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Abstract—We define all-to-all encode, a collective communica-
tion operation serving as a primitive in decentralized computation
and storage systems. Consider a scenario where every processor
initially has a data packet and requires a linear combination of
all data packets; the linear combinations are distinct from one
processor to another, and are specified by a generator matrix
of an error correcting code. We use a linear network model, in
which processors transmit linear combinations of their data and
previously received packets, and adopt a standard synchronous
system setting to analyze its communication cost. We provide a
universal algorithm which computes any matrix in this model by
only varying intermediate coefficients, and prove its optimality.
When the generator matrix is of the Vandermonde or Lagrange
type, we further optimize the communication efficiency of the
proposed algorithm.

I. INTRODUCTION

The interest in coding for decentralized systems has in-

creased lately, due to emerging applications in blockchains [1–

3], sensor networks [4], and the internet of things [5]. In such

systems, raw data is generated independently in distributed

source nodes, and then encoded and delivered to distributed

sink nodes, without a central authority which orchestrates the

operation. Examples include encoding for reliable distributed

storage (e.g., with a Reed-Solomon or a random code [6]) or

for straggler-resilient distributed computation [7]. To study the

communication cost of this setting, we focus on the following

fundamental collective communication operation.

Definition 1. (All-to-all encode) Consider a distributed sys-

tem with K processors and no master processor. Every pro-

cessor k ∈ [0,K − 1] , {0, 1, . . . ,K − 1} initially possess

an initial packet xk ∈ Fq , where Fq is a finite field with q
elements, and obtains a coded packet x̃k ∈ Fq after the

communication operation. For A ∈ FK×K
q that is known a

priori to all processors, the coded packets are defined as

(x̃0, . . . , x̃K−1) = (x0, . . . , xK−1) · A.
That is, in an all-to-all encode operation, every node has its

own data packet, and wishes to obtain a linear combination

of all other packets in the system. An algorithm which

successfully achieves all-to-all encode for a given A and

every x0, . . . , xK−1 ∈ Fq is said to compute A. Computing

matrices in this context emerges during the encoding phase in

coded decentralized systems, as described shortly.

We adopt the popular communication model of [8], in which

the processors are connected by a synchronous network, and

messages can pass between any two of them. The system

operates in consecutive communication rounds, during each

a processor can simultaneously send and receive 1 message,

which might contain multiple field elements, through each one

of its p < K ports. Inspired by the well-familiar network-

coding literature [9, 10], we adopt a linear network model in

which processors transmit linear combinations of their own

data and previously received packets.

Similar to [8], to capture the communication cost we

consider the time to pass a message containing d field elements

as β + d · τ , where β and τ are system parameters; β is the

startup time of each message delivery, and τ refers to the per-

element cost. We focus on two measures of communication:

• C1: the number of rounds incurred by the algorithm.

• C2: the total number of field elements transferred in a

sequence during the operation. That is, C2 =
∑

t∈[T ] dt
in a T -round algorithm, where dt is the size of message

containing the largest number of field elements1 trans-

ferred in round t, among all ports of all processors.

Our main goal in this paper is optimizing the total commu-

nication cost, given by C1 · β + C2 · τ . Note that since each

round includes sending at least one element from one node to

another, it follows that C2 ≥ C1.

Clearly, all-to-all encode strongly depends on the properties

of the underlying matrix A. Moreover, any algorithm for

this problem contains two separate components, scheduling

and coding scheme. The former determines which processor

communicates with which other processors at each round, and

the latter determines the coefficients in the linear combinations

that processors transmit to one another. Motivated by this

distinction, we address the all-to-all encode problem on two

levels, the universal and the specific.

On the universal level, we seek a scheduling by which

any matrix A could be computed by only varying the cod-

ing scheme, i.e., the coefficients in the transmitted packets

throughout the algorithm (see Fig. 1). That is, a universal

algorithm is a series of instructions which indicate which

processor communicates with which other processors at each

round, alongside a mechanism that for every given A deter-

mines the coefficients that are used by each processor in order

to linearly combine previously received packets in each trans-

mission. Universal algorithms are important in cases where

the scheduling must either be determined prior to knowing A,

must apply in several consecutive computations of different

matrices, or its simplicity or uniformity are paramount (see

Remark 1 below). Further, universal algorithms can be used

as primitives in specific algorithms, as we show in the sequel.

On the specific level, we seek both scheduling and coding

scheme that are uniquely tailored towards a specific matrix

1Since the operation proceeds in rounds, the largest message in an individ-
ual round determines the time duration of this round.
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Fig. 1. An example of universal algorithm for computing any A ∈ F4×4
q

in 2 rounds, when p = 1. Every processor k ∈ [0, 3] wants x̃k =
a0kx0+a1kx1+a2kx2+a3kx3. In the first round, it receives a(k−1)kxk−1

from processor k − 1. In the second round, it receives a(k−2)kxk−2 +
a(k−3)kxk−3 from processor k − 2. Finally, processor k sums up the 2
received packets with akkxk and obtains x̃k.

of interest. Clearly, such specific algorithms are important

only if they outperform universal ones, since by definition,

every universal algorithm subsumes a specific algorithm for

all matrices. We are particularly interested in Vandermonde

and Lagrange matrices, that are required in Reed-Solomon and

Lagrange coded systems, respectively.

Finally, we emphasize that in either the specific or the

universal setting, neither the scheduling nor the coding scheme

depend on the input packets xi, but are exclusively determined

by the matrix A, that is known to all processors.

Our Contributions

• We provide lower bounds for C1 and C2 in a universal

algorithm, and propose prepare-and-shoot, a universal

algorithm which is optimal in C1 and achieves the lower

bound of C2 within a factor of
√
2.

• We propose draw-and-loose, a family of specific algo-

rithms for Vandermonde matrices, which optimize the

aforementioned universal algorithm in terms of C2, and

provide similar gains for Lagrange matrices.

Remark 1 (All-to-all encode for decentralized encoding).

Apart from its independent interest, the all-to-all encode

operation can be used as a primitive in decentralized coded

systems. For integers N and K such that K|N , consider a

system with N processors in which processor i ∈ [K] holds xi,

where [K] , {1, 2, . . . ,K}. Each processor j ∈ [N ] requires

a different linear combination of the xi’s, defined by the j’th

column of a predetermined generator matrix G ∈ FK×N
q .

The all-to-all encode operation defined herein is applicable

to this setting as follows. Partition the processors to N/K
subsets of size K each: {1, . . . ,K}, {K + 1, . . . , 2K}, and

so on. First, each processor i ∈ [K] disseminates its xi to

the processors {ℓK + i}N/K−1
ℓ=1 using a simple tree-structured

broadcast protocol with logp+1(N/K) rounds. Then, each

subset runs an all-to-all encode operation to compute the

respective K ×K submatrix of G.

II. RELATED WORKS

Collective communication operations (e.g., one/all-to-all

broadcast, one/all-to-all reduce, scatter, gather, etc.) have been

studied extensively due to their importance in parallel al-

gorithms, see [12] for a thorough introduction to the topic.

Yet, to the best of the authors’ knowledge, an encompassing

treatment of the all-to-all encode operation defined above is

conspicuously absent from the literature, and several special

cases have been scantly studied in recent years.

Jeong et al. [13] studies the decentralized encoding process

of an [N,K] systematic code as part of a coded FFT algorithm,

but did not study the all-to-all encode problem. Decentralized

encoding has also been studied by [6], in which processors

pass on a random linear combination of packets to their

neighbors, resulting in an MDS code with high probability.

Similar problems have been studied in the signal processing

literature under the title Graph Signal Processing [11], with

a few substantial differences—a graph structure dictates the

network connections, communication proceeds in so called

graph-shift operations, and computations are over the real or

complex fields.

III. LOWER BOUNDS

We now propose the lower bounds for C1 and C2 which

apply to any universal algorithm.

Lemma 1. Any universal algorithm has C1 ≥ ⌈logp+1 K⌉.
Proof. Since a universal algorithm must apply for all K ×K
matrices, it must also apply for matrices with no zero entries,

i.e., every processor wants a linear combination of all initial

packets. Similar to [8, Proposition 2.1], a packet xk can reach

at most (p+1)t processors in the p-port model after round t,.
Hence, it takes at least ⌈logp+1 K⌉ rounds for any packet xk

to reach all processors.

Lemma 2. Any universal algorithm has C2 ≥
√
2K
p −O(1).

Proof. We define baseline algorithms as a class of universal

algorithms in which every processor passes exactly 1 field

element through each port during every round; clearly, all

baseline algorithms have C1 = C2.

Given a universal algorithm in which processors transfer

at most dt packets through one of the ports in round t (and

thus C2 =
∑

t dt), there exists a corresponding baseline

algorithm that “simulates” each round t in the universal

algorithm using dt rounds, and thus has the same C2 =
∑

t dt.
Therefore, a universal algorithm cannot outperform all base-

line algorithms in terms of C2. Hence, it suffices to bound C1,

and hence C2, for baseline algorithms.

We provide a lower bound on C1 for baseline algorithms

by counting possible coding schemes, i.e., the number of ways

processors can linearly combine previously received packets

during the algorithm. Notice that once the scheduling and

coding scheme are fixed, an algorithm cannot compute two

distinct matrices2. Therefore, this value must be greater or

equal to |FK×K
q | = qK

2

.

2Recall that an algorithm computes a matrix A only if it computes the
product xA for every x = (x1, . . . , xk) ∈ FK

q . Hence, if xA = xB for

every x ∈ FK
q , then ker(A−B) = FK

q , which implies A = B.
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Let s
(t)
k be the vector of packets received by proces-

sor k prior to the beginning of round t ∈ [T ]. Clearly, we

have |s(t)k | = (t−1)p. In round t, for every port ρ ∈ [0, p−1],

the processor creates and sends a packet y
(t)
k,ρ by summing

the initial packet xk with a linear combination of previously

received packets3, i.e.,

y
(t)
k,p = xk + (g

(t)
k )⊺ · s(t)k ,

where g
(t)
k ∈ F

p(t−1)
q is a coding vector defining the linear

combination of elements in s
(t)
k . The number of possible

coding vectors in round t is then qp(t−1).

Note that there are K processors in the p-port system, and

the baseline algorithm contains T rounds. Further, at the end

of the T -round baseline algorithm, processor k obtains x̃k

by linearly combining the Tp+ 1 received packets, including

the initial packet xk. Therefore, the total number of coding

schemes is

qK(Tp+1) ·
∏

t∈[T ]

q(t−1)Kp2 ≥ qK·K . (1)

Taking logarithm on both sides of Equation (1), we have

K(Tp+ 1) +
∑

t∈[T ]

(t− 1)Kp2 ≥ K2,

which simplifies to p2T 2 − p(p − 2)T + 2(1 −K) ≥ 0, and

hence

C1 = T ≥ 1

2
− 1

p
+

√
1

4
− 1

p
− 1

p2
+

2K

p2

=

√
2K

p
−O(1).

Remark 2 (Lower bound for specific algorithms). Clearly,

specific algorithms can perform at least as good as universal

ones in a any figure of merit; this is since any universal

algorithm subsumes specific algorithms for all matrices by

definition. Providing bound pertaining to specific algorithms

proved to be a difficult task, and several such bounds will

appear in future versions of this paper. Yet, it is readily verified

that any matrix which contains a non-zero row cannot be

computed with C1 < logp+1 K; this is due to the simple

fact that a given packet xk cannot be disseminated to all K
processors in less than this many rounds.

IV. PREPARE AND SHOOT:

AN OPTIMAL UNIVERSAL ALGORITHM

In this section, we propose a universal algorithm that

computes any matrix A. The proposed algorithm consists

of two phases, prepare (Tp rounds) and shoot (Ts rounds).

Let L be the maximum integer such that (p + 1)L < K .

If L is even let Tp = L/2 + 1 and Ts = L/2. If L is odd

3Since the receiver will linearly combine the received packets in future
rounds of network coding, the initial packet xk has coefficient 1 to avoid
overcounting the coding schemes.

Round 1

Round 2

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80

Fig. 2. Illustration of the dissemination of x0 in the prepare phase in a 2-port
system to m = 9 processors. In the first round, processor 0 broadcasts x0 to
processor 3 and processor 6. In the second round, processor 0/3/6 passes x0

to processor 1/4/7 and processor 2/5/8, and concludes the prepare phase.

let Tp = Ts = (L+1)/2. In either case, the proposed algorithm

has the optimal C1 = Ts + Tp = ⌈logp+1 K⌉ (see Lemma 1).

To describe the phases, let m = (p+1)Tp , n = (p+1)Ts , and

hence (n− 1)m < K ≤ nm. For every k ∈ [0,K − 1], let

R+
k = {k + ℓ | ℓ ∈ [0,m− 1]},
R−

k = {k − ℓ | ℓ ∈ [0,m− 1]},
S+k = {k + ℓ ·m | ℓ ∈ [0, n− 1]}, and

S−k = {k − ℓ ·m | ℓ ∈ [0, n− 1]}.

For convenience of notation, subscripts are computed modK .

Prepare phase: This phase consists of K one-to-m broad-

casts happening in parallel; each disseminates xk from pro-

cessor k ∈ [0,K − 1] to processors in R+
k . In round t, for

every k, r ∈ [0,K− 1], processor k forwards xr (if present in

its internal storage) to processor

k + ρ · m

(p+ 1)t

through its ρ-th port, for every ρ ∈ [p]. See Figure 2 for an

illustrative example.

Lemma 3. After C1,prepare = Tp rounds, every processor k has

obtained xr for every r ∈ R−
k , with C2,prepare =

(p+1)Tp−1
p .

Proof. Consider a tree defined recursively: Initially, proces-

sor k is added as the root. In every subsequent round t,
every processor r in the current tree is connected to proces-

sor r+ ρ · m
(p+1)t , for every ρ ∈ [0, p− 1] (i.e., the processors

receiving messages from processor r in round t). The recursion

is concluded when t = Tp, after which the tree contains

processors in R+
k .

Originally only processor k holds xk, and since the al-

gorithm employs every processor to forward every packets

it has, it follows that every processor in R+
k obtains xk

after Tp rounds. Therefore, processor k has obtained xr for

every r ∈ R−
k . Further, as the number of field elements in a

message increase by p-fold after each round, we have

C2,prepare =

Tp∑

t=1

(p+ 1)t−1 =
(p+ 1)Tp − 1

p
.

Shoot phase: This phase consists of K n-to-one reduce op-

erations happening in parallel, each intended to communicate

the correct linear combination of packets to every processor.

3



057483930211260 3

Round 1

Round 2

057483930211260 3

057483930211260 3

Fig. 3. Illustration of the reduce operation from processors 60, 3, . . . , 57 to
processor 0 in the shoot phase in a 2-port system with K = 65.

At the beginning of the phase, every processor k defines n
variables wk,k, wk,k+m, . . . , wk,k+(n−1)m using the informa-

tion received in the prepare phase (i.e., xr for r ∈ R−
k ), and

the coefficients of the matrix A. Intuitively, the variable wk,s

contains a linear combination of xr’s at processor k, whose

final destination is processor s; more and more packets will

be added to wk,s as the algorithm progresses. Specifically,

for ℓ ∈ [0, n − 1], initialize wk,k+ℓ·m with xk · Ak+ℓ·m,

where Ak+ℓ·m is the (k + ℓ · m)-th column of A, and the

non-zero entries of xk ∈ FK
q are indexed by elements in R−

k ,

i.e.,

xk[r] =

{
xr r ∈ R−

k

0 otherwise
. (2)

The goal of this phase is to allow every processor k to

obtain yk =
∑

s∈S−

k
ws,k =

∑
s∈S−

k
xs ·Ak, where ws,k refers

to the content of that variable at the beginning of this phase.

In round t ∈ [1, Ts] of the shoot phase, processor k forwards

a message to processor k+ρmt, and receives a message from

processor k−ρmt, for every ρ ∈ [p]. To describe this process,

we now define a series of trees for every processor at every

round, and an illustrative example can be found in Figure 3.

For every round t, let T (t)
k be a tree defined recursively

in Ts − t steps, as follows. Initially, processor k is added as

the root. In every subsequent step τ , for τ ∈ [1, Ts− t], every

processor r in the current tree is connected to processor r +

ρmt+τ , for every ρ ∈ [p]. In particular, the tree T (Ts)
k contains

only the root k. Intuitively, the tree T (t)
k contains processors

that the processor k is connecting to, directly or indirectly, in

rounds following round t.

Algorithm 1 Shoot Phase (for processor k)

1: Initialize wk,k, wk,k+m, . . . , wk,k+(n−1)m.

2: for t← 1, 2, . . . , Ts do

3: for ρ = 1 to p do ⊲ As a sender

4: sout = k + ρmt

5: send wk,r to processor sout for every r ∈ T (t)
sout

6: for ρ = 1 to p do ⊲ As a receiver

7: sin = k − ρmt

8: for r ∈ T (t)
k do

9: receive wsin,r from processor sin

10: assign wk,r ← wk,r + wsin,r

11: Output wk,k as yk

At round t, processor k sends a message to processor sout =
k + ρmτ , and receives a message from processor sin = k −
ρmτ through the ρ-th port for ρ ∈ [p]. The sent message

contains wsout,r for every r ∈ T (t)
sout . The received message

contains wsin,r for every r ∈ T (t)
k , and the processor k updates

its internal storage, letting wk,r ← wk,r + wsin,r. The details

are given in Algorithm 1, and the correctness is as follows.

Lemma 4. After C1,shoot = Ts rounds, every processor k has

obtained yk =
∑

r∈S−

k
xr ·Ak, with C2,shoot =

(p+1)Ts−1
p .

Proof. We show that the variable wk,k stores yk for every k at

the end of the algorithm. The proof is based on an recursively

defined tree T ′
k : in step τ = 0 processor k is added as the root.

In every subsequent step τ ≥ 1 every processor r in the current

tree is connected to processor r−ρmτ , for every ρ ∈ [p]. That

is, during each step τ , we add processors that sent messages

to the existing processors at round t = Ts − τ + 1.

Observe that the tree T ′
k contains all processors in S−k

after Ts steps of the recursion. For each processor r ∈ T ′
k

added in step τ , processor k is present in the tree T (t)
r . Hence,

at round t, the variable wr,k is transmitted from processor r
to its parent s in T ′

k , and summed with ws,k.

Traversing from the processors added at step Ts, the

packets {xr · Ak}r∈T ′

k
are summed and transmitted to the

root k, and stored in the variable wk,k . Note that tree T ′
k

contains exactly the processors in S−k , and hence wk,k = yk
stores

∑
r∈S−

k
xr ·Ak.

Finally, observe that |T (t)
k | = n

(p+1)t , which is the number

of field elements sent by processor k at round t through each

of its ports. Hence, summing over all rounds, we have

C2,shoot =

Ts∑

t=1

(p+ 1)Ts−t =
(p+ 1)Ts − 1

p
.

Finally, in the most general case where K < mn, some

overlap of indices need to be resolved, as some computation

results have been summed up twice. In particular, observe

thatR−
k ∩R−

k−(n−1)m = [k−nm+1, k], which is an empty set

only if nm = K , as we assumed that (n− 1)m < K ≤ nm,

and since indices are computed modK . Therefore,

yk = x̃k +
∑

r∈[k−mn+1,k]

Ar,kxr, (3)

from which processor k can individually compute x̃k with no

communication, by computing the r.h.s sum and subtracting

from yk. This concludes the prepare-and-shoot algorithm, and

provides the following by Lemma 3 and Lemma 4.

Theorem 1. The prepare-and-shoot algorithm has C1 = Tp+
Ts = ⌈logp+1 K⌉ and

C2 =

{
2(p+1)(L+1)/2−2

p if L is odd

(p+1)L/2+1−2
p if L is even

.

Remark 3. According to Lemma 1, the prepare-and-shoot

algorithm is strictly optimal in terms of C1. In addition,

4



f(z)

f0(z) f1(z) f2(z)

f00(z) f01(z) f02(z) f10(z) f11(z) f12(z) f20(z) f21(z) f22(z)

γ22

γ2

γ

γ1 γ0

γ12 γ02 γ21 γ11 γ01 γ20 γ10 γ00

Fig. 4. Illustration of the trees with K = 9 and p = 2. (left) The polynomial
tree rooted at f(z) = x0 + x1z + · · ·+ x8z8. The polynomials in the first
level are f0(z) = x0+x3z+x6z3, f1(z) = x1+x4z+x7z3, etc. see (7).
(right) The tree of field elements rooted at γ = 1, with γ1 = g3, γ10 = g,
etc, where g is a generator of Fq , see (5).

since (p+ 1)L < K , by Lemma 2 the algorithm is asymptot-

ically optimal in terms of C2.

V. DRAW AND LOOSE: AN ALGORITHM

FOR COMPUTING VANDERMONDE MATRICES

In this section, we shift our attention to specific algorithms

for computing Vandermonde matrices, for their prevalent use

in Reed-Solomon codes. That is, we tailor both the scheduling

and the coding scheme for K×K matrices A such that Ai,j =
αi
j for i, j ∈ [0,K − 1], where α0, . . . , αK−1 are distinct

elements of Fq (hence K ≤ q). That is, every processor wishes

to obtain x̃k = f(αk), an evaluation of the polynomial f(z) =∑
k∈[0,K−1] xkz

k at αk.

Inspired by the Fast Fourier Transform algorithm, we show

a method that computes the Discrete Fourier Transform (DFT)

matrix (a special case of Vandermonde matrix) with the opti-

mal C1 = C2 = logp+1 K (see Remark 2). Later, this method

serves as a primitive for computation of general Vandermonde

matrices, and brings a significant gain in C2 compared with

the universal algorithm described earlier.

A. Computing a DFT Matrix

Assume that K = (p + 1)H for some positive integer H ,

that K|q − 1, and let β = g
q−1
K be a primitive K-th root

of unity, where g is a generator of Fq . A Discrete Fourier

Transform (DFT) matrix DK is a Vandermonde one with αk =
βk, i.e.,

DK =




1 1 1 · · · 1
1 β β2 · · · βK−1

...
...

...
. . .

...

1 β(K−1) β2(K−1) · · · β(k−1)(K−1)


 . (4)

The proposed method relies on two complete (p+1)-ary trees,

a tree of field elements and a tree of polynomials. Each tree is

of height H , and there are (p+1)h nodes at level h ∈ [0, H ].
Therefore, a node at level h can be represented by h digits

using (p+ 1)-radix.

The tree of field elements is defined as follows. A node at

level h ∈ [0, H ] is identified by h digits kh−1 . . . k0 in [0, p]
(kh−1 being the most significant), and contains the element

γkh−1···k0 , (βkh−1(p+1)h−1+···+k0)(p+1)H−h

. (5)

It is readily verified that for each of the leaves (at level H),

we have that γkH−1···k0 = βk is the evaluation point of the

processor indexed by k = kH−1(p+ 1)H−1 + · · ·+ k0. For

the root (at level 0), which is represented by 0 digits, we

have γ = 1. Indices of sibling nodes differ only in the most

significant (leftmost) digit, and index of a parent node is

given by omitting the most significant digit of its child. That

is, nodes γ0kh−1···k0 , . . . , γpkh−1···k0 are the children of the

same parent node γkh−1···k0 . By Equation (5), every child is a

distinct (p+ 1)-th root of its parent, i.e., for every ρ ∈ [0, p],

(γρkh−1···k0)
p+1

= ((βρ(p+1)h+kh−1(p+1)h−1+···+k0)(p+1)H−h−1

)p+1

= (βρ(p+1)h+kh−1(p+1)h−1+···+k0)(p+1)H−h

= (βkh−1(p+1)h−1+···+k0)(p+1)H−h · βρ(p+1)H

= γkh−1···k0 · (g
q−1
K )ρK = γkh−1···k0 . (6)

The tree of polynomials is defined recursively from

the root labelled by f(z). For a non-leaf node labelled

by fk0···kh−1
(z) = b0z

0 + · · ·+ bD−1z
D−1 at level h, its ρ-th

child node is defined as

fk0···kh−1ρ(z) =
∑

d=ρ mod (p+1)

bdz
d−ρ
p+1 . (7)

Therefore, every non-leaf node is a combination of its children

evaluated at zp+1, i.e.,

fk0···kh−1
(z) =

∑

ρ∈[0,p]

zρfk0···kh−1ρ(z
p+1). (8)

Note that the leaf node fk0,...,kH−1 = xk′ is the initial

packet of the processor indexed by k′ = kH−1 + · · · +
k0(p + 1)H−1. That is, the (p + 1)-radix representations

of k = kH−1(p+ 1)H−1 + · · ·+ k0 (defined above) and k′

have reversed order. See Figure 4 for illustrations of both trees.

The proposed algorithm is defined recursively using the

above trees. Define Q(k, t) = fkH−1···kt(γkt−1···k0), and hence

every processor k initially has Q(k, 0) = fkH−1···k0(γ) =
fk′

0···k′

H−1
(γ) = xk at the beginning of the algorithm, and

wishes to obtain Q(k,H) = f(γkH−1···k0) = f(βk) = x̃k .

Assume that processor k has Q(k, t) after round t, and

we show how it can obtain Q(k, t + 1) in one round. By

Equation (8) and Equation (5) we have

Q(k, t+ 1) = fkH−1···kt+1(γkt···k0)

=
∑

ρ∈[0,p]

(γkt···k0)
ρfkH−1···kt+1ρ((γkt···k0)

p+1)

=
∑

ρ∈[0,p]

(γkt···k0)
ρfkH−1···kt+1ρ(γkt−1···k0)

=
∑

ρ∈[0,p]

(γkt···k0)
ρQ(k(t)ρ , t), (9)
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where k
(t)
ρ is represented by kH−1 · · · kt+1ρkt−1 · · · k0 in (p+

1)-radix, i.e., it differs from k only in the t’th digit.

Therefore, the desired Q(k, t + 1) is a linear combination

of Q(k
(t)
0 , t), . . . , Q(k

(t)
p , t). Written in matrix form we have




Q(k
(t)
0 , t+ 1)

...

Q(k
(t)
p , t+ 1)


 = A

(t)
k ·




Q(k
(t)
0 , t)
...

Q(k
(t)
p , t)


 , (10)

where A
(t)
k =



γ(0kt−1···k0

)0 · · · (γ0kt−1···k0)
P

...
. . .

...

γ(pkt−1···k0
)0 · · · (γpkt−1···k0)

P


 . (11)

At round t+1 of the proposed algorithm, every processor k
broadcasts Q(k, t) to the p processors having the same index

except for the t-th digit. In the same round, processor k

receives Q(k
(t)
ρ , t) for every ρ ∈ [0, p] from these processors

(including itself). Then, processor k obtains Q(k, t + 1) by

linearly combining the received packets based on Equation (9).

Recall that every processor k has Q(k, 0) at beginning,

it obtains the coded packet x̃k = Q(k,H) after H rounds

by repeating the above operation H times. Since exactly one

packet is transmitted through each of the p ports during each

operation, we have the following theorem.

Theorem 2. The above algorithm for computing a DFT matrix

has C1 = C2 = H = logp+1 K , which is strictly optimal.

Remark 4. As shown in Remark 2, the proposed algorithm

has the strictly optimal C1 value. Further, the C2 value is also

optimal, since during each round only 1 packet is communi-

cated through each port. This is an exponential improvement

over the universal algorithm.

Next, we emphasize the invertibility of the presented algo-

rithm in the following lemma; this will be useful in the sequel.

Lemma 5. The above algorithm can be used to compute the

inverse of a DFT matrix, with the same C1 and C2.

Proof. Since the matrix A
(t)
k defined in Equation (11) is

an invertible Vandermonde matrix, it follows that each step

of the induction is invertible. That is, the processor k in

possession of Q(k, t+ 1) can obtain Q(k, t) in one round of

communication, sending and receiving 1 packet through each

of its ports, for every t ∈ [0, H ]. Therefore, a processor k in

possession of Q(k,H) can obtain Q(k, 0) in H rounds, with

the optimal C1 and C2 as shown in Theorem 2.

B. Generalization

The aforementioned algorithm computes a unique Vander-

monde matrix with strictly optimal C1 and C2, but requires

that K = (p + 1)H for some H and that K | q − 1. In

cases where K ∤ q − 1 and K ≤ q − 1, let H be the

maximum integer such that (p+1)H divides gcd(K, q−1), and

denote K = M ·(p+1)H . We use the above DFT algorithm as

a primitive for improved C2 with respect to prepare-and-shoot

in the computation of multiple other Vandermonde matrices.

Let Z = (p+1)H , and denote processor Pi,j = j+Z · i by

two indices j ∈ [0, Z − 1] and i ∈ [0,M − 1]. We define

the evaluation point of processor Pi,j as αi,j = αi · βj ,

where αi = gϕ(i) and βj = gj·
q−1
Z , with g being a gener-

ator of Fq and ϕ being any injective map from [0,M − 1]
to [0, (q − 1)/Z − 1], which exists since q − 1 ≥ ZM = K .

These definitions guarantee that no two evaluation points are

identical. In addition, since there exists
(
(q−1)/Z

M

)
possible

choices for ϕ, it follows that the proposed algorithm computes

this many different Vandermonde matrices up to permutation

of columns.

Recall that the coded packet x̃i,j desired by processor Pi,j

is an evaluation of f(z) at αi,j . Moreover, we have

f(αi,j) =

K−1∑

k=0

xk(αi,j)
k =

K−1∑

k=0

xkα
k
i β

k
j

=

Z−1∑

ℓ=0

βℓ
j

∑

k=ℓ mod Z

xkα
k
i β

k−ℓ
j .

(12)

Since gq−1 = 1, it follows that βk−ℓ
j = gj·

q−1
Z (k−ℓ) = 1

whenever k = ℓ mod Z , and hence

x̃i,j
(12)
=

Z−1∑

ℓ=0

βℓ
j

∑

k=ℓ mod Z

xkα
k
i =

Z−1∑

ℓ=0

βℓ
jfℓ(αi), (13)

where fℓ(z) =
∑M−1

w=0 xw,ℓz
ℓ+Z·w. In matrix form,

X̃ ,




x̃0,0 · · · x̃0,Z−1

...
. . .

...

x̃M−1,0 · · · x̃M−1,Z−1


 = F ·DL, (14)

where DL is an Z × Z DFT matrix, and

F =




f0(α0) · · · fZ−1(α0)
...

. . .
...

f0(αM−1) · · · fZ−1(αM−1)


 . (15)

Notice that the j-th column of F satisfies

[fj(α0), · · · , fj(αM−1)]
⊺ = (16)



αj
0

. . .

αj
M−1


 ·




αZ·0
0 · · · α

Z·(M−1)
0

...
. . .

...

αZ·0
M−1 · · · α

Z·(M−1)
M−1


 ·




x0,j

...

xM−1,j




The protocol proceeds in two phases.

Draw Phase: The objective of this phase is for

every processor Pi,j to obtain fj(αi). As shown

above (16), fj(α0), . . . , fj(αM−1) are given by multiplying

[x0,j , . . . , xM−1,j ]
⊺ by a Vandermonde matrix, denoted

by V , and a diagonal matrix diag(αj
0, · · · , αj

M−1).
Therefore, this problem can be solved in parallel by Z
all-to-all encode operations. For every j ∈ [0, Z − 1],
processors P0,j , . . . , PM−1,j collectively compute the

matrix V using prepare-and-shoot (Section IV). Once

completed, every processor Pi,j locally multiplies the

resulting packet with αj
i and obtains fj(αi), which is the

element in the i-th row and j-th column of the matrix F .
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Loose Phase: As shown in Equation (14), the coded

packets x̃i,0, . . . , x̃i,Z−1 are linear combinations, defined by

the DFT matrix DL, of the elements f0(ai), . . . , fZ−1(ai)
in the i-th row of the matrix F . For every j ∈ [0, Z − 1],
processors Pi,0, . . . , Pi,Z−1 collectively compute DL using the

specialized algorithm a for DFT matrix (Section V-A). After H
rounds, every processor Pi,j obtains the coded packet x̃i,j .

Let Ψ(M) be the C2 in the prepare-and-shoot algorithm to

compute any M×M matrix. Observe that the draw phase takes

C1 = ⌈logp+1 M⌉ rounds and C2 = Ψ(M) communication,

and the loose phase takes C1 = H rounds and C2 = H
communication. Therefore, we have the following.

Theorem 3. The draw-and-loose algorithm can com-

pute
(
(q−1)/Z

M

)
different Vandermonde matrices (up to per-

mutation of columns) with C1 = ⌈logp+1 K⌉ and C2 =
H + Ψ(M). In particular, if M ≤ p + 1 then Ψ(M) = 1,

i.e., C1 = C2 = ⌈logp+1 K⌉.
Remark 5. Note that draw-and-loose can compute any Van-

dermonde matrix. Yet, significant gains w.r.t prepare-and-shoot

will be possible in cases where H is large. In particular, in

cases where H = 0 the draw-and-loose algorithm does not

provide gains over the universal prepare-and-shoot.

Lemma 6. Similar to Lemma 5, the above algorithm can be

used to compute the inverse of a Vandermonde matrix, with

the same C1 and C2.

Proof. The invertibility of the loose phase is given in

Lemma 5. In the draw phase, since the Vandermonde matrix V
defined in Equation (15) is invertible, this step can be inverted

by computing the inverse of V using prepare-and-shoot.

Together, the inverse of a Vandermonde matrix can be

computed by first inversing the loose phase, and computing

the inverse of V with prepare-and-shoot.

VI. COMPUTING LAGRANGE MATRICES

WITH INVERTIBLE DRAW-AND-LOOSE

Lagrange matrices were recently popularized for their use

in coded computing [7]. For sets {αi}Ki=1and {ωi}Ki=1, each

with K distinct elements in Fq, let

A =



Φ1(α1) . . . Φ1(αK)

...
. . .

...

ΦK(α1) . . . ΦK(αK)


 ,Φk(z) =

∏

j 6=k

z − ωj

ωk − ωj
.

In this section we sketch an extension of draw-and-loose

which computes Lagrange matrices. Evidently, computing a

Lagrange matrix can be described as follows. Every proces-

sor k has xk = f(ωk); they together form a point-value

representation of a polynomial f(z) =
∑

k∈[0,K−1] fkz
k of

degree K−1 at ω0, . . . , ωK−1. Every processor k wants x̃k =
f(αk), i.e., another point-value representation of f(z) on

α0, . . . , αK−1.

Therefore, computing a Lagrange matrix is possible by

two consecutive computations. First, compute the inverse of

a Vandermonde matrix V (ω1, . . . , ωK) (Lemma 6) in or-

der to obtain the coefficients of the polynomial f . Second,

compute the Vandermonde matrix V (α1, . . . , αK) in order

to evaluate f at αk for every k ∈ [K]. This yields the

following, in which Ci(x) is the Ci measure of draw-and-

loose over V (x1, . . . , xk), for i ∈ {1, 2} and x ∈ {α, ω}.
Theorem 4. The above algorithm computes a Lagrange matrix

with C1 = C1(ω) + C1(α) and C2 = C2(ω) + C2(α).

Proof. Written in matrix form, the initial packets

(x0, . . . , xK−1) = (f0, . . . , fK−1)




ω0
0 · · · ω0

n−1
...

. . .
...

ωn−1
0 · · · ωn−1

n−1




(17)

are linear combination of f0, . . . , fK−1 defined by the Van-

dermonde matrix V (ω0, . . . , ωK−1). By the invertibility of

draw-and-loose (lemma 6), this step can be completed with

the same C1 and C2 introduced in Theorem 3, and every

processor k obtains fk. Next, the coded packets

(x̃0, . . . , x̃K−1) = (f0, . . . , fK−1)




α0
0 · · · α0

n−1
...

. . .
...

αn−1
0 · · · αn−1

n−1


 ,

(18)

are linear combination of f0, . . . , fK−1 defined by the Vander-

monde matrix V (α0, . . . , αK−1). Since every processor k has

obtained fk, this phase can be completed using Vandermonde

algorithm.

VII. DISCUSSION AND FUTURE WORK

Directions for future work include extending the results

to other specific matrices, e.g., Cauchy matrices and Moore

matrices, and to further study algorithms and lower bounds

for Vandermonde and Lagrange matrices. Also, incorporating

computation and storage constraints of processors is an inter-

esting direction for future research.
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