encoder. For any given sequence of HMM states,
the concatenation of edge labels along the respective path in
the code tree indicates the originally transmitted codeword.

D. Fano’s Algorithm

In this work, we limit our focus to a particular variant of
sequential decoding, namely Fano’s algorithm [20]. It employs
a tree structure as described earlier, and assigns a metric1 to
each node of this tree to suitably quantify the closeness of the
received sequence to the sequence predicted by that node. The
algorithm operates on the principle that node metrics along
the correct path keep increasing on an average. The algorithm
searches for such a path, by tracking metrics of the current,
previous and best successor nodes, denoted as µc, µp and µs

respectively. A dynamic threshold T is used to check for the
aforementioned property. This variable can only be altered by
integer multiples of a user-defined step size ∆. Starting from
the tree root, the decoder works as follows:

1) If best successor has metric µs ≥ T , move forward.
• If this node has never been visited before, T is

tightened such that
T ≤ µc < T +∆. (1)

2) Else, step back to the immediate predecessor.
• If other successors with metrics above T exist, the

decoder steps forward to it, as in step 1).
• Else:

– If µp < T , lower T by ∆.
– Else repeat step 2).

In this manner, all the paths with metrics above or equal to
the threshold T are systematically explored.

1Discussed further in Section III.

3

111

100

011

111

100

011

111

100

011

000
111

000
000

111

000

000

111

000

(S0, 0)

(S1, 1)

(S1, 0)

(S1,−1)

(S0, 1)

(S0, 0)

(S0,−1)

(S1, 2)

(S0,−2)

Figure 3. Joint code and channel tree of a [3, 1, 1] convolutional code. Dashed
lines correspond to an input of 0 and solid lines to input 1. Each node has
two state variables, the convolutional code state and the drift state.

III. DECODER METRIC

From the preceding discussion, it is evident that a metric for
each tree node must be defined to quantify its closeness to the
received vector. Specifically, this metric should help minimize
the probability of choosing a wrong successor.

A. Metric Definition Based on Posterior Distribution

Let yN
1 = (y1, . . . yN) denote a received sequence pro-

duced by the transmission of a codeword of L blocks. For
a convolutional code with parameters [c, b], consider a node
at depth t, say vt

0, that is reached from the root via the
convolutional code states st0 = (s0, . . . , st) and the drift states
dt
0 = (d0, dc, . . . dct)

2, where initial drift is d0 = 0. We may
represent this node in vector form as

vt
0 = ((s0, d0), (s1, dc), . . . , (st, dct)).

Then, we define the metric of node vt
0 to be

µ(vt
0) = log2 P (vt

0,y
N
1)− log2 P (yN

1). (2)

Hence, the decoder metric of a tree node is essentially the
probability of its predicted codeword and drift changes, given
a specific received frame. This definition is in the same spirit
as that in [21], wherein Massey proved the optimality of the
Fano metric in the context of binary symmetric channels.

Before further simplifying (2), we recognize that the path
traced from the root by vt

0, only accounts for the first
ct + dct symbols of the received vector. The remaining
symbols yN

ct+dct+1, are assumed to have been produced by a
tailing message sequence that guides the convolutional encoder
through the states s̃Lt+1 = (st+1, . . . , sL). We additionally

2The time indices of the drift values are integer multiples of c, since a node
at depth i is reached after the transmission of ci bits.

make the simplifying assumption that yN
ct+dct+1 is unaffected

by bits transmitted prior to it3 and we may write

P (vt
0, s̃

L
t+1,y

N
1) = P (vt

0,y
ct+dct
1)P (yN

ct+dct+1, s̃
L
t+1|vt

0)

= P (vt
0,y

ct+dct
1)P (s̃Lt+1,y

N
ct+dct+1|st, dct).

Marginalizing this term over all possible message tails,

P (vt
0,y

N
1) =

∑
s̃L
t+1

P (vt
0, s̃

L
t+1,y

N
1)

= P (vt
0,y

ct+dct
1)

∑
s̃L
t+1

P (s̃Lt+1,y
N
ct+dct+1|st, dct). (3)

Both (2) and (3) require us to evaluate the probability of
receiving a particular sequence. To make the dependence of
this quantity on the length of the causal transmitted sequence
more explicit, we introduce the following notation.

PR(y
N
1) =

∑
x∈{0,1}R

P (x,yN
1). (4)

Applying (3) and (4) in (2), we arrive at the following
definition of decoder metric,

µ(vt
0) = log2 P (vt

0,y
ct+dct
1) + log2 Pc(L−t)(y

N
ct+dct+1|dct)

− log2 PcL(y
N
1)

= log2 P (st0) + log2 P (dt
0) + log2 P (yct+dct

1 |vt
0)

+ log2 Pc(L−t)(y
N
ct+dct+1|dct)− log2 PcL(y

N
1)

=

t−1∑
i=0

log2 P (si+1|si) + log2 P (d0) +

t−1∑
i=0

πi +

t−1∑
i=0

γi(y)

+ log2
Pc(L−t)(y

N
ct+dct+1|dct)

PcL(yN
1)

, (5)

where πi indicates the logarithmic drift transition probability
of the ith branch, while γi(y) signifies the likelihood of the
received bits given the state and drift transitions specified by
the ith branch. More explicitly, we define these variables as

πi = log2 P (dc(i+1)|dci)

γi(y) = log2 P (y
c(i+1)+dc(i+1)

ci+dci+1 |si+1
i , dci, dc(i+1)).

Note that the final equality in (5) follows from the relative
independence of consecutive message blocks and the Markov
chain-like behavior of the sequence of drift values. Further-
more, we set P (s0 = S0) = 1, since the convolutional code
always begins in the same initial state, S0.

Since we only consider drift sequences with initial drift
d0 = 0, we may set P (d0 = 0) = 1 and thus define equivalent
decoder metrics for individual branches of the code tree as

Z(vt
0 → vt+1

0) = µ(vt+1
0)− µ(vt

0)

= −b+ πt + γt(y) + τt(y), (6)

where τt(y) is a logarithmic ratio of tail probabilities, defined

as τt(y) = log2
Pc(L−t−1)(y

N
c(t+1)+dc(t+1)+1|dc(t+1))

Pc(L−t)(y
N
ct+dct+1|dct)

. The second

equality in (6) follows from P (st+1|st) = 2−b and πi+γi(y)
can be computed by an iterative process on a lattice structure,
outlined in [13, 17]. A similar method can be used to evaluate
the logarithmic drift likelihood πi by setting the horizontal,
vertical and diagonal edge weights of the lattice to Pi, Pd and

3Exactly true for bits yN
c(t+m)+dc(t+m)+1

.

4

Pt respectively. Alternatively, one may use the closed-form
expression specified in [9]. The quantity in (4) can also be
evaluated similarly, by making the simplified assumption that
all transmitted sequences x ∈ {0, 1}R are equally likely. In
this case, the horizontal, vertical and diagonal edge weights in
the lattice will simply change to Pi

2 , Pd and Pt

2 respectively.

B. Asymptotic Approximation of Branch Metric

In the upcoming section, we endeavor to derive the compu-
tational cutoff rate of Fano’s decoder. We do so by establishing
an upper bound on the number of computations needed to
decode a single information block correctly, in an infinite code
tree, i.e., for L → ∞. To simplify the analysis, we use an
asymptotic approximation of the tail term τt(y) in the branch
metric Z(vt

0 → vt+1
0), as defined in (6).

To proceed along these lines, the methods from [22–24]
are employed. While the detailed derivation is relegated to
Appendix A, the asymptotic expression of (6) that we finally
obtain under the condition Pi = Pd, is stated as follows.

Z(vt
0 → vt+1

0) = πt + γt(y)− b+ c+ dc(t+1) − dct. (7)

Remark 1. Equation (7) is quite similar to the expression
of Fano branch metric for a binary substitution channel [18].
The same expression is also obtained if we consider a channel
that permits only insertions or only deletions, in addition to
substitutions.

IV. COMPUTATIONAL CUT-OFF RATE

To assess the complexity of Fano’s decoder, it suffices to
count the number of forward steps taken by the decoder,
since each time a new node is visited, branch metrics for all
immediate successors must be computed. This is undoubtedly
the most costly step in Fano’s algorithm. To acquire an upper
bound on the total number of visits to nodes in a given code
tree, we adopt the approach and the modeling assumptions
outlined in [18], which are summarized in the following.

A. Upper bound on average decoding complexity

This analysis is conducted under the assumption of correct
decoding. Consider a received vector yN

1 , which results from
the transmission of L blocks, and let the decoding result
correspond to the node

v∗L
0 = ((s∗0, d

∗
0), (s

∗
1, d

∗
1), . . . (s

∗
L, d

∗
L)).

All of the remaining nodes in the joint code and channel
tree describe incorrect paths, i.e., paths that predict at least
one convolutional code state or drift state inaccurately, and
are grouped into L subtrees: τ0, . . . , τL−1. Here, τi refers to
the set of all nodes that hypothesize any false path that stems
from vi∗

0 , which is the ith node on the correct path as traced
by v∗L

0 . We illustrate this partitioning of the joint channel and
code tree in Fig. 4.

If C ′(vj
0) refers to the number of visits by decoder to

node vj
0, then the total complexity of the complete decoding

operation can be expressed as

Ctotal =

L−1∑
i=0

(
C ′(vi∗

0) +

L−1∑
j=i+1

∑
vj
0∈τi

C ′(vj
0)
)
.

We average this quantity over a code ensemble with pa-
rameters (c, b), and all possible transmitted and received
sequences. For analytical simplicity, we restrict our attention
to codes of infinite length. Doing so makes the code tree
infinite in length, thereby allowing us to assume similar
statistical properties for all τi. Under this construct, the task
of computational analysis may be reduced to the determi-
nation of mean decoding complexity per block, which we
define as Cav = E[C(vi∗

0)] = E[C(v∗
0)], where C(vi∗

0) =
C ′(vi∗

0)+
∑L−1

j=i+1

∑
vj
0∈τi

C ′(vj
0), i.e., the total number of

visits to vi∗
0 and all nodes in τ0.

From the earlier discussion on Fano’s algorithm, we infer
that a drop in metric along v∗L

0 will cause the decoder to
examine alternative paths in the incorrect subtrees. When none
of these appear to be promising, the decoder will return to
previously visited nodes in v∗L

0 , but with a lowered threshold,
and can only move forward when the criterion is upheld. Thus,
the number of visits to a node clearly depends on its metric.

Let µ∗
min and T ∗

min denote the minimum node metric and
minimum threshold value along v∗L

0 , during a complete de-
coding operation respectively. It is easy to see that a lower
value of T ∗

min implies more backtracking by the decoder to
explore incorrect nodes in the tree. Hence, we evaluate Cav as

Cav=E[C(v∗
0)] =

∞∑
i=0

P (T ∗
min= −i∆)E[C(v∗

0)|T ∗
min = −i∆].

(8)
The second equality follows from the fact that threshold
always starts at 0, and only changes by the magnitude of ∆.

With an additional assumption that branch metrics along
the correct path are independently and identically distributed,
and that the same applies to branch metrics for a given drift
change along incorrect paths, we can bound Cav as

Cav ≤ C1
(1− 2−σ1∆)2−σ0∆

1− 2(σ0+σ1)∆
+ C12

−σ1∆ + C3
2−σ0∆

1− 2σ0∆

+ C2
(1− 2−(σ0+σ1)∆)2−σ0∆

1− 2(σ1+2σ0)∆
+ C22

−(σ0+σ1)∆, (9)

where C1, C2, C3, σ0 and σ1 are constants depending on
the channel and code parameters. The proof, along with more
details on the significance of these constants, is relegated to the
appendix. The preceding bound only exists when σ0+σ1 < 0
and unfortunately overshoots practical values by several orders
of magnitude. However, this bound offers one key insight that
Cav only converges if

σ0 + σ1 < 0. (10)

Equations (56) and (59) suggest that σ1 is indicative of the
rate of rise of computations in τ0. This leads to an intuitive
interpretation of (10), that the rate of decline of probability
P (µ∗

min < y), or σ0, should sufficiently compensate for the
rate of increase of wasteful computations i.e., σ1, to allow
convergence of average decoding effort per block, i.e., Cav.
When (10) holds with equality, the channel essentially operates
at computational cutoff rate R0, which is the code rate beyond
which using a sequential decoder becomes computationally
impractical. This is due to the fact that for rates exceeding R0,
the severity of channel noise causes frequent backtracking and
more computations in incorrect subtrees. For code trees with

5

1

1

1

0

0

0

1

1

1

0

0

1

1

1

0

0

0

0

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

10 2 3Depth:

S0, 0

S1, 1

S1, 0

S1,−1

S0, 1

S0, 0

S0,−1

S1, 0

S1,−1

S1,−2

S0, 0

S0,−1

S0,−2

S1, 0

S1,−1

S1,−2

S0, 0

S0,−1

S0,−2

Correct path
as per v∗L

0

2nd incorrect
subtree, τ2

0th incorrect
subtree, τ0

τ ′0

τ∗0

1st incorrect
subtree, τ1

Input

Figure 4. Incorrect subtrees in a code tree.

infinite depth, Cav would be unbounded. On the contrary, for
code rates below R0, Cav is bounded, implying that decoding
complexity of a single frame grows linearly with tree depth.

B. Error probabilities at cut-off rate

We now endeavor to briefly describe our method to derive
the error probabilities which characterize operation at cutoff
rate, given a convolutional code and decoder parameters. As
one can surmise from the preceding discussion, this method
centers around the equation σ0 + σ1 = 0.

In the earlier section, it was stated that σ0 and σ1 depend
on parameters of the channel and the code4. More specifically,
they satisfy g0(σ0) = 1 and g1(σ1) = 2−b(imax+dmax+1)−1,
where imax and dmax are the maximum allowable insertions
and deletions per branch, while g0(σ) and g1(σ) are the
moment generating functions of the branch metric along
correct and incorrect paths, respectively (see Appendix C).
Since the current objective is to determine which error prob-
abilities (Pi, Pd, Ps) cause the decoder to operate at cut-off
rate, given a specific convolutional code [c, b,m], we deem it
appropriate to write σ

(Pi,Pd,Ps)
0 and σ

(Pi,Pd,Ps)
1 instead, so as

to explicitly highlight the dependence. To ease the process of
finding σ

(Pi,Pd,Ps)
0 , the moment generating functions g0(σ) is

rearranged as

g0(σ) = E[2σζ
∗
] =

imax∑
δ=−dmax

∑
x∈{0,1}c

y∈{0,1}c+δ

P (x,y, δ)2σZ(y|x)

4In the following equations, we also note a dependence on decoder
parameters imax and dmax.

= 2−c
imax∑

δ=−dmax

∑
x∈{0,1}c

y∈{0,1}c+δ

P (y, δ|x)2σZ(y|x), (11)

where Z(y|x) denotes the asymptotic decoder metric of
a branch for the received bits y and transmitted bits x.
Additionally, the final equality follows from our assumption
that all binary vectors of length c are equally likely to be
transmitted. Evidently P (y, δ|x) is computable by means of
the lattice metric, mentioned previously in Section III. In a
similar manner, we also reformulate g1(σ) to simplify the
evaluation of σ(Pi,Pd,Ps)

1 .

g1(σ) = E[2σζ
′
] = λ−1

imax∑
δ=−dmax

∑
x∈{0,1}c

y∈{0,1}c+δ

P (x,y)2σZ(y|x)

= λ−12−2c
imax∑

δ=−dmax

2−δ
∑

x∈{0,1}c

y∈{0,1}c+δ

2σZ(y|x). (12)

Here, the final equality stems from the fact that along an
incorrect path, the received bits are practically independent of
the transmitted bits. Furthermore, we assume that all binary
vectors of length c are equally likely to have been transmitted,
and that all length (c+ δ) binary vectors are equally likely to
have been received.

Remarks: From (7), (11) and (12), we
observe that when Pi = Pd, it holds that
g1(σ + 1) = 2−bg0(σ)(imax + dmax + 1)−1.
As a consequence of g0(σ

(Pi,Pd,Ps)
0) = 1 and

g1(σ
(Pi,Pd,Ps)
1) = 2−b(imax + dmax + 1)−1, we deduce

that σ
(Pi,Pd,Ps)
1 = σ

(Pi,Pd,Ps)
0 + 1. Consequently, at critical

6

Algorithm 1: Computing error probabilities at cut-off
rate

Input: Convolutional code parameters [c, b], maximum
allowable insertions per branch imax, maximum
allowable deletions per branch dmax,
substitution probability Ps, α and β such that
Pd = αPi and Ps = βPi, error tolerance ϵ.

Output: p = Pi =
Pd

α = Ps

β

1 init
2 b′ = b+ log2(imax + dmax + 1).
3 Choose pa, pb such that pa < pb and

(σ
(pa,αpa,βpa)
0 + σ

(pa,αpa,βpa)
1)(σ

(pb,αpb,βpb)
0 +

σ
(pb,αpb,βpb)
1) < 0.

4 do
5 p = (pa + pb)/2.

6 Solve for σ(p,αp,βp)
0 such that g0(σ) = 1.

7 Solve for σ(p,αp,βp)
1 such that g1(σ) = 2−b′ .

8 if σ(p,αp,βp)
0 + σ

(p,αp,βp)
1 < 0 then

9 pa = p.

10 else if σ(p,αp,βp)
0 + σ

(p,αp,βp)
1 > 0 then

11 pb = p.

12 else
13 Stop.

14 while |σ(p,αp,βp)
0 + σ

(p,αp,βp)
1 | > ϵ

rate, it holds that σ0 = − 1
2 and σ1 = 1

2 . Furthermore, this
implies that for a channel that guarantees Pi = Pd, i.e.,
α = 1, it suffices to verify whether a certain value of p
upholds g0(− 1

2) = 1, during each iteration of Algorithm 1.
The same applies to channels where either Pi = 0, or Pd = 0.

It is also worth noting that for any j ∈ N, the convolutional
codes with parameters [c, b] and [jc, jb] do not induce cut-off
rate operation under the same error probabilities Pi, Pd and
Ps, despite possessing the same code rate. In particular, the
convolutional code [jc, jb] appears to correspond to a cut-off
rate operation under noisier conditions than that for the code
[c, b]. This is attributable to the path merging phenomenon,
which essentially involves the unification of multiple paths
when one transforms a joint channel and code tree for a [c, b]
code to one for its equivalent [jc, jb]. For instance, we can
transform the tree in Fig. 3 into another that corresponds
to an equivalent [6, 2, 1] code, as depicted in Fig. 5. We
note that both of these codes will output the same codeword,
given the same input sequence. We can demonstrate the path
merging phenomenon by considering any path in Fig. 5, say
(S0, 0)

000 111−−−−−→
(01)

(S1, 0). This path actually combines the

following paths in the tree shown in Fig. 3.

(S0, 0)
000−−−−−−→
(0)

(S0,−1)
111−−−−−−→
(1)

(S1, 0)

(S0, 0)
000−−−−−−→
(0)

(S0, 0)
111−−−−−−→
(1)

(S1, 0)

(S0, 0)
000−−−−−−→
(0)

(S0, 1)
111−−−−−−→
(1)

(S1, 0)

S0, 0

S0,−2

S0,−1

S0, 0

S0, 1

S0, 2

S1,−2

S1,−1

S1, 0

S1, 1

S1, 2

S0,−2

S0,−1

S0, 0

S0, 1

S0, 2

S1,−2

S1,−1

S1, 0

S1, 1

S1, 2

000 000
(00)

000 111
(01)

111 011
(10)

111 100
(11)

Encoder output

Input

Figure 5. Code tree of a [6, 2] convolutional code

Additionally, it also accounts for the following possibilities

(S0, 0)
000−−−−−−→
(0)

(S0,−3)
111−−−−−−→
(1)

(S1, 0)

(S0, 0)
000−−−−−−→
(0)

(S0,−2)
111−−−−−−→
(1)

(S1, 0)

(S0, 0)
000−−−−−−→
(0)

(S0, 2)
111−−−−−−→
(1)

(S1, 0)

(S0, 0)
000−−−−−−→
(0)

(S0, 3)
111−−−−−−→
(1)

(S1, 0)

by virtue of the lattice computation of branch metrics.

V. DECODING MULTIPLE SEQUENCES

When the receiver is given M received sequences, say
y1, . . . ,yM , of lengths N1, . . . , NM respectively, which result
from the repeated transmission of the same input sequence
over a given channel, we can adapt the sequential decoder to
facilitate the simultaneous decoding of these M sequences.
This is accomplished by appropriately altering the joint code
and channel tree, and the decoder metric. Modifying the
former is rather straightforward, in that the HMM that is
presumed to produce the sequences y1, . . . ,yM , now has
hidden states, each of which combines the encoder state and
M drift variables, one for each of the M received sequences.
More explicitly, we let di,j indicate the drift of the jth received
sequence after the transmission of i bits.

7

A. Decoder metric

Akin to its initial definition in (2), the decoder metric is
now modified to account for multiple sequences, as follows.

µ(vt
0) = log2 P (vt

0,y1, . . . ,yM)− log2 P (y1, . . . ,yM),
(13)

where vt
0 represents a node in the joint code and chan-

nel tree at depth t, that is reached from the root via the
sequence of encoder states (s0, . . . , st), and the sequence
of drift state vectors (d0,dc, . . . ,dct), wherein the vector
dci = (dci,1, . . . , dci,M) specifies the drift of each of the M
received sequence after the transmission of ci bits. As before,
the initial drifts d0,1, . . . , d0,M are set to zero, and we choose
the following vector representation for vt

0.

vt
0 = ((s0, d0,1, . . . , d0,M), (s1, dc,1, . . . , dc,M),

. . . , (st, dct,1, . . . , dct,M)).

As done before, we recognize that the path traced from the
root by the node vt

0 does not account for the entire transmitted
sequence, but only its first t blocks, which correspond to
the partial received sequences (y1)

ct+dct,1

1 , . . . , (yM)
ct+dct,M

1 .
The remainder of these received sequences is assumed to have
been produced by a tailing message sequence that causes the
encoder to traverse the code states s̃Lt+1 = (s̃t+1, . . . , s̃L).
With the additional assumption that the remaining received bits
are independent of the previously transmitted bits, we proceed
to expand the terms in (13).

P (vt
0,y1, . . . ,yM) =

∑
s̃L
t+1

P (vt
0, s̃

L
t+1,y1, . . . ,yM)

=
∑
s̃L
t+1

P (vt
0)P (s̃Lt+1)P (y1, . . . ,yM |vt

0, s̃
L
t+1)

=
∑
s̃L
t+1

P (vt
0)P (s̃Lt+1)

M∏
i=1

P (yi|vt
0, s̃

L
t+1) (14)

= P (vt
0)

M∏
i=1

P ((yi)
ct+dct,i

1 |vt
0)
∑
s̃L
t+1

P
(
(yi)

Ni

ct+dct,i+1, s̃
L
t+1|dct,i

)

= P (vt
0)

M∏
i=1

P
(
(yi)

ct+dct,i

1 |vt
0

)
Pc(L−t)

(
(yi)

Ni

ct+dct,i+1|dct,i
)
,

where (14) follows from the independence of the M received
sequences of each other, given a complete path in the joint
code and channel tree. We can also simplify the joint proba-
bility of the M received sequences by marginalizing it over
all possible transmitted sequences that might produce them.

P (y1, . . . ,yM) =
∑

x∈{0,1}cL

P (x)P (y1, . . . ,yM |x)

=

M∏
i=1

∑
x∈{0,1}cL

P (x)P (yi|x) =
M∏
i=1

PcL(yi).

Thus, the decoder metric of node vt
0 can be computed as

µ(vt
0) = log2 P (vt

0) +

M∑
i=1

(
log2 P

(
(yi)

ct+dct,i

1 |vt
0

)
+ log2 Pc(L−t)

(
(yi)

Ni

ct+dct,i+1|dct,i
)
− log2 PcL(yi)

)
.

As in (6), we can also derive the branch decoder metric for
multiple sequences.

Z(vt
0 →vt+1

0) = µ(vt+1
0)− µ(vt

0)

= −b+

M∑
i=1

(
π
(i)
t + γ

(i)
t (yi) + τ

(i)
t (yi)

)
, (15)

where, analogous to (6), we define π
(i)
t , γ(i)

t (yi) and τ
(i)
t (yi)

as follows.

π
(i)
t = log2P (dc(t+1),i|dct,i)

γ
(i)
t (yi) = log2 P

(
(yi)

c(t+1)+dc(t+1),i

ct+dct,i+1 |st+1
t , dct,i, dc(t+1),i

)
τ
(i)
t (yi) = log2

Pc(L−t−1)

(
(yi)

Ni

c(t+1)+dc(t+1),i+1

)
Pc(L−t)

(
(yi)

Ni

ct+dct,i+1

) .

B. Computational analysis
The process of evaluating the complexity of sequential

decoding in case of multiple sequences is exactly the same
as described in Section IV, except that the expression for the
branch decoder metric is now given by (15). This expression
is actually related to the branch decoder metric for a single
sequence as follows.

Z(vt
0 → vt+1

0)= b(M − 1)+

M∑
i=1

(
− b+ π

(i)
t + γ

(i)
t + τ

(i)
t (yi)

)

= b(M − 1) +

M∑
i=1

Z
(
(vt

0)i → (vt+1
0)i

)
, (16)

where (vt
0)i represents a path in the joint code and channel

tree for decoding only yi, that starts from the root and ends
in a node at depth t, while traversing the encoder states
(s0, . . . , st), i.e., same as vt

0, and drift states for the ith

received sequence in vt
0, i.e., (d0,i, dc,i, . . . , dct,i). Naturally,

Z
(
(vt

0)i → (vt+1
0)i

)
is simply the decoder metric of the

branch (vt
0)i → (vt+1

0)i, if one was performing sequential
decoding of the sequence yi alone.

By exploiting (16), the moment generating functions g0(σ)
and g1(σ) can be suitably extended for the case of mul-
tiple sequences, i.e., g

(M)
0 (σ) = 2σb(M−1)(g0(σ))

M and
g
(M)
1 (σ) = 2σb(M−1)(g1(σ))

M .
For a given convolutional code, cutoff rate

operation will occur for insertion, deletion and
substitution probabilities if it holds that σ

(Pi,Pd,Ps)
0 +

σ
(Pi,Pd,Ps)
1 = 0, where g

(M)
0 (σ

(Pi,Pd,Ps)
0) = 1 and

g
(M)
1 (σ

(Pi,Pd,Ps)
1)= 2−b−log2(imax+dmax+1). This implies

that in order to determine the values of Pi, Pd and Ps that
induce cut-off rate operation during decoding of multiple
sequences for a given convolutional code, we can simply
utilize Algorithm 1 following minor adjustments.

VI. RESULTS

To evaluate this decoding strategy, we use three standard,
rate 1/3 convolutional codes with distinct constraint lengths,
as outlined in Table I. For L = 300 information blocks, rates
of terminated codewords of CC1, CC2 and CC3 are 0.332,
0.327 and 0.323 respectively.

8

10−2 10−1 100
10−8

10−7

10−6

10−5

10−4

10−3

10−2

Pi = Pd

B
E

R

CC1 Fano Ps = 0

CC1 Viterbi Ps = 0

CC2 Fano Ps = 0.02

CC2 Viterbi Ps = 0.02

CC2 Fano Ps = 0

CC2 Viterbi Ps = 0

CC2 BCJR Ps = 0 [13]
CC3 Fano Ps = 0

Figure 6. Comparison of bit error rates of [3, 1] terminated codes consisting
of L = 300 information blocks, with varying memory.

10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

Pi = Pd

B
E

R

CC1 M = 1

CC1 M = 2

CC1 M = 3

CC2 M = 1

CC2 M = 2

CC2 M = 3

Figure 7. Comparison of bit error rates of [3, 1] terminated codes consisting of
L = 300 information blocks, using Fano’s decoder given single and multiple
sequences. Ps = 0.

The generator polynomials are stated in octal form. We sim-
ulated the transmission of terminated codewords with L = 300
information blocks and offset by a random sequence5, over a
channel with parameters set to either Pi = Pd, Pi = 0 or
Pd = 0. Additionally, the substitution probability was set to
either Ps = 0 or Ps = 0.02. To limit decoder complexity,
we constrain the maximum allowable insertions/deletions per
block to c, and ignore drift states of magnitudes exceeding

5Helps to maintain synchronization, like marker or watermark codes [13].

Table I
CONVOLUTIONAL CODES FOR SIMULATIONS

Code [c, b,m] Gen. polynomial dfree
CC1 [3, 1, 1] 1 3 3 5
CC2 [3, 1, 6] 117 127 155 15
CC3 [3, 1, 10] 3645 2133 3347 21

10−2 10−1 100
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

P

B
E

R

CC1 M = 1, Pi = 0, Pd = P

CC1 M = 1, Pi = P , Pd = 0

CC1 M = 2, Pi = 0, Pd = P

CC1 M = 2, Pi = P , Pd = 0

CC2 M = 1, Pi = 0, Pd = P

CC2 M = 2, Pi = 0, Pd = P

Figure 8. Comparison of bit error rates of [3, 1] terminated codes consisting of
L = 300 information blocks, using Fano’s decoder, given single and multiple
sequences, when either Pi = 0 or Pd = 0; and Ps = 0.

30. Additionally, if the number of forward steps exceeds 105,
the decoder is terminated and the number of bit errors in the
partial output is counted, while the bits absent from the output
are considered to be in error.

A. Decoding performance
We assess the decoding accuracy of Fano’s sequential de-

coder by measuring bit error rates over a range of Pi = Pd and
Ps = 0, 0.02, and subsequently perform a comparison with
Viterbi decoder, as depicted in Fig. 66. Since it only partially
examines a given code tree, Fano’s decoder is inherently sub-
optimal and is thus outperformed by the Viterbi decoder.
Unsurprisingly, a higher value of Ps worsens the frame error
rate for both decoders.

We also investigate the impact of using M = 2, 3 sequences
over a single sequence. As illustrated in Fig. 7, the knowledge
of even one additional received sequence can significantly
improve decoder performance. Fig. 8 suggests the same, under
the conditions either Pi = 0 or Pd = 0; and Ps = 0. Fig. 8
also shows that deletions affect the bit error rate more than
insertions, for the same occurrence probability.

B. Simulated complexity
The practical complexities of the two decoders are com-

pared in terms of the number of branch metric computa-
tions performed. So, for a Viterbi decoder, we compute the
total number of branches in the associated trellis, while for
Fano’s algorithm, it suffices to measure the average number
of forward steps taken, denoted by Fav, and to multiply this
with the number of outgoing edges per node, as explained
in Section IV. For the former case, we limit our attention to
the initial non-terminating part of the trellis. Since in either

6A direct comparison with [16] was not possible since we could not extract
the data points in its plots with sufficient precision. Furthermore, the trellis
employed in [16] differs markedly from the model used here, in that [16]
only permits one insertion at each stage and allows edges to skip over a time
step. Finally, [13] demonstrated the superiority of the lattice metric used for
the decoder metric in (6), over the one defined in [16].

9

10−2 10−1

101

102

103

104

105

106

P ∗
0P ∗

0.02

Pi = Pd

ν
CC1 at Ps = 0, M = 1

CC2 at Ps = 0, M = 1

CC2 at Ps = 0.02, M = 1

CC3 at Ps = 0, M = 1

Figure 9. Complexity reduction factor of Fano’s decoder for M = 1 received
sequence and [3, 1] terminated codes consisting of L = 300 information
blocks.

10−2 10−1
102

103

104

105

106

P 2∗
0

Pi = Pd

ν

CC1 at Ps = 0

CC2 at Ps = 0

Figure 10. Complexity reduction factor of Fano’s decoder for M = 2 received
sequences and [3, 1] terminated codes consisting of L = 300 information
blocks.

case, a single node produces 2b(imax + dmax + 1) outgoing
branches, we choose to define the complexity reduction factor
as ν = Ntot/Fav, where Ntot denotes the total number of
nodes in the trellis.

Fig. 9 demonstrates significant reductions in decoding effort
by the use of Fano’s decoder, particularly for low error
probabilities. We also notice that as channel noise deteriorates,
especially beyond P ∗

0 and P ∗
0.02 which mark operation at cutoff

rate for substitution probabilities Ps = 0 and Ps = 0.02
respectively, Fano’s decoder gradually loses its computational
merit. This is because as error probabilities increase, the
decoder is forced to examine many more incorrect paths before
the correct one is found. Similarly, Fig. 10 exhibits the amount
of computational effort saved by Fano’s decoder in the context
of decoding M = 2 received sequences simultaneously. P 2∗

0

marks the value of Pi = Pd at which cut-off rate operation
occurs for Ps = 0, c = 3 and b = 1.

VII. CONCLUSION

In this work, we extended Fano’s sequential decoder for
use with channels that allow insertion, deletion as well as
substitution errors. To this end, we obtain a new decoding
metric that serves as a generalization of the Fano metric,
originally introduced in [20]. By deriving an asymptotic
approximation of this decoder metric, we also assess the
average computational complexity of the decoder. This in turn
leads to an algorithm for the determination of channel noise
levels which correspond to cut-off rate operation, given a
specific set of convolutional code parameters. Furthermore, we
repeat the derivation of the decoder metric and computational
analysis for the case of multiple sequences. Finally, simulation
results reveal that though the proposed decoder performs
sub-optimally in comparison to a Viterbi decoder, it offers
significant reductions in computational effort, especially for
convolutional codes with high memory.

REFERENCES
[1] A. Banerjee, A. Lenz, and A. Wachter-Zeh, “Sequential decoding of

convolutional codes for synchronization errors,” in Proc. Inf. Theory
Workshop, Mumbai, India, Nov. 2022.

[2] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao,
and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communica-
tions, vol. 1, no. 3, pp. 230–248, Sep. 2015.

[3] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the
DNA data storage channel,” Scientific Reports, vol. 9, no. 9663, Jul.
2019.

[4] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals,” Soviet Physics Doklady, vol. 10, no. 8,
pp. 707–7710, Feb. 1966.

[5] H. Mercier, V. Bhargava, and V. Tarokh, “A survey of error-correcting
codes for channels with symbol synchronization errors,” IEEE Com-
munications Surveys & Tutorials, vol. 12, no. 1, pp. 87–96, 2010.

[6] M. C. Davey and D. J. C. Mackay, “Reliable communication over
channels with insertions, deletions, and substitutions,” IEEE Transac-
tions on Information Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.

[7] L. Calabi and W. Hartnett, “Some general results of coding theory with
applications to the study of codes for the correction of synchronization
errors,” Information and Control, vol. 15, no. 3, pp. 235–249, Sep.
1969.

[8] D. J. Coumou and G. Sharma, “Insertion, deletion codes with feature-
based embedding: A new paradigm for watermark synchronization
with applications to speech watermarking,” IEEE Transactions on
Information Forensics and Security, vol. 3, no. 2, pp. 153–165, Jun.
2008.

[9] J. A. Briffa, V. Buttigieg, and S. Wesemeyer, “Time-varying block
codes for synchronisation errors: Maximum a posteriori decoder and
practical issues,” The Journal of Engineering, vol. 2014, no. 6, pp. 340–
351, Jun. 2014.

[10] R. G. Gallager, “Sequential decoding for binary channel with noise
and synchronization errors,” Lincoln Lab Group, Arlington, VA, USA,
Tech. Rep., Sep. 1961.

[11] M. Rahmati and T. M. Duman, “Bounds on the capacity of random
insertion and deletion-additive noise channels,” IEEE Transactions on
Information Theory, vol. 59, no. 9, pp. 5534–5546, Sep. 2013.

[12] M. F. Mansour and A. H. Tewfik, “Convolutional decoding in the
presence of synchronization errors,” IEEE Journal on Selected Areas
in Communications, vol. 28, no. 2, pp. 218–227, Feb. 2010.

[13] V. Buttigieg and N. Farrugia, “Improved bit error rate performance of
convolutional codes with synchronization errors,” in Proc. Int. Conf.
Comm., London, Jun. 2015, pp. 4077–4082.

[14] I. Maarouf, A. Lenz, L. Welter, A. Wachter-Zeh, E. Rosnes, and A. G. i
Amat, “Concatenated codes for multiple reads of a DNA sequence,”
IEEE Transactions on Information Theory, vol. 69, no. 2, pp. 910–927,
Feb. 2023.

[15] J. M. Wozencraft, “Sequential decoding for reliable communication,”
Massachusetts Institute of Technology, Tech. Rep., Aug. 1957, p. 182.

[16] M. F. Mansour and A. H. Tewfik, “Convolutional codes for channels
with substitutions, insertions, and deletions,” in Proc. Gobal Commun.
Conf., vol. 2, Taipei, Taiwan: IEEE, 2002, pp. 1051–1055.

10

[17] L. Bahl and F. Jelinek, “Decoding for channels with insertions,
deletions, and substitutions with applications to speech recognition,”
IEEE Transactions on Information Theory, vol. 21, no. 4, pp. 404–411,
Jul. 1975.

[18] R. Johannesson and K. S. Zigangirov, “Sequential decoding,” in
Fundamentals of Convolutional Coding. Hoboken, New Jersey: John
Wiley & Sons, Inc., 2015, pp. 425–484.

[19] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin,
“Trellis BMA: Coded trace reconstruction on IDS channels for DNA
storage,” in 2021 IEEE International Symposium on Information The-
ory (ISIT), Jul. 2021, pp. 2453–2458.

[20] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE
Transactions on Information Theory, vol. 9, no. 2, pp. 64–74, Apr.
1963.

[21] J. Massey, “Variable-length codes and the Fano metric,” IEEE Trans-
actions on Information Theory, vol. 18, no. 1, pp. 196–198, Jan. 1972.

[22] R. Pemantle and M. C. Wilson, Analytic Combinatorics in Several
Variables (Cambridge Studies in Advanced Mathematics 140). Cam-
bridge: Cambridge University Press, 2013.

[23] S. Melczer and M. C. Wilson, “Asymptotics of lattice walks via
analytic combinatorics in several variables,” Discrete Mathematics
& Theoretical Computer Science, vol. DMTCS Proceedings, 28th...
P. 6390, Apr. 2020.

[24] S. Melczer, An Invitation to Analytic Combinatorics: From One to
Several Variables (Texts & Monographs in Symbolic Computation).
Cham: Springer International Publishing, 2021.

[25] L. Comtet, Advanced combinatorics: The art of finite and infinite
expansions. Dordrecht, Netherlands: Reidel, 1974, pp. 80–81.

[26] C. Banderier and S. Schwer., “Why Delannoy numbers?” Journal of
Statistical Planning and Inference, Elsevier, vol. 135, no. 1, pp. 40–54,
2005.

[27] R. Fray and D. Roselle, “On weighted lattice paths,” Journal of
Combinatorial Theory, Series A, vol. 14, no. 1, pp. 21 –29, 1973.

[28] R. Fray and D. Roselle, “Weighted lattice paths,” Pacific Journal of
Mathematics, vol. 37, no. 1, 1979.

APPENDIX

A. Asymptotic approximation of Tail Probabilities
It is easy to see from (6) that to obtain the asymptotic

expression of the branch decoder metric, it suffices to derive
the same τt(y), which is a ratio of tail probabilities. As stated
earlier, a tail probability PR(y

N
1) can be seen as a weighted

sum of paths through a two-dimensional lattice. These paths
start at origin (0, 0), and can progress towards the endpoint
(R,N) by taking one step at a time, either horizontally,
vertically or diagonally, with the respective weights of these
edges being Pi

2 , Pd and Pt

2 . This definition strongly resembles
the concept of a weighted Delannoy number [25–28], except
for one key difference in that the computation of PR(y

N
1) does

not involve any horizontal edge in the final row of the lattice.
We define a weighted Delannoy number dr,s as the sum of
weights of all possible paths in a two-dimensional lattice with
only horizontal, vertical and diagonal edges, from the starting
point (0, 0) to the endpoint (r, s). Referring to the horizontal,
vertical and diagonal edge weights as α, β and γ respectively,
we note that dr,s can be specified by the recurrence relation

dr,s = αdr,s−1 + βdr−1,s + γdr−1,s−1, (17)

and is subject to the initial conditions d0,0 = 1, dr,0 = βr and
d0,s = αs for all r ≥ 0 and s ≥ 0.

As the lattice structure used to compute PM (yN
1) does not

permit any horizontal edges in the last line, we deduce that

PR(y
N
1) = dR,N − Pi

2
dR−1,N , (18)

if α = Pi

2 , β = Pd and γ = Pt

2 . This implies that instead of
attempting to asymptotically approximate PR(y

N
1), one can

also opt to focus on doing the same for weighted Delannoy

numbers. Now to proceed in this direction, we exploit the
construct of generating functions, which essentially serve as a
convenient way to represent an infinite sequence by displaying
its coefficients as a formal power series. In regard to weighted
Delannoy numbers, the corresponding generating function will
be a bivariate power series, i.e., D(q, z) =

∑
r,s≥0 dr,sq

rzs.
We now attempt to obtain a simpler expression for D(q, z)

in terms of α, β and γ.

D(q, z) = d0,0 +
∑
r≥1

βrqr +
∑
s≥1

αszs +
∑
r,s≥1

dr,sq
rzs

= 1 +
βq

1− βq
+

αz

1− αz
+

∑
r,s≥1

dr,sq
rzs. (19)

The final term can be expanded by means of (17).∑
r,s≥1

dr,sq
rzs =

∑
r,s≥1

(αdr,s−1 + βdr−1,s + γdr−1,s−1)q
rzs

= α
∑
r,s≥1

dr,s−1q
rzs + β

∑
r,s≥1

dr−1,sq
rzs +γ

∑
r,s≥1

dr−1,s−1q
rzs

= αz
∑
r≥1
s≥0

dr,sq
rzs + βx

∑
r≥0
s≥1

dr,sq
rzs

+ γqz
∑
r,s≥1

dr−1,s−1q
r−1zs−1

= αz
(
D(q, z)− 1

1− αz

)
+βq

(
D(q, z)− 1

1− βq

)
+γqzD(q, z)

= (αz + βq + γqz)D(q, z)− αz

1− αz
− βq

1− βq
.

Incorporating the above relation into (19), we obtain

D(q, z) =
∑
r,s≥0

dr,sq
rzs = (1− βq − αz − γqz)−1. (20)

The techniques in [22–24] allow us to determine the asymp-
totic behavior of dr,s, along a direction r̂ in the first quadrant.
In particular, for any multivariate rational generating function,
[22, Theorem 9.5.7] provides an expression for the asymptotics
of the coefficients of its corresponding power series expansion,
along any direction r̂. To be able to apply this theorem, we
require the critical point of D(q, z) along r̂, which essentially
refers to its singular point(s) along r̂. In our case, these can
be derived by solving H = 0 and rz ∂H

∂z = sq ∂H
∂q , where

H = 1− βq − αz − γqz and the point (r, s) lies in the first
quadrant along r̂. Upon doing so, we obtain the following
critical points.

(q1, z1) =

(
2ω − 1− 1

η + ρ′

η

2ωβ
,
2ω − 1− η + ρ′

2ωα

)
,

(q2, z2) =

(
2ω − 1− 1

η − ρ′

η

2ωβ
,
2ω − 1− η − ρ′

2ωα

)
,

where ω = γ
αβ+γ , η = r/s and ρ′ = ((η + 1)2 − 4ωη)1/2.

The next step involves determining the minimal point from
among these critical points. This simply refers to that critical
point which has the greatest impact on the asymptotics of
the sequence. According to [22], when the concerned rational
generating function is combinatorial in nature, i.e., has no
negative coefficients in its power series expansion, as is the

11

case here, it suffices to consider the critical point(s) that
lie in the first quadrant alone. Furthermore, one of these
critical points is guaranteed to be a minimal point. Numerical
verification reveals that (q1, z1) alone upholds this criterion,
and hence, automatically qualifies as a minimal critical point.
Since there are no other candidates, it is also strictly minimal.

Now [22, Theorem 9.5.7] states that the asymptotic behavior
of dr,s can be expressed as

dr,s ∼
1√
2π

q−rz−s

√
−zHz

sG
, (21)

where

G(q, z) = −z2H2
z qHq − zHzq

2H2
q

− q2z2(H2
zHqq +H2

qHzz − 2HqHzHqz)

The radical in (21) can be reduced to
−zHz

sG
=

z(α+ γq)

sqz(α+ γq)(β + γz)(αz + βq)

=
z

sqz(β + γz)(αz + βq)
(22)

Next, we simplify the terms in the denominator of this
expression.

sq1(β + γz1) =
s

2ωβ

(
2ω − 1− 1

η
+

ρ′

η

)(
b+

γ

2ωα
(2ω − 1

− η + ρ′)
)

=
s

4ω2 αβ
αβ+γ η

(
(2ω − 1)η − 1 + ρ′

)(2ωαβ

αβ + γ

+
γ(2ω − 1− η + ρ′)

αβ + γ

)
=

s

4ω2(1− ω)η

(
(2ω − 1)η − 1 + ρ′

)(
2ω

− 2ω2 + ω(2ω − 1− η + ρ′)
)

=
s

4ω(1− ω)η
((2ω − 1)η− 1+ρ′)(ρ′−η+1)

=
s

2ω
(η − ρ′ + 1). (23)

αz1 + βq1 =
1

2ω

(
4ω − 2− η − 1

η
+ ρ′(η +

1

η
)
)

=
1

2ωη

(
4ωη − 2η − η2 − 1 + ρ′(1 + η)

)
=

1

2ωη

(
− ρ′2 + ρ′(1 + η)

)
=

ρ′(η + 1− ρ′)

2ωη
.

(24)

Upon combining (22), (23) and (24), the asymp-
totic expression of dr,s in (21) can be simplified to
dr,s ∼

√
η

2πρ′sq
−r
1 z−s

1
2ω

η+1−ρ′ . Note that η should be assigned
such that it represents the direction of expected drift, which
depends on the channel parameters, just like ρ′ and ω. To
proceed with the task of extracting the asymptotic behavior of
τt(y), we may instead choose to asymptotically approximate
a ratio of two weighted Delannoy numbers, say dr2,s2

dr1,s1
where

r2− r1 = δr << r1 and s2− s1 = δs << s1. To this end, we
recognize that

lim
r1,s1→∞

η2
η1

= lim
r1,s1→∞

r1 + δr
s1 + δs

· s1
r1

= lim
r1,s1→∞

1 + δr
r1

1 + δs
s1

= 1.

Quite similarly, we also have limr1,s1→∞ ρ′2/ρ
′
1 = 1. Con-

sequently, we can write limr1,s1→∞ dr2,s2/dr1,s1 = q−δr
1 z−δs

1 .
This, along with (18), helps us conclude that

lim
r1,s1→∞

Pr2(y
s2
1)

Pr1(y
s1
1)

= lim
r1,s1→∞

dr2,s2 − αdr2,s2−1

dr1,s1 − αdr1,s1−1

= lim
r1,s1→∞

dr2,s2
dr1,s1

·
1− dr2,s2−1

dr2,s2

1− dr1,s1−1

dr1,s1

= lim
r1,s1→∞

dr2,s2
dr1,s1

·
1−

(
2ωα

2ω−1−η2+ρ′
2

)−1

1−
(

2ωα
2ω−1−η1+ρ′

1

)−1

= lim
r1,s1→∞

dr2,s2
dr1,s1

= q−δr
1 z−δs

1 . (25)

By merging (25) with (6), we find that

Z(vt
0 → vt+1

0) = log2 P (y
c(t+1)+dc(t+1)

ct+dct+1 , dc(t+1)|x
c(t+1)
ct+1 , dct)

− b+ c log2 q1 + (c+ dc(t+1) − dct) log2 z1.

Remark 2. It is worth pointing out that when Pi = Pd,
we assume the expected drift to be 0, and thus choose to
asymptotically approximate Pr(y

s
1) along the diagonal, i.e.,

η = 1. Under these conditions, we observe

ω =
1− 2Pi

(1− Pi)2
, ρ′ =

2Pi

1− Pi
, (q1, z1) = (1, 2).

As a consequence, the asymptotic approximation of the branch
decoder metric becomes

Z(vt
0 → vt+1

0) = log2 P (y
c(t+1)+dc(t+1)

ct+dct+1 , dc(t+1)|x
c(t+1)
ct+1 , dct)

+ c+ δ − b.

B. Proof of upper bound on complexity

To prove that the bound in (9) indeed holds, we begin by
attempting to simplify (8).

1) Distribution of minimum threshold: In this part, we
derive a bound on the cumulative probability distribution of
the minimum threshold, T ∗

min. We proceed along this direction
by evaluating the cumulative probability distribution of metric
values at depth i along v∗L

0 , for any σ < 0.

P (µ∗
i ≤ y) = P (2σµ

∗
i ≥ 2σy) ≤ 2−σyE[2σµ

∗
i]

= 2−σyE[2σ
∑i−1

j=0 ζ∗
j],

where ζ∗i refers to the ith branch metric along v∗L
0 . Assuming

all ζ∗i ’s to be independent and identically distributed yields

P (µ∗
i ≤ y) ≤ 2−σy(E[2σζ

∗
])i = 2−σy(g0(σ))

i.

Here g0(σ) is essentially the moment generating function
of branch metrics along the correct path. Choosing a suitable
σ0 < 0 such that g0(σ0) = 1, we obtain P (µ∗

i ≤ y) ≤ 2−σ0y ,
which also implies that

P (µ∗
min ≤ y) ≤ 2−σ0y. (26)

Since T ∗
min is either 0 (when the received sequence is error-

free) or any negative multiple of ∆, we can further write

P (T ∗
min ≤ y) =P (T ∗

min ≤
⌊ y

∆

⌋
∆) =P (µ∗

min ≤
⌊ y

∆

⌋
∆+∆)

= P (µ∗
min ≤ y +∆) ≤ 2−σ0(y+∆). (27)

2) Computations in incorrect subtree: To bound Cav, we
first recall that the number of visits to any node depends on its

12

metric, and equals the number of unique threshold values with
which it is visited. Let the initial and final threshold values
with which a node vj

0 is visited, be T1 and T2, respectively.
They are related by

T1 = T2 + (C ′(vj
0)− 1)∆. (28)

Additionally from (1) we know that T1 is related to µ(vj
0) as

T1 ≤ µ(vj
0) < T1 +∆. (29)

Since T1 ≥ T ∗
min, we can combine (28) and (29) into

C ′(vj
0) =

⌊µ(vj
0)− T1

∆

⌋
+ 1 ≤ µ(vj

0)− T ∗
min

∆
+ 1.

Using an indicator function ϕ(vj
0) defined as

ϕ(vj
0) =

{
1, if node vj

0 is visited
0, else

the previous inequality may be further refined to

C ′(vj
0) ≤

(
µ(vj

0)− T ∗
min

∆
+ 1

)
ϕ(vj

0).

Since the metric of root v∗
0 is always set to zero, we may write

E[C(v∗
0)|T ∗

min = y] ≤ − y

∆
+ 1

+

∞∑
j=1

E

[∑
vj
0∈τ0

C ′(vj
0)
∣∣∣T ∗

min = y

]
. (30)

We perform extensive manipulations on the latter term (see
Appendix C for details) and finally arrive at the following.

E[C(v∗
0)|T ∗

min = y]

≤ − y

∆
+ 1 +

∞∑
j=1

E

[∑
vj
0∈τ ′

0

C ′(vj
0)
∣∣∣T ∗

min = y

]

+

∞∑
j=1

E

[∑
vj
0∈τ∗

0

C ′(vj
0)
∣∣∣T ∗

min = y

]

≤ C12
−σ1y + C22

−(σ0+σ1)y + C3

(
− y

∆
+ 1

)
, (31)

where C1, C2 and C3 are constants for specific channel and
convolutional code parameters.

We now merge (27) and (31) to obtain a bound for Cav.

Cav =

∞∑
i=0

P (T ∗
min = −i∆)E[C(v∗

0)|T ∗
min = −i∆]

≤ C1

∞∑
i=0

P (T ∗
min = −i∆)2σ1i∆

+ C2

∞∑
i=0

P (T ∗
min = −i∆)2(σ1+σ0)i∆

+ C3

∞∑
i=0

P (T ∗
min = −i∆)(i+ 1). (32)

The first summation can be further reduced as follows.
∞∑
i=0

P (T ∗
min = −i∆)2σ1i∆

=

∞∑
i=0

(P (T ∗
min ≤ −i∆)− P (T ∗

min ≤ −(i+ 1)∆))2σ1i∆

=

∞∑
i=0

P (T ∗
min ≤ −i∆)2σ1i∆ −

∞∑
i=0

P (T ∗
min ≤ −i∆)2σ1(i−1)∆

+ 2−σ1∆P (T ∗
min ≤ 0)

= (1− 2−σ1∆)

∞∑
i=0

P (T ∗
min ≤ −i∆)2σ1i∆ + 2−σ1∆

≤ (1− 2−σ1∆)

∞∑
i=0

2(i−1)σ0∆+σ1i∆ + 2−σ1∆

= (1− 2−σ1∆)2−σ0∆
∞∑
i=0

2(σ0+σ1)i∆ + 2−σ1∆, (33)

where the penultimate relation is due to (27). Similarly, the
second summation in (32) can be simplified to
∞∑
i=0

P (T ∗
min = −i∆)2(σ0+σ1)i∆

= (1− 2−(σ0+σ1)i∆)

∞∑
i=0

P (T ∗
min ≤ −i∆)2(σ0+σ1)i∆

+ 2−(σ0+σ1)∆

= (1− 2−(σ0+σ1)i∆)

∞∑
i=0

2(i−1)σ0∆+(σ0+σ1)i∆ + 2−(σ0+σ1)∆.

(34)
The final summation in (32) is dealt with by undertaking a

similar approach.
∞∑
i=0

P (T ∗
min = −i∆)(i+ 1)

=

∞∑
i=0

P (T ∗
min ≤ −i∆)(i+ 1)−

∞∑
i=1

P (T ∗
min ≤ −i∆)i

=

∞∑
i=0

P (T ∗
min ≤ −i∆) ≤ 2−σ0∆

1− 2σ0∆
. (35)

The final inequality holds since σ0 < 0. We note that (33)
and (34) also converge if σ0 + σ1 < 0. By assuming that this
is indeed true and incorporating (33), (34) and (35) into (32),
we arrive at (9).

C. Computations in incorrect subtree

To decompose the term
∑∞

j=1 E[
∑

vj
0∈τ0

C ′(vj
0)|T ∗

min = y]

as required in (30), we subdivide τ0 into two subtrees: τ ′0,
that contains nodes which hypothesize a wholly inaccurate
message sequence, and τ∗0 , which consists of nodes that follow
the true message sequence, at least initially, but suggest a
different drift sequence. We depict this in Fig 4.

1) On incorrect paths: We proceed by characterizing the
distribution of node metrics, or equivalently branch metrics,
in τ ′0. Given their dependence on relative drift changes, these
branch metrics are treated in a drift-specific manner. Let Z ′(δ)
describe the distribution of branch metrics in τ ′0 for a specific
drift change δ. Also, let imax and dmax denote the maximum
allowable insertions and deletions over a single block. We can
bound the number of visits to nodes in τ ′0 at depth 1, as

E

[∑
v1
0∈τ ′

0

(
µ(v1

0)− y

∆
+ 1

)
ϕ(v1

0)

∣∣∣∣T ∗
min = y

]

13

= E

[∑
v1
0∈τ ′

0

(
Z(v0 → v1

0)− y

∆
+ 1

)
ϕ(v1

0)

∣∣∣∣T ∗
min = y

]

= (2b − 1)

imax∑
δ=−dmax

∑
z1≥y

(
z1 − y

∆
+ 1

)
P (Z ′(δ) = z1)

= (2b − 1)λ
∑
z1≥y

(
z1 − y

∆
+ 1

)
P (ζ ′ = z1), (36)

where λ = imax + dmax + 1 and the variable ζ ′ uniformly
combines the probability distributions of all the drift-specific
random variables, i.e.,

P (ζ ′ = z) =
1

λ

imax∑
δ=−dmax

P (Z ′(δ) = z). (37)

By assuming that branch metrics across different levels are
independently distributed, we arrive at the following general-
ization of (36) for higher depths

E

[∑
vj
0∈τ ′

0

(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

= (2b − 1)2b(j−1)λj
∑
µ≥y

(
µ− y

∆
+ 1

)
fj(y, µ), (38)

where fj(y, µ) = P (µ′
1 ≥ y, · · ·µ′

j−1 ≥ y, µ′
j = µ). This

quantity refers to the probability that during a random walk
along the code tree, the initial j−1 node metrics µ′

1, . . . µ
′
j−1

lie above threshold y, and the final metric µ′
j = µ, i.e.,

fj(y, µ) = P (µ′
1 ≥ y, · · ·µ′

j−1 ≥ y, µ′
j = µ). (39)

The net decoding effort expended in τ ′0 is thus
∞∑
j=1

E
[∑
vj
0∈τ ′

0

C ′(vj
0)|T ∗

min = y
]
=(1− 2−b)

∞∑
j=1

2b
′j
∑
µ≥y

fj(y, µ)

+ (1− 2−b)∆−1
∞∑
j=1

2b
′j
∑
µ≥y

(µ− y)fj(y, µ), (40)

where b′ = b + log2 λ. To unravel the former summation in
the previous equation, we make use of the following equality.

∞∑
t=1

∑
z<y

ft(y, z) = 1. (41)

This relation implies that an infinite random walk in τ0,
and in turn also τ ′0, will eventually fall below a finite T ∗

min,
provided that E[ζ ′] < 0, which is indeed true for reasonable
channel parameters as confirmed by numerical verification.
This is crucial in ensuring that Fano’s decoder is unlikely
to pick the wrong successor at any step. To apply this for
the simplification of the initial term in (40), we recognize that∑

z≥y fj(y, z) can be interpreted as the probability that during
an infinite random walk, the metric of the node at depth j, i.e.
z, has not fallen below the barrier y. From another perspective,
this quantity can also be seen as the probability that during a
random walk, the node metric at a depth beyond j, falls below
the barrier y. Mathematically, we express this equivalence as∑

z≥y fj(y, z) =
∑∞

t=j+1

∑
µ<y ft(y, µ). Upon applying this

to the first summation in (40), we obtain
∞∑
j=1

2b
′j
∑
µ≥y

fj(y, µ) =

∞∑
j=1

2b
′j

∞∑
t=j+1

∑
µ<y

ft(y, µ)

=

∞∑
j=1

2b
′j − 2b′(j − 1)

1− 2−b′

∞∑
t=j+1

∑
µ<y

ft(y, µ)

= (1− 2−b′)−1

(∞∑
j=1

2b
′j

∞∑
t=j+1

∑
µ<y

ft(y, µ)

−
∞∑
j=1

2b
′(j−1)

∞∑
t=j+1

∑
µ<y

ft(y, µ)

)

= (1− 2−b′)−1

(∞∑
j=1

2b
′j

∞∑
t=j+1

∑
µ<y

ft(y, µ)

−
∞∑
j=0

2b
′j

∞∑
t=j+2

∑
µ<y

ft(y, µ) +

∞∑
t=1

∑
µ<y

ft(y, µ)− 1

)

= (1− 2−b′)−1

(∞∑
j=0

2b
′j

∞∑
t=j+1

∑
µ<y

ft(y, µ)

−
∞∑
j=0

2b
′j

∞∑
t=j+2

∑
µ<y

ft(y, µ)− 1

)

= (1− 2−b′)−1
(∞∑
j=0

2b
′j
∑
µ<y

fj+1(y, µ)− 1
)
. (42)

To further reduce this quantity, we utilize a tilted probability
assignment for branch metrics along incorrect paths.

P (ζ ′σ = z) =
2σzP (ζ ′ = z)

g1(σ)
, (43)

where g1(σ) denotes the moment generating function of
branch metrics along an incorrect path, i.e.,

g1(σ) = E[2σζ
′
] =

∑
z

P (ζ ′ = z)2σz. (44)

The probability distribution in (43) is clearly valid since
P (ζ ′σ = z) ≥ 0 for all z, and∑

z

P (ζ ′σ = z) = g1(σ)
−1

∑
z

2σzP (ζ ′ = z) = 1.

We now consider a random walk p′σ through the incorrect
subtree τ ′0, with the associated branch metrics being denoted
by the random variables ζ ′0,σ, ζ

′
1,σ, These variables will be

guided by the probability distribution in (43), and we may
write P (ζ ′i,σ = a) = P (ζ ′i = a)2σag1(σ)

−1, where the
random variables ζ ′0, ζ

′
1, . . . denote the branch metrics encoun-

tered during a random walk in τ ′0, guided by the probability
distribution in (37). Thus, analogously to (39), we can define
fσ,j(y, µ) = P (µ′

σ,1 ≥ y, . . . , µ′
σ,j−1 ≥ y, µ′

σ,j = µ).
We now consider a set Z(j)(y) ∈ Rj containing all vectors

z = (z1, . . . , zj), that for a specific T ∗
min = y, satisfy∑k

i=1 zi ≥ y for all 1 ≤ k ≤ j. This relation can be used
to restate fσ,j(y, µ) as

fσ,j(y, µ)

=
∑

z
(j−1)
1

∈Z(j−1)(y)

P (ζ ′1,σ = z1, . . . , ζ
′
j−1,σ = zj−1, ζ

′
j,σ = µ−

j−1∑
i=1

zi)

=
∑

z
(j−1)
1

∈Z(j−1)(y)

(j−1∏
i=1

P (ζ ′i,σ = zi)
)
P (ζ ′j,σ = µ−

j−1∑
i=1

zi)

14

=
∑

z
(j−1)
1

∈Z(j−1)(y)

(∏j−1
i=1 P (ζ ′i = zi)2

σzi
)

g1(σ)j
P
(
ζ ′j =µ−

j−1∑
i=1

zi

) 2σµ

2σ
∑j−1

i=1 zi

=
2σµ

g1(σ)j

∑
z
(j−1)
1

∈Z(j−1)(y)

P (ζ ′1 = z1, . . . , ζ
′
j−1 = zj−1, ζ

′
j = µ−

j−1∑
i=1

zi)

= g1(σ)
−j2σµf0,j(y, µ).

If we choose σ such that E[ζ ′σ] =
∑

z′ P (ζ ′σ = z′) remains
negative as it is for an unbiased random walk dictated by (37),
we can rewrite (41) as follows.

∞∑
t=1

∑
µ<y

fσ,t(y, µ) =

∞∑
t=1

∑
µ<y

f0,t(y, µ)2
σµg1(σ)

−t = 1.

Picking a σ1 > 0 such that g1(σ1) = 2−b′ , the previous
equation transforms into

∞∑
t=1

∑
µ<y

fσ1,t(y, µ) =

∞∑
t=1

∑
µ<y

f0,t(y, µ)2
σ1µ2b

′t = 1. (45)

Now recall the definition of fj(y, µ) in (39) and note that∑
µ<y

f0,t(y, µ)2
σ1µ=

∑
µ<y

P (µ′
1 ≥ y, . . . , µ′

t−1 ≥ y, µ′
t = µ)2σ1µ.

Now given that µ′
t−1 ≥ y, it must hold that µ′

t = µ′
t−1+ζ ′t ≥

y + z′min, where z′min < 0 denotes the minimum value that ζ ′

might assume. As a consequence, the preceding expression
can be lower-bounded as follows.∑

µ<y

f0,t(y, µ)2
σ1µ ≥ 2σ1(y+z′

min)

∑
µ<y

f0,t(y, µ). (46)

By incorporating (46) into (45), we obtain

2σ1(y+z′
min)

∞∑
t=1

2b
′t
∑
µ<y

f0,t(y, µ)≤
∞∑
t=1

∑
µ<y

f0,t(y, µ)2
σ1µ+b′t

= 1

=⇒
∞∑
t=1

2b
′t
∑
µ<y

f0,t(y, µ) ≤ 2−σ1(y+z′
min). (47)

Applying this to (42), we can arrive at
∞∑
j=1

∑
µ≥y

fj(y, µ) = (1− 2−b′)−1
(∞∑
j=0

2b
′j
∑
µ<y

fj+1(y, µ)− 1
)

=(1− 2−b′)−1
(∞∑
j=1

2b
′(j−1)

∑
µ<y

fj(y, µ)−1
)

≤ 2−σ1(y+z′
min)−b′ − 1

1− 2−b′
. (48)

Hence, we can establish an upper bound on the number of
nodes in τ ′0 that do not fall below the threshold y.

(1−2−b)

∞∑
j=1

2b
′j
∑
µ≥y

fj(y, µ)≤
1− 2−b

1− 2−b′
(2−σ1(y+z′

min)−b′−1).

Now to resume the task of bounding the decoding effort
spent on paths in τ ′0, we now focus on the latter summation
in (40). To proceed along this direction, we observe that

differentiating (45) leads to
∞∑
j=1

∑
µ<y

f0,j(y, µ)2
σµ

(
µg1(σ)

−j ln 2− jg1(σ)
−j−1g′1(σ)

)
=0.

(49)
From (44), we also note that

E[ζ ′] =
g′1(σ)

ln 2

∣∣∣∣
σ=0

. (50)

This can be used to rewrite (49) as
∞∑
j=1

∑
µ<y

f0,j(y, µ)µ2
σµg1(σ)

−j

=

∞∑
j=1

∑
µ<y

f0,j(y, µ)2
σµjg1(σ)

−j−1E[ζ].

By evaluating the preceding equality at σ = 0, we get
∞∑
j=1

∑
µ < yf0,j(y, µ)µ = E[ζ ′]

∞∑
j=1

j
∑
µ<y

f0,j(y, µ)

E[µ′
N |T ∗

min = y] = E[ζ ′]E[N |T ∗
min = y],

where N is a random variable indicating the depth in the joint
channel and code tree, where the node metric is expected to
drop below threshold T ∗

min = y for the first time. Now since
we have y + z′min ≤ E[µ′

N |T ∗
min = y] ≤ y,

y ≥ E[ζ ′]E[N |T ∗
min = y] = E[ζ ′]

∞∑
j=1

j
∑
µ<y

f0,j(y, µ). (51)

This is equivalent to

y − µ ≥ E[ζ ′]

∞∑
j=1

j
∑

x<y−µ

fj(y − µ, x)

=⇒ µ− y ≤ −E[ζ ′]

∞∑
j=1

j
∑

x<y−µ

fj(y − µ, x).

Hence, the latter term in (40) can be bounded.
∞∑
j=1

2b
′j
∑
µ≥y

(µ− y)fj(y, µ)

≤ −E[ζ ′]

∞∑
j=1

2b
′j
∑
µ≥y

∞∑
t=1

t
∑

x<y−µ

ft(y − µ, x)fj(y, µ)

= −E[ζ ′]

∞∑
j=1

2b
′j
∑
µ≥y

∞∑
t=1

tfj(y, µ)
∑

x<y−µ

ft(y − µ, x)

= −E[ζ ′]

∞∑
j=1

2b
′j

∞∑
t=1

t
∑
µ≥y

fj(y, µ)
∑

x<y−µ

ft(y − µ, x).

(52)

To further simplify
∑

µ≥y fj(y, µ)
∑

x<y−µ ft(y−µ, x), we
try to gain an insight to it by considering the following.

• fj(y, µ) signifies that at depth j, the node metric is µ
and the barrier y has not been crossed, i.e., µ ≥ y.

• The term
∑

x<y−µ ft(y − µ, x) signifies the probability
that a random walk starting from the root with metric 0,
crosses the barrier y − µ at depth t; or equivalently, the
probability that a random walk where the starting node
has metric µ, crosses the barrier y at depth t.

By combining these observations, we can interpret the term

15

fj(y, µ)ft(y − µ, x) as the probability that during a random
walk, metrics at depths j and j+t are µ and x+µ respectively.
Furthermore, the term

∑
µ≥y fj(y, µ)

∑
x<y−µ ft(y − µ, x)

can be viewed as the probability that during a random walk,
metric at depth j stays above the barrier y, but the metric
at depth j + t falls below y. More concisely, we may write∑

µ≥y fj(y, µ)
∑

x<y−µ ft(y − µ, x) =
∑

µ<y fj+t(y, µ),
since the definition in (39) already guaranteed that the nodes
at depths less than j + t have metrics lying above the barrier
y. We apply this simplification to (52) and obtain

∞∑
j=1

2b
′j
∑
µ≥y

(µ− y)fj(y, µ)

= −E[ζ ′]

∞∑
j=1

2b
′j

∞∑
t=1

t
∑
µ<y

fj+t(y, µ)

= −E[ζ ′]

∞∑
j=1

2b
′j

∞∑
k−j=1

(k − j)
∑
µ<y

fk(y, µ)

= −E[ζ ′]

∞∑
k=1

k∑
j=1

(k − j)2b
′j
∑
µ<y

fk(y, µ)

= −E[ζ ′]

∞∑
k=1

∑
µ<y

fk(y, µ)

k∑
j=1

(k − j)2b
′j . (53)

We can further expand
∑k

j=1(k − j)2b
′j as follows.

k∑
j=1

(k − j)2b
′j = k

k∑
j=1

2b
′j −

k∑
j=1

j2b
′j

= k2b
′ 2b

′k − 1

2b′ − 1
+

2b
′(k+1)

(2b′ − 1)2
− 2b

′

(2b′ − 1)2

=
−k2b

′

2b′ − 1
+

2b
′(k+1)

(2b′ − 1)2
− 2b

′

(2b′ − 1)2
.

Incorporating this result in (53),
∞∑
j=1

2b
′j
∑
µ≥y

(µ− y)fj(y, z) ≤
2b

′

2b′ − 1
E[ζ ′]

∞∑
k=1

k
∑
µ<y

fk(y, µ)

− 2b
′

(2b′ − 1)2
E[ζ ′]

∞∑
k=1

2b
′k
∑
µ<y

fk(y, µ)

+
2b

′

(2b′ − 1)2
E[ζ ′]

∞∑
k=1

∑
µ<y

fk(y, µ)

=
2b

′

2b′ − 1
E[ζ ′]

∞∑
k=1

k
∑
µ<y

fk(y, µ) +
2b

′

(2b′ − 1)2
E[ζ ′]

− 2b
′

(2b′ − 1)2
E[ζ ′]

∞∑
k=1

2b
′k
∑
µ<y

fk(y, µ).

By exploiting (47), (50) and (51), we can reduce the
preceding equation to
∞∑
j=1

2b
′j
∑
µ≥y

(µ− y)fj(y, z) ≤
2b

′
y

2b′ − 1
− 2b

′−σ1(y+z′
min)

(2b′ − 1)2
E[ζ ′]

=
2b

′

2b′ − 1

(
y − 2−σ1(y+z′

min)

2b′ − 1
E[ζ ′]

)
.

(54)

We now combine (48) and (54) in order to bound (40).
∞∑
j=1

2b
′j
∑
µ≥y

(
µ− y

∆
+ 1

)
fj(y, µ)

≤ 2−σ1(y+z′
min)−b′ − 1

1− 2−b′
+

∆−1

1− 2−b′

(
y − 2−σ1(y+z′

min)

2b′ − 1
E[ζ ′]

)
= C ′

12
−σ1y − 1−∆−1y

1− 2−b′
, (55)

where C ′
1 = 2−b′

1−2−b′ − ∆−12−b′E[ζ′]

(1−2−b′)2
. Since E[ζ ′] is typically

negative, C ′
1 is evidently a positive quantity. By applying (55)

to (40), we are finally able to obtain the following bound on
the total decoding complexity associated with nodes in τ ′0.

∞∑
j=1

E[
∑

vj
0∈τ ′

0

(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y]

≤ (1− 2−b)C ′
12

−σ1y − 1− 2−b

1− 2−b′

(
− y

∆
+ 1

)
. (56)

2) On partially true paths: In a similar vein, we also ana-
lyze the distribution of node metrics in τ∗0 . Evidently, branch
metrics in τ∗0 follow a different probability distribution than τ ′0,
since the predicted block output is not necessarily independent
of the received frame, unlike the previous case. Hence, we
let a random variable Z∗(δ) characterize the distribution of
metrics along such branches, for a specific drift change δ.
We also note that multiple paths hypothesizing the same
message sequence as v∗L

0 but with alternate drift sequences,
may yield the same node metrics as in v∗L

0 . For instance, an
all-zero codeword with a nonzero final drift could correspond
to multiple drift sequences that seem equally likely. However,
for well-behaved codewords7, such alternate paths are far more
infrequent. Additionally, we observe that for higher depths,
most of these alternate drift paths lead to a sizeable shift
between the received and hypothesized sequences, making
them appear random with respect to each other. Thus, we can
reasonably assume that all branch metrics in τ∗0 beyond depth
1 can be described by ζ ′. Armed with this assumption and
(38), we bound the average number of visits to nodes in τ∗0 .∑

vj
0∈τ∗

0

E

[(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

= 2b
′(j−1)

imax∑
δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ1) = z1)

∑
µ≥y−z1

(
1

+
µ− (y − z1)

∆

)
fj−1(y − z1, µ).

The previous relation can be rewritten as∑
vj+1
0 ∈τ∗

0

E

[(
µ(vj+1

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

= 2b
′j

∑
δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ1) = z1)

∑
µ≥y−z1

(
1

7Only few equally likely drift sequences exist, after one insertion or
deletion.

16

+
µ− (y − z1)

∆

)
fj(y − z1, µ).

We can use this equality to restate the average decoding
effort expended on all nodes in τ∗0 in the following manner.

∞∑
j=1

E

[∑
vj
0∈τ∗

0

(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

= E

[∑
v1
0∈τ∗

0

(
µ(v1

0)− y

∆
+ 1

)
ϕ(v1

0)

∣∣∣∣T ∗
min = y

]

+

∞∑
j=2

E

[∑
vj
0∈τ∗

0

(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

=
∑
δ∗1

P (δ∗1)

imax∑
δ1=−dmax

δ1 ̸=δ∗1

∑
z1≥y

(
z1 − y

∆
+ 1

)
P (Z∗(δ1) = z1)

+

∞∑
j=1

E

[∑
vj+1
0 ∈τ∗

0

(
µ(vj+1

0)− y

∆
+ 1

)
ϕ(vj+1

0)

∣∣∣∣T ∗
min = y

]
.

Reusing (56) to simplify the previous equation, we get
∞∑
j=1

E

[∑
vj
0∈τ∗

0

(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

≤
imax∑

δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

(
z1 − y

∆
+ 1

)
P (Z∗(δ1) = z1)

+ C ′
1

imax∑
δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

(
z1 − y

∆
+1

)
P (Z∗

1 (δ1) = z1)2
σ1(z1−y)

−
imax∑

δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ1) = z1)

1−∆−1(y − z1)

1− 2−b′

= − 2−b′

1− 2−b′

imax∑
δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

z1 − y

∆
P (Z∗

1 (δ1) = z1)

− 2−b′

1− 2−b′

imax∑
δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ1) = z1)

+ C ′
1

imax∑
δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ1) = z1)2

σ1(z1−y)

≤ C ′
1

imax∑
δ∗1 ,δ1=−dmax

δ1 ̸=δ∗1

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ1) = z1)2

σ1(z1−y)

= C ′
12

−σ1y
imax∑

δ∗1 ,δ1=−dmax

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ1) = z1)2

σ1z1

− C ′
12

−σ1y
imax∑

δ∗1=−dmax

P (δ∗1)
∑
z1≥y

P (Z∗
1 (δ

∗
1) = z1)2

σ1z1 . (57)

Analogous to (37), the latter term is compressed by using

P (ζ∗ = z) =
∑imax

δ=−dmax
P (δ)P (Z∗(δ) = z). This is

essentially the probability distribution of branch metrics along
the correct path, as Z∗(δ) accounts for any transmission errors
for a specific drift change δ, while P (δ) suitably weights these
drift-specific distributions according to the likelihood of net
insertions or deletions over a single block. Thus, (57) becomes

∞∑
j=1

E

[∑
vj
0∈τ∗

0

(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

≤ C ′
12

−σ1y

(imax∑
δ1=−dmax

∑
z1≥y

P (Z∗
1 (δ1) = z1)2

σ1z1

−
∑
z1≥y

P (ζ∗1 = z1)2
σ1z1

)

≤ C ′
12

−σ1y

(imax∑
δ1=−dmax

g0,δ(σ1)−
∑
z1≥y

P (ζ∗1 = z1)2
σ1z1

)
,

(58)
where g0,δ(σ) refers to the moment generating function of the
drift-specific distribution of branch metrics along the correct
path, P (Z∗(δ) = z). Clearly, given the channel parameters,∑imax

δ1=−dmax
g0,δ1(σ1) is a constant. We can also deal with the

second term in (58) by making use of z∗min, which denotes the
minimum value that ζ∗ can assume. Hence,∑
z1≥y

P (ζ∗1 = z1)2
2σ1z1 ≥ 2σ1z

∗
min

∑
z1≥y

P (ζ∗1 = z1)

= 2σ1z
∗
minP (ζ∗1 ≥ y) = 2σ1z

∗
minP (2σ0ζ

∗
1 ≤ 2σ0y)

= 2σ1z
∗
min(1− P (2σ0ζ

∗
1 > 2σ0y)) ≥ 2σ1z

∗
min(1− 2−σ0yg0(σ0))

≥ 2σ1z
∗
min(1− 2−σ0y),

where σ0, as first introduced in (26), is negative and satisfies
g0(σ0) = 1. Upon incorporating this into (58), we infer that
∞∑
j=1

E

[∑
vj
0∈τ∗

0

(
µ(vj

0)− y

∆
+ 1

)
ϕ(vj

0)

∣∣∣∣T ∗
min = y

]

≤ (

imax∑
δ1=−dmax

g0,δ1(σ1)− 2σ1z
∗
min)C ′

12
−σ1y + C ′

12
σ1z

∗
min−(σ0+σ1)y.

(59)

Finally, we combine (30), (56) and (59) to establish the
following bound on the average decoding effort per block.

E[C(v∗
0)|T ∗

min = y] ≤
∞∑
j=1

E

[∑
vj
0∈τ ′

0

C ′(vj
0)|T ∗

min = y

]

+

∞∑
j=1

E

[∑
vj
0∈τ∗

0

C ′(vj
0)|T ∗

min = y

]
− y

∆
+ 1

≤ C12
−σ1y + C22

−(σ0+σ1)y + C3

(
− y

∆
+ 1

)
, (60)

where C1, C2 and C3 are constants for specific channel and
convolutional code parameters, and are given by

C1 =
(
1− 2−b +

imax∑
δ1=−dmax

g0,δ1(σ1)− 2σ1z
∗
min

)
C ′

1,

C2 = C ′
12

σ1z
∗
min , C3 =

2−b − 2−b′

1− 2−b′
.

