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Abstract—Lagrange coded computation (LCC) is essential to
solving problems about matrix polynomials in a coded distributed
fashion; nevertheless, it can only solve the problems that are
representable as matrix polynomials. In this paper, we propose
AICC, an AI-aided learning approach that is inspired by LCC
but also uses deep neural networks (DNNs). It is appropriate
for coded computation of more general functions. Numerical
simulations demonstrate the suitability of the proposed approach
for the coded computation of different matrix functions that are
often utilized in digital signal processing.

I. INTRODUCTION

Coded Computation (CC) refers to a class of distributed

computation schemes in which an encoder injects redundancy

into the input data before it is distributed to the worker

machines to perform the desired computation task. This allows

reconstruction of the full computation result with a decoding

step even if not all the workers have returned computation re-

sults. Therefore, CC schemes can reduce latency and increase

reliability in scenarios in which the worker nodes are, e.g.,

subject to random failures or straggling [1].

The CC schemes with the recovery of the exact computation

results are, for instance, applicable to matrix-matrix multipli-

cation [2], [3] and the computation of matrix polynomials [4],

[5]. Some papers have also proposed CC schemes for these

problems that can work with a significantly lower number of

worker results in the decoding step. This comes at the cost of

recovering the computation result only approximately with a

certain prescribed accuracy [6]–[8]. Another line of research

considers schemes that have a soft recovery threshold in the

sense that they do not need a minimum number of worker

results to obtain an estimate. Instead, they obtain estimates

with increasing accuracy as more and more of these results

become available [9]–[11]. Approximate coded computation
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is relevant for many applications, including those pertaining

to approximate machine learning (ML) tasks using deep neural

network (DNN) models.

Many existing papers propose schemes specifically for the

training stage of DNNs that deal with erasures as well as with

maliciously injected incorrect computation results (seminal

works include [12], [13]). References [14]–[16] apply CC

to the inference stage of ML computation tasks, and follow

the traditional CC paradigm that divides the scheme into the

three stages of encoding, computing, and decoding. These

papers propose methods for “learning” a suitable erasure

code, wherein, one approach jointly trains an auto-encoder

for encoding and decoding operations, whereas, in another, the

computation corresponding to the encoded data is a specially

trained neural network. In both approaches, not only the

system is constrained to a single erasure, but the performance

also degrades significantly with increasing number of inputs.

In this work, we aim to expand the class of functions

compatible with the approximate CC schemes to include non-

polynomial functions other than, but not excluding, the evalu-

ations of the inference stage of neural networks. For numerical

evaluations, we focus on the approximate CC computations of

the following functions, which we believe to be of particular

interest in the context of wireless communications: computa-

tion of (P1) the eigenvalues, (P2) the dominant eigenvector

corresponding to the largest absolute eigenvalue, (P3) the

matrix exponential, and (P4) matrix determinant of a square

matrix.

To the best of our knowledge, the CC schemes for these

functions have not yet been proposed in the state-of-the-art re-

search. Our approach is substantially inspired by the Lagrange

Coded Computation (LCC) [4], but it extends the idea by using

neural networks to achieve the following improvements:

• The class of computable functions are no longer limited

to the matrix polynomials.

• The proposed scheme guarantees a recovery threshold,

which is a design parameter. In particular, its choice does

not depend on the number of computation inputs directly.

• Approximate function computation allows for a judicious

trade-off between the accuracy and the computation time.

http://arxiv.org/abs/2205.09818v1


II. NOTATION AND PRELIMINARIES

We consider a system consisting of a master and N workers.

Given a function f : D → S, where D ⊂ R
M×M and

S is some finite dimensional Euclidean space, the master is

required to compute function values at points gathered in the

set X , {X1, . . . ,XK}, where Xk ∈ D for all k = 1, . . . ,K .

For this purpose, the master can distribute the computations

to the workers.

In coded computation, the master node takes the input

data X to generate N encoded data X̃i, i = 1, . . . , N . The

worker i performs computation on the encoded data X̃i and

returns the result to the master. The coded computation scheme

allows the master to recover all desired function values f(Xk),
k = 1, . . . ,K upon receiving the computation results from

any subset of R ≤ N workers. The smallest value of R for

which this is possible is called the recovery threshold of the

scheme. In this way, the CC schemes can mitigate the impact

of straggling or failing worker.

The LCC [4] scheme is a coded computation scheme for

computing polynomial functions f , say, of degree d. The

functioning principle of the LCC can be summarized as

follows (see [4] for details): The data is encoded to N matries

X̃i, i = 1, . . . , N , each of which amounts to the evaluation

of a Lagrange polynomial of degree K − 1 at distinct scalars

αn. The worker n ∈ {1, . . . , N} then computes the desired

polynomial f on the encoded data X̃n. The computation result

f (X̃n) can be viewed as the evaluation of a composite polyno-

mial of degree (K− 1)d, formed by the Lagrange polynomial

and the polynomial function f at a point αn. Hence, to recover

this polynomial, the master only requires R = (K − 1)d + 1
results from the workers. The desired function values can then

be obtained by evaluating the polynomial at suitable points.

Although LCC is optimal in terms of the recovery threshold,

it suffers from two crucial limitations: (i) the function f is

restricted to be a polynomial of the input in LCC; and (ii) the

recovery threshold R of LCC grows proportionally with the

number of inputs K and degree d of the polynomial f .

The core motivation for this work is to explore the pos-

sibility of extending the idea of LCC to general functions,

while ensuring a recovery threshold. Roughly speaking, we

replace both the encoding and the computation operations in

LCC by deep neural networks. Particularly, these operations

are carefully designed such that the computation results from

workers are evaluations of a certain polynomial (reminiscent

of LCC or any polynomial-based CC scheme), hence only

polynomial interpolation is needed for the recovery. In the

sequel, we will discuss how our construction can overcome

the limitations of LCC mentioned above to some degree.

However, we point out that we only aim to recover the

result approximately, whereas LCC and many other coded

computation schemes guarantees a perfect recovery (up to

numerical stability issues in the recovery phase).

III. AI-AIDED CODED COMPUTATION SCHEME

We propose an AI-aided coded computation (AICC) scheme

that utilizes a learning-based approach for coded computa-
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Fig. 1: Encoding and computation operation for worker n.

tion, applicable to a large class of functions including non-

polynomials. AICC employs a system design that inherits the

recovery-through-interpolation aspect of the LCC, but ensures

a fixed recovery threshold that does not directly depend on the

number of inputs or polynomial degree of the function. Note

that although AICC can only provide an approximate solution

in general, in Section IV, we show that our design achieves

a sufficient level of accuracy. Since an approximate solution

is good enough in many practical applications, AICC is

relevant in a wide range of applications. In the following,

we first describe the system architecture and then the training

procedure of the proposed scheme.

A. System architecture and operation

The system includes three operations: encoding, computa-

tion, and decoding. The master performs the encoding and the

decoding operations while the workers do the computations. In

the following, we describe each of these operations in detail.

Figure 1 depicts the general structure of the encoding and

computation operations for one worker.

Encoding operation: Figure 2 shows the structure of the

encoding function. Given an integer G > 0, the encoder E :
(D)K × R → R

M×M is given by

E (X , α) ,
G
∑

g=0

Ug αg. (1)

The coefficients Ug ∈ R
M×M , g = 0, . . . , G, are obtained via

the functions Γg : (D)K → R
M×M such that Ug , Γg(X ).

The functions Γg, g = 0, . . . , G are DNNs whose training

procedure will be discussed in Section III-B. Given the input

set X , the function e(·) , E (X , ·) is a degree G polynomial.

Integer G is a design parameter that, in contrast to the LCC,

does not directly depend on the number of input matrices

K . Encoded matrices are obtained for N distinct scalars

{α1, . . . , αN} as:

(∀n ∈ {1, . . . , N}) X̃n , e(αn) ∈ R
M×M , (2)

where αn ∈ R, for all n = 1, . . . , N . Each encoded matrix is

then sent to one of the N workers for computation.

Computation operation H : Figure 3 shows the structure of

the computation function. Worker n performs the computation



operation on the encoded matrix X̃n. Given an integer P > 0,

the computation operation H : (D)K × R
M×M → R

V yields

H (X , X̃) ,

P
∑

p=0

Vp Vec(X̃p), (3)

where Vec(X) vectorizes matrix X by stacking its columns.

The integer V represents the number of coordinates in the

range space S of the desired function f . The coefficients

Vp ∈ R
V×M2

, p = 0, . . . , P , are obtained via DNNs Λp :

(D)K → R
V ×M2

as Vp , Λp(X ). Given coefficients Vp, we

use h(X̃n) , H (X , X̃n) to denote the function that represents

the computation operation. It takes encoded data X̃n as input

and outputs the computation result ỹyyn , h(X̃n). Notice that

for a given dataset X , the operation H is common to all the

workers. Hence, the coefficients {Vp} can be computed by

the master, or by any one of the workers, and broadcasted to

all workers. The integer P > 0 is a design parameter that does

not directly depend on the function f .

Decoding process: Given a scalar α ∈ R and a corre-

sponding encoded data vector X̃, worker output ỹyy = h(X̃) =
h(e(α)) can be viewed as a polynomial evaluated at the point

α, since

h(e(α)) =

P
∑

p=0

Vp Vec

[(

G
∑

g=0

Ug αg

)p]

=

GP
∑

l=0

γγγl α
l, (4)

where the last equality follows by taking scalars of the form

αgp out of the Vec· operation. Hence, the function h ◦ e

is a polynomial of degree GP ≡ deg(e)deg(h). In (4), the

coefficients γγγl, l = 0, . . . , GP , belong to R
V . Therefore,

the number of data points required to recover v , h ◦ e is

R = GP + 1. The recovery can be performed, for example,

using Lagrange interpolation. This integer R is the recovery

threshold of the proposed AICC scheme.

To retrieve the final results, the master evaluates v at scalars

β1, . . . , βK , which are distinct real numbers that are chosen

in the training phase, and fixed for the given problem. This

aspect is different from LCC where these scalars can be chosen

freely by the master at the time of encoding. The final result

of the decoding process is given by

(∀k ∈ {1, . . . ,K}) f̂ffk , h(e(βk)) ∈ R
V . (5)

The master obtains the results {f̂ff1, . . . , f̂ffK} as approxima-

tions for {f (X1), . . . , f (XK)}. The accuracy of this approxi-

mation, measured based on a cost function, is assured by the

training procedure described in the next section.

B. Training

The encoding and decoding operations in the

AICC scheme described in Section III-A consist of DNNs

{Γ0, . . . ,ΓG,Λ0, . . . ,ΛP }, each with learnable parameters.

These parameters are trained using a training dataset such that

the cost of approximating f (Xk) with f̂ffk is minimized for

all k ∈ {1, . . . ,K} and all input datasets. Distinct real-valued

scalars βk, k = 1, . . . ,K , are chosen at the beginning. They

remain fixed during the entire training and operation phase.
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Fig. 2: Encoding Function at the master.
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Fig. 3: Computation Function of worker n.

The choice of cost function depends on the application, but

it should be continuous and differentiable with respect to

the learnable parameters appearing in the DNN functions.

However, one can select the specific architecture of the DNNs

and the training procedure freely. We discuss these details in

Section IV for various functions.

Figures 2 and 3 respectively show the input-output structure

of the encoding and computation operations with correspond-

ing DNNs. The training consists of forward and backward

passes over the system to update the parameters using the

stochastic gradient descent (SGD) algorithm. In each forward

pass, given a dataset X and a scalar βk, the sequence of

encoding, computation, and decoding operations result in the

output f̂ffk = h(e(βk)). Then, in the backward pass, the

parameters are updated based on the gradients of the cost

w.r.t. the parameters, evaluated using the output f̂ffk and the

target value fffk , Vec(f (Xk)).

One instance of the training data consists of in-

puts {X1, . . . ,XK}, distinct scalars {β1, . . . , βK}, and

corresponding target labels {fff1, . . . , fffK}. The inputs

{X1, . . . ,XK} corresponding to every training instance are

sampled i.i.d. from a given distribution which is representative

of the true distribution of inputs to the function f . One training

step consists of forward and backward pass over a batch

of data, and an epoch includes multiple batches. The SGD

algorithm updates the weights after every epoch, and the entire

training runs for multiple epochs.



IV. SIMULATIONS

In this section, we apply the proposed AICC scheme for

coded computation of four frequently-used matrix functions

in digital signal processing applications. In the following, we

present details of those functions and elaborate on the data

generation process. We also discuss relevant implementation

issues highlighting unique aspects related to the design and

training of DNNs. Numerical results appear at the end, ac-

companied by a discussion on the effect of various design

parameters on the performance.

A. Applied problems

We consider the problems of computation of (P1) the

eigenvalues, (P2) the eigenvector corresponding to the largest

absolute eigenvalue, (P3) the matrix exponential, and (P4) the

determinant of real-valued square matrices. Each problem Pi,

for i = 1, . . . , 4, is denoted by the function f (i) : Di → Si,

respectively.

In the training phase, the scheme learns to solve a regression

problem for function approximation using a supervised learn-

ing approach. In this framework, functions with an unbounded

range are generally difficult to learn. Thus, for the present

simulations, we design the input distribution for each problem

to obtain a bounded range for the functions. Nevertheless, in

principle, the proposed scheme applies to any function with

an arbitrary domain and range for which a system with the

structure described in Section III is learnable to approximate

the function with the desired accuracy.

For problem P1, we generate an input sample as X ,
1
2 (A+A

T ), where A is drawn uniformly from [−1, 1]M×M .

For problem P2, we similarly generate an input sample as

X , 1
2 (A+A

T ); however, here, A is drawn uniformly from

[0, 1]M×M . We make the value of f (2) unique by normalizing

the output eigenvector to a vector of unit norm and ensuring

that the first nonzero component is positive. For problem P3,

the input sample is generated as X , A/‖A‖op with A drawn

uniformly from [0, 1]M×M . In addition to keeping the value

of f (3) bounded, this ensures the numerical stability of the

algorithm used to compute the ground truth in training [17].

Here, ‖·‖op denotes the operator norm of matrices.

The matrix determinant in P4 is bounded by generating

diagonally-dominant matrices. More precisely, we generate the

input matrices as X , I−E, where I is the identity matrix, and

E has zeros on the diagonal and non-diagonal elements sam-

pled uniformly from [−2.0/M, 2.0/M ] [18], [19]. The number

of coordinates in the range spaces Si, for i = 1, . . . , 4, are,

respectively, M,M,M2 and 1. For simulations, we compute

the true values of the functions by using the Python’s Numpy

and Scipy libraries. For problems P1, P3, and P4, we use

the cost function C (f̂ff ,fff) := ‖f̂ff − fff‖ for training, where

fff , Vec(f (X)). We use ‖·‖ to denote the Frobenius norm

for matrices and vector norm for vectors. For the eigenvector

problem P2, we add an additional term in the cost function

to influence the network in learning a vector of unit norm,

i.e., C̃ (f̂ff ,fff) := C (f̂ff ,fff) + 5 (‖f̂ff‖ − 1.0)2.

B. Implementation details

Below we explicitly describe the DNN architecture and

system design. For simplicity, we implement the same system

design and architecture for all problems. Since the output

dimension is different for each one, we choose the free

parameter V (cf. (3)) to match the output dimension. The

functions {Γ0, . . . ,ΓG} of the encoding polynomial e are

fully connected DNNs with L = 2 hidden layers, each

with N = 100 nodes, and the same non-linear activation.

For the computation polynomial h, the DNN Λ0 has the

same architecture as Γ0, and {Λ1, . . . ,ΛP} are linear weight

matrices. Note that the master only needs to broadcast the

coefficient V0 = Λ0(X ) to the workers instead of the entire

input dataset X , hence saving communication resources.

As described in Section III, we generate the training datasets

randomly for the given problem at every training iteration. This

pervents overfitting of the system to a specific dataset. A single

step of training consists of a batch of sets X , each with K
i.i.d. matrices. Each training epoch includes multiple batches.

The scalar values {β1, . . . , βK} are fixed to βk = k/K , for

k = 1, . . . ,K . We implement the training using Tensorflow’s

(version 2.8.0) Keras module [20]. We employ the standard

Adam optimizer from Keras, which uses an exponentially

decaying learning rate.

In the testing phase, we load the model with the learned

weights of DNNs corresponding to the training epoch with

minimum loss. Besides, we generate the test input data in the

same way as for training, except that R (recovery threshold)

scalars {α1, . . . , αR} are chosen as distinct, but otherwise

arbitrary real numbers. In simulations, we obtain these values

as αn = n/(R+1). The master first generates the coefficients

of the encoder and computation polynomials (only V0) using

the inputs X , and generates encoded matrices {e(αr)}
R
r=1.

To imitate the erasure effect of the channel, we only use

the outputs of computation over these R encoded matrices

(corresponding to the recovery threshold). In the final step,

the master interpolates the polynomial v = h ◦ e using

R worker results, and approximates the desired results as

f̂ffk , v(βk) ≈ fffk for k = 1, . . . ,K . Error in function

approximation is evaluated in terms of the normalized root

mean square error (NRMSE), given by:

‖f̂k − f (Xk)‖

‖f (Xk)‖
. (6)

Simulations are performed on a high performance com-

puting (HPC) cluster with nodes equipped with graphical

processing units (GPUs). A GPU, compared to a central

processing unit (CPU), is more efficient in parallel processing

of large amount data due to its highly parallelized structure.

Every HPC cluster node is equipped with NVIDIA Tesla V100

SXM2 GPU with 32Gb RAM, and Intel Xeon(R) Gold 6150

CPU @ 2.70 GHz with 512Gb RAM. The script used for

simulations is made available for reproducibility.1

1https://github.com/navya-xx/AICC.git



C. Results

The errors in approximate coded computation of the prob-

lems P1, . . . , P4 are listed in Table I below. The results

presented here are evaluated on matrices of dimension M = 50
with K = 3 number of inputs in each dataset and recovery

threshold R = 5. This shows the ability of the AICC scheme

to evaluate the functions f (i), i = 1, . . . , 4, approximately in

a distributed manner through coded computation.

TABLE I: Function approximation error for AICC.

Problem → eigenvalue eigvector exponential determinant

NMRSE (%) 4.64% 5.81% 7.85% 1.50%

Figure 4 shows the results for problems P1 and P2 in

terms of normalized root mean square error (NRMSE) for

input matrices of dimensions M varying from 50 to 400. The

approximation error is low (< 5%), and it is interesting to ob-

serve that the error decreases with increasing dimensions M ,

offering a reasonable accuracy for high dimensional problems.

Note that, with the present structure, the number of learnable

parameters in the system grows at least at O(KM2). While

this increases the system’s capability to learn high-dimensional

problems with even higher accuracy, it comes at the price of

a longer and more complex training process.

In Figure 5, we compare the runtime of the proposed

AICC scheme with standard implementations in Python (called

STD for brevity) of the problem P1 for exact computation

of eigenvalues of a matrix. The input dataset consists of 128

batches of K = 3 matrices, and runtime is averaged over 1000

runs. The computation task corresponding to each scheme is

performed on a single node in the cluster. The runtime of STD

is reported for both CPU and GPU based implementations,

using the Numpy function np.linalg.eigvalsh and the

Tensorflow function tf.linalg.eigvalsh, respectively.

The AICC scheme runs all master and worker computations

on a single GPU, so that it is comparable to the STD GPU

computations in terms of computational resources used per

unit of time. As M grows, the runtime of the STD scheme

increase much faster than that of AICC.

In Figure 6, we compare the performance of P1 and P4 with

an increasing number of inputs K , while keeping the recovery

threshold of the scheme constant at R = 5 and the matrix

dimension constant at M = 10. Notice that the approximation

error does not increase too quickly with increasing K . There-

fore, for applications with a large number of input matrices

needing to be processed at a time, AICC enables approximate

recovery with only a small number of worker results.

In further experiments performed over matrix dimensions

M = 10 and 50, increasing the recovery threshold R showed

a slight downward trend in approximation error for small R as

expected, but reaching an error floor quickly. Further investi-

gation is required in this regard, but one possible explanation

is that the learning saturates for the analyzed problems too

soon to show the expected trend.
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