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Abstract

We propose a post-processing method for message-passing (MP) decoding of
CSS quantum LDPC codes, called stabilizer-inactivation (SI). It relies on inactivating
a set of qubits, supporting a check in the dual code, and then running the MP
decoding again. This allows MP decoding to converge outside the inactivated set
of qubits, while the error on these is determined by solving a small, constant size,
linear system. Compared to the state of the art post-processing method based on
ordered statistics decoding (OSD), we show through numerical simulations that MP-
SI outperforms MP-OSD for different quantum LDPC code constructions, different
MP decoding algorithms, and different MP scheduling strategies, while having a
significantly reduced complexity. We also provide numerical evidence that SI post-
processing may achieve a threshold on a family of generalized bicycle codes, of length
varying from 126 to 8190 qubits.

1 Introduction

In a well-celebrated work [1], Gallager introduced the family of low-density parity-check
(LDPC) codes, which became a staple of classical error correction over the past twenty years.
They came equipped with iterative message-passing (MP) decoders, which is indisputably
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the main reason of their success: Not only MP decoders represented a low-complexity
decoding approach (linear complexity per decoding iteration), but it was later shown that
LDPC codes can be optimized, so that their error correction thresholds under MP decoding
closely approach the theoretical Shannon limit [2, 3].

The quantum counterparts of LDPC codes, referred to as qLDPC codes, are Calderbank-
Shor-Steane (CSS) quantum codes, defined by two orthogonal classical LDPC codes.
qLDPC codes are likely to be the first practical codes used for fault-tolerant quantum
computing [4], as they have low weight stabilizer group generators, which makes it possible
to extract the error syndrome in a fault tolerant way. Moreover, the qLDPC family has
been recently shown to yield good asymptotic codes, with linear minimum distance and
constant rate [5, 6]. This augurs for practical constructions with increased error correction
capacity, or reduced qubit overhead.

However, if decoding a qLDPC code boils down to decoding the two constituent classical
LDPC codes (assuming separate decoding of X and Z errors), their orthogonality translates
into a so-called degeneracy property, which causes a significant degradation of the MP
decoding performance [7]. Thus, decoding solutions are usually devised on a case-by-
case basis, being distinguished by their scope and extent. Heuristic techniques to partially
overcome the degeneracy of qLDPC codes have been proposed in [7]. Reweighted belief-
propagation decoding has also been proposed in [8] (and references therein), and more
recently, neural belief-propagation decoding has been proposed in [9]. For hypergraph-
product LDPC and quantum expander codes, a linear-time decoding algorithm has been
proposed in [10, 11], decoding up to a constant fraction of the minimum distance, by
exploiting the expanding properties of the LDPC code. Recently, Panteleev et Kalachev
proposed a new decoding approach, combining MP with an ordered statistics decoding
(OSD) post-processing step [12]. It stands currently as the most efficient decoding solution
applying generally across a large spectrum of qLDPC codes [13]. (Since the first version
of this paper, linear time decoders for linear minimum distance qLDPC codes, decoding
adversarial errors of linear weight, have been proposed in [14–16]).

Here, we continue the idea of a general purpose decoder, in which MP decoding is com-
bined with a post-processing step. We call our post-processing step stabilizer inactivation
(SI). Assuming we are decoding for some type of errors, say X-errors, the idea of the SI
post-processing step is to inactivate the qubits in the support of some X-check1, and then
run the MP decoding again. Inactivating these qubits means that we take them out from

1A check is a generator of the stabilizer group, corresponding to a row of the check matrix. Note that
Z-checks are used to decode X-errors.
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the MP decoding process (which happens if we set to zero the corresponding log-likelihood
ratio values, input to the MP decoder). If the inactivated X-check2 is carefully chosen, the
MP decoding converges outside its support. All that remains is to determine the error on
the support of the inactivated X-check, which amounts to solving a small linear system.
We show that the MP-SI outperforms the MP-OSD decoder for different qLDPC code con-
structions, different MP decoding algorithms, and different MP scheduling strategies, while
having a significantly reduced complexity.

2 Preliminaries

2.1 qLDPC Codes

qLDPC codes are CSS quantum codes, defined by two classical LDPC codes with parity
check matrices HX and HZ , such that HXH

T
Z = 0. The rows of HX and HZ are referred to

asX-checks and Z-checks, respectively, and they generate theX-type and Z-type stabilizer
groups, namely imHT

X and imHT
Z . Here and henceforth, an element g of the stabilizer

group is identified to the binary vector indicating the qubits acted on non-trivially by g.
For a code of length n qubits, HX and HZ have n columns, while the number of encoded
logical qubits is given by k = n − rank(HX) − rank(HZ) = dim

(
kerHX/ imHT

Z

)
=

dim
(
kerHZ/ imHT

X

)
.

The condition HXH
T
Z = 0 implies that any Z-check is a codeword of CX = kerHX ,

and any X-check is a codeword of CZ = kerHZ . Hence, CX and CZ have poor classical
minimum distance, equal to O(1) as a function of n. However, since the elements of
the stabilizer group act trivially on any code state, the quantum minimum distance is
defined as d = min(dX , dZ), where dX = min

{
|v|, v ∈ kerHX \ imHT

Z

}
, and similarly,

dZ = min
{
|v|, v ∈ kerHZ \ imHT

X

}
, and |v| denotes the weight (number of 1’s) of the

binary vector v. As a function of n, the quantum minimum distance of qLDPC codes
varies from d = O(

√
n) for the hypergraph-product (HP) construction proposed in [17] to

d = O(n) for the lifted-product (LP) construction over non-abelian groups in [5]. Other
constructions of qLDPC codes, with minimum distance in between the above bounds, have
also been recently proposed in the literature [18–20].

2By a slight abuse of language, we shall sometimes say that the X-check is inactivated (instead of the
qubits in its support).
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2.2 Pauli Errors and Decoding

We assume that encoded qubits are affected by Pauli errors, where each qubit is indepen-
dently acted on by a Pauli I,X, Y, Z error, with probability pI , pX , pY , pZ . The total error
probability is denoted by p = 1 − pI = pX + pY + pZ . Since Y = iXZ, we only need to
correct for X and Z errors. For simplicity, we shall assume that X and Z errors are decoded
independently3, in which case the X-error channel model is a classical binary symmetric
channel (BSC), with error probability εX = pX + pY , and the Z-error channel model is a
BSC, with error probability εZ = pZ + pY .

In the sequel, we shall only discuss the case of X-errors, since a similar discussion applies
to Z-errors. We also identify an X-error to a binary vector eX of length n, where 1 entries
indicate the qubits on which an X error occurred. The error eX produces a syndrome
sX := HZeX , which can be observed by measuring the Z-checks of the qLDPC code (here,
we shall assume that the syndrome measurement is fault free).

The task of the decoder is to determine an estimate êX of the error eX , given the
observed syndrome sX . Note that the same syndrome would have been produced by any
other error e′X , such that e′X + eX ∈ kerHZ . Decoding is successful if êX + eX ∈ imHT

X ,
that is, the estimate and the true error differ by an element of the X-type stabilizer group.
Indeed, such a mismatch is not problematic, since elements of imHT

X acts trivially on any
code state. Elements of imHT

X are sometimes referred to as degenerate errors [7], since
they need not (and actually cannot) be corrected. By definition, a qLDPC code has many
low-weight degenerate errors (any X-check is a degenerate error).

2.3 MP Decoders

We adopt the terminology related to the bipartite (Tanner) graph representation of classical
LDPC codes [21]. The bipartite graph has vertices referred to as bit-nodes and check-nodes,
and its adjacency matrix is given by the parity check matrix of the code. An MP decoder
is an iterative decoding algorithm exchanging extrinsic messages along the edges of the
bipartite graph, which can be described as follows [22]:
(i) The input consists of the observed syndrome sX , as well as an a priori soft information
for each bit-node, usually given in the form of an log-likelihood ratio (LLR) value. Assuming
the BSC model from the previous section, the a priori LLR is the same for all bit-nodes

3Alternatively, one may decode first one type of error, say the X-error, then decode the Z-error con-
ditional on the decoded X-error, in which case the Z-error channel model becomes a mixture of two
BSCs.
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i = 1, . . . , n, and given by

γi := log
Pr(EX(i) = 0)

Pr(EX(i) = 1)
= log

1− εX
εX

, (1)

where the unknown error eX is seen as a realization of a random variable, denoted here and
in the sequel by EX .
(ii) Extrinsic messages are exchanged between bit-nodes and check-nodes, in several rounds,
also referred to as decoding iterations. At each iteration, an updated soft information
(posterior LLR4) value γ̃i is computed for each each bit-node i = 1, . . . , n, based on which
an error estimate is made:

êX(i) = 0, if γ̃i ≥ 0, and êX(i) = 1, otherwise (2)

(iii) Decoder stops if either HZ êX = sX , or a maximum (predetermined) number of de-
coding iterations is reached. It outputs the current error estimate êX (hard decision), and
possibly the corresponding soft information values (soft decision).

One may distinguish different MP decoding algorithms, the most well-known being
the Sum-Product (SP, also known as Belief-Propagation5, BP [23]) and the Min-Sum
(MS) algorithms. On cycle free graphs, SP implements maximum a posteriori (MAP)
decoding, while MS implements maximum-likelihood (ML) decoding. For graphs with
cycles, computation trees provide a way to describe SP and MS decoders as an either MAP
or ML decision process on a cycle-free graph [24]. Compared to SP, MS may present several
practical advantages: it has a lower computational complexity (only requires additions and
comparisons), and under the BSC model assumption, it does not need an a priori knowledge
of the channel error probability εX . Hence, for the MS decoder, the a priori input LLRs can
be initialized to any constant value, γi = γ, ∀i = 1, . . . , n, without modifying the decoder
output. However, to avoid computation instability issues, γ = 1 should be used6.

MP decoders may use different scheduling strategies, determining the order in which
bit-node and check-node messages are updated. The conventional assumption is that at

4We use (updated) “soft information” rather than “posterior LLR”, since the later conveys a Bayesian
inference meaning, which is only exact for the Sum-Product decoding on acyclic graphs, as explained later
in the text.

5Many authors confuse BP with the general MP principle. We shall use SP terminology in this paper
to avoid any possible confusion.

6We warn the reader that computation instability may actually improve the MS decoding performance,
depending on the γ value, and this even for double-precision floating-point (64 bits) implementations. While
for classical LDPC codes this impact is usually negligible, for qLDPC codes we have observed significant
differences. We believe this is due to phenomena related to the code degeneracy. See also the random
perturbation technique in [7].
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each iteration, all bit-nodes and subsequently all check-nodes pass new messages to their
neighbors, which is known as parallel or flooding scheduling. A different approach, known as
serial scheduling, is to process check-nodes sequentially7, with an immediate propagation of
their messages to the neighbor bit-nodes. The main advantage of the serial schedule is that
it propagates information faster and converges in about half the number of iterations com-
pared to the flooding schedule [25]. The serial scheduling can be also partly parallelized, by
processing sequentially layers (groups) of check-nodes, while processing in parallel check-
nodes within the same layer. This scheduling technique is known as layered scheduling.
In case that any bit-node is connected at most once to each check-node layer, serial and
layered scheduling exhibit strictly the same decoding performance and convergence speed.
The choice of a scheduling strategy is usually related to a specific decoder architecture im-
plemented in hardware. Partly parallel architecture implementing a layered scheduling are
widely used in practical implementations [26], but ultra-high throughput hardware imple-
mentations are based on unrolled fully-parallel architectures [27], implementing a flooding
scheduling.

2.4 OSD Post-Processing

The MP-OSD decoder proposed in [12] combines MP decoding with an OSD post-processing
step, in case the former fails to find a hard decision estimate êX satisfying the given syn-
drome sX . The post-processing step utilizes the soft decision outputted by the MP decoder.
In its most basic form (OSD-0), bit-nodes are sorted according to their reliability (that is,
absolute value of the corresponding soft decision), and a number of rankHZ least reliable
bit-nodes are determined, such that the corresponding columns of HZ are linearly inde-
pendent. The hard decision estimates of these bit-nodes are discarded, and they are then
re-estimated by solving the linear system determined by the corresponding columns (for the
remaining, more reliable bit-nodes, the hard decision estimates outputted by the MP de-
coder are kept). Hence, OSD always outputs a valid solution êX of the system HZeX = sX .
In [12], MP-OSD has been shown to produce effective results, when the MP decoder is a
normalized version of the MS (NMS) using a serial scheduling.

7We discuss here horizontal scheduling strategies, applying to check-nodes. Similar vertical scheduling
strategies apply to bit-nodes.
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Figure 1: Probability distribution of rank(rX) values.

3 Stabilizer Inactivation Post-Processing

In the following, we will only discuss the correction of X errors, but similar arguments apply
to Z-errors.

3.1 Stabilizer-Splitting Errors

Let eX be an X-error, and sX = HZeX the corresponding syndrome. We discuss in this
section the case where eX divides the support of some X-check rX in two equal parts, that
is, X errors occur on exactly half of the qubits checked by rX . For e′X := eX +rX , we have
HZe

′
X = sX and |e′X | = |eX |. Hence, e′X and eX are errors of the same weight, differing

on only |rZ | qubits, and which are valid (and equivalent) corrections of the syndrome. We
refer to such an error as a stabilizer-splitting error (see also the example in [7, Fig. 2] and
the symmetric stabilizer trapping sets defined in [28] for a more in-depth comprehension
of the phenomenon). If an MP decoder is run with input syndrome sX , it is drawn by e′X
and eX in two different directions, with similar intensity. This may cause the MP decoder
getting lost, while trying to find its way to a valid correction of the syndrome.

Let (γ̃i)i be the output soft information of the MP decoder, and êX be the corresponding
hard decision estimate (Eq. (2)). We define

δ(eX , e
′
X) :=

∑
i∈supp(êX+eX)

|γ̃i| −
∑

i∈supp(êX+e′X)

|γ̃i|. (3)

Since flipping a hard-decision estimate value requires the corresponding soft information

7



to change its sign, the two sums in Eq. (3) indicate the necessary change in the soft
information, so that the corresponding hard decision estimate moves from êX to either eX
(left sum), or e′X (right sum). In case the MP decoder fails, that is HZ êX 6= sX , we expect
that this is due to the decoder being attracted to a similar degree towards both eX and e′X
(“lost in-between” behavior). Put differently, we expect the δ(eX , e′X) value to be small.

Using |γ̃i| = (−1)êX(i)γ̃i and e′X = eX+rX , one can easily verify that δ(eX , e′X) rewrites
as δ(eX , e′X) =

∑
i∈supp(eX) γ̃i −

∑
i∈supp(e′X) γ̃i =

∑
i∈supp(rX)(−1)e

′
X(i)γ̃i, and therefore,

|δ(eX , e′X)| ≤ γ̃(rX) :=
∑

i∈supp(rX)

|γ̃i| (4)

We refer to γ̃(rX) as the reliability of the X-check rX . Hence, we may use X-check
reliability values to determine which X-checks are possibly responsible of a “lost in-between”
behavior. To illustrate this, let us define

rank(rX) := |{r′X | γ̃(r′X) < γ̃(rX)}|. (5)

We generate random errors eX , where each error divides the support of a random X-check
rX in two equal parts, and compute the rank(rX) values. Fig. 1 shows the estimated
probability distribution (histogram format) of rank(rX) values. We consider the lifted
product code B1[882, 24] from [12], decoded by the SP algorithm, with both flooded and
serial schedulings (we use 50 decoding iterations for serial scheduling, and 100 decoding
iterations for flooded scheduling). We assume a depolarizing channel with pX = pY =

pZ = p/3, where p = 0.1 or p = 0.06, giving εX = 0.0667 or εX = 0.04 (Section 2.2).
As expected, it can be observed that the rank(rX) value is small with high probability (the
width of histogram bins is equal to 5).

3.2 SI Post-Processing

We consider the situation where the MP decoder fails to find a hard decision estimate êX
satisfying the given syndrome sX . The idea of the SI post-processing (Algorithm 1) is to
inactivate the qubits in the support of the less reliable X-checks. By a slight abuse of
language we shall say that we inactivate the X-check itself (rather than its support). We
start by inactivating the least reliable X-check, and let this be rX . This means that we
discard the qubits checked by rX from the MP decoding process. Precisely, let

HZ =

[
HZ|rX A

0 HZ|rX

]
, (6)
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where HZ|rX is the submatrix determined by the columns corresponding to the qubits in
supp(rX), and the rows having at least one non-zero entry in any one of these columns8

(for the sake of illustration, in (6) we assumed that HZ|rX is a leading submatrix). Then we
rerun MP decoding on the matrix HZ|rX , with input syndrome sX|rX = [0 HZ|rX ]eX (that
is, syndrome sX is restricted to the rows of the HZ|rX submatrix only). If MP decoding
succeeds, it provides an estimate êX|rX of the error outside supp(rX). To estimate the
error on supp(rX), we solve the linear system HZ|rXeX|rX = sX|rX +AêX|rX . If the system
has a solution9, say êX|rX , the decoding process stops and outputs êX := (êX|rX , êX|rX ).
In case that either the system has no solution, or the MP decoding fails, SI post-processing
continues by inactivating the next least reliable X-check, until a maximum (fixed) number
of X-check inactivations, denoted by λmax, is reached.

Two observations are in place here: (i) X-check reliability values are computed only
once, after the initial MP decoding attempt (run on the whole HZ matrix). (ii) X-checks
are sorted in increasing order of reliability, and inactivated, one at a time, in this order. In
our experiments, run on qLDPC codes of length less than 2000 qubits, inactivating several
X-checks at the same time did not improve the decoding performance.

Finally, as mentioned above, the following two situations may occur, causing SI post-
processing to continue: (i) the MP decoder does not converge to a solution on the reduced
matrix HZ|rX , or (ii) it does converge, but the system on the remaining qubits cannot be
solved. The first kind of error typically happens when the inactivated X-check was not
one that implied the failure in the first place (initial MP decoding attempt on the full HZ

matrix). The second kind of error happens when the MP decoding converged to a wrong
solution on the reduced matrix HZ|rX . This may happen when some of the active qubits
become “dead ends” (degree 1 is the reduced matrix HZ|rX ), thus “absorbing” the error
around the Z-checks they are connected to.

3.3 Complexity

The SI[λmax] post-processing step has worst-case complexity O(λmaxn log n), where λmax

is the maximum number of inactivated X-checks and O(n log n) is the complexity of the
MP decoding (assuming the number of decoding iterations increases as log n [22]). Solving
the linear system in the SI post-processing step has constant complexity, since the size of
the system does not exceed the maximum X-check weight. In case λmax is not a constant,

8Note that rX ∈ kerHZ , hence any row of HZ has an even number (≥ 0) of non-zero entries in the
columns corresponding to supp(rX).

9Note that the system will have at least two solutions. We pick any of them.
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Algorithm 1: X-error SI[λmax] post-processing

êX ← MP(HZ , sX)

if HZ êX = sX then
Return êX

else
Compute X-check reliability values

γ̃(rX) =
∑

i∈supp(rX) |γ̃i| , ∀rX
Sort X-checks in increasing order of reliability

for 1 ≤ λ ≤ λmax do
rX ← next least reliable X-check
êX|rX ← MP

(
HZ|rX , sX|rX

)
if HZ|rXX êX|rX 6= sX|rX then

Continue

else
Solve HZ|rXeX|rX = sX|rX + AêX|rX
if the system has a solution êX|rX then

Return êX := (êX|rX , êX|rX )

else
Continue

Return decoding failure

but scales linearly with n, the worst-case complexity becomes O(n2 log n). In any case, the
average-case complexity is O(λaven log n), where λave is the average number of inactivated
X-checks during SI post-processing.

The OSD-0 post-processing needs to solve a linear system, whose size scales linearly
with n. Thus, its complexity is at most O(n3). The best algorithm to solve a general
system of linear equations has complexity O(n2.38) [29], although it is of little practical use
(except for extremely large systems).
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4 Numerical Results

4.1 Logical Error Rate Performance

In Fig. 2, we provide numerical results for the codes B1[881, 24,≤ 24] and C2[1922, 50, 16]
from [12]. The first is a lifted product code, and the second a hypergraph-product code.
We note that for both B1 and C2 codes, the constituent classical LDPC codes have column
weight at least 3, and no cycles of length 4. These characteristics are well suited to the
proposed SI post-processing method, since except for the resolution of a small, constant
size, linear system, it entirely relies on MP decoding.

We consider the depolarizing channel, with physical error rate p (shown on the abscissa),
and pX = py = pZ = p/3. Fig. 2 shows the logical-X error rate, for three different MP
algorithms, and two different schedulings, using either SI or OSD-0 post-processing. It can
be observed that SI[λmax = 10] significantly outperforms the OSD-0 post-processing10 in
case of either MS or SP decoding, for both scheduling strategies. For NMS decoding11,
the performance of SI[λmax = 10] is only slightly better than that of OSD-0, but comes
however at the cost of a significantly reduced complexity.

The SI[all] curves in Fig. 2 correspond to the case when the λmax value is set to the
total number of X-checks (number of rows of HX), thus providing the best achievable
performance by the proposed SI post-processing. (We note that for the code B1, the SI[all]
performance is slightly better using serial scheduling than using flooding scheduling, while
the opposite occurs for the code C2 – not shown in the figure). Finally, in order to evaluate
the average-case complexity, we also show in Fig. 2 the λave values for the SI[all] post-
processing, in the lower part of the waterfall region (logical error rates less than 10−3). In
order to avoid a bias due to MP decoding performance, the average is computed only over
the cases when the SI post-processing is used (MP decoding failed), thus 1 ≤ λave ≤ λmax.
It can be seen that ≤ λave approaches 1 for low error probabilities, giving an average-case
complexity slightly higher than the MP decoding complexity.

10We note that we perform OSD-0 post-processing on binary MP decoding (of X-errors), which explains
the slight shift of the curves with respect to [12], where non-binary MP decoding (of both X and Z errors)
is performed.

11For the NMS decoding, the normalization factor is chosen so as to ensure the best performance of
the corresponding post-processing step. NMS-OSD exhibits very good performance using normalization
factor 0.625 (the same normalisation factor was used in [12], for non-binary NMS decoding). However, its
performance would have been severely degraded, if the normalization factor had been set to 0.9. Conversely,
NMS-SI performs well when the normalization factor is set to 0.9, but rather poor when it is set to 0.625.
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Figure 2: Comparison of SI and OSD on B1[882, 24,≤ 24] code (left) and C2[1922, 50, 16]
code (right) with MS (top), NMS (middle) and SP (bottom) decoders and flooded (‘F’,
circle markers) and serial (‘S’, square markers) scheduling. OSD post-processing is of order
0. For NMS, we use normalization factor 0.625 for OSD (following [12]) and 0.9 for SI. All
MP decoders use 50 decoding iterations for serial scheduling, and 100 decoding iterations
for flooded scheduling.
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4.2 Threshold

In Fig. 3, we provide numerical evidence that SI can achieve a threshold for a family
of generalized bicycle codes12 proposed in [12, Appendix C, Fig. 9]. Generalized bicycle
codes (first studied in [30]) are constructed by using two commuting square matrices A
and B, with HX = [A,B], HZ = [BT , AT ]. For the family of codes considered here,
A and B are circulant matrices, thus they commute, and code parameters are given by
[[n, k]] = [[2s+1 − 2, 2s]], for s = 6, 7, 8, 9, 12.

We estimate the threshold under MP decoding, with both SI and OSD post-processing,
for the depolarizing channel (same channel model as before). For a fair comparison between
SI and OSD, we use NMS with appropriate normalization factors. The scheduling chosen
is serial, as it allows faster convergence and better results in most cases.

For the SI post-processing, we choose λmax = 10 for the code of length 1022 qubits,
representing 2% of the number of X-checks, denoted by mX . Note that mX = (n− k)/2.
Then, we keep the same ratio between the maximum number of inactivated X-checks, and
the total number of X-checks, that is, we consider λmax = 0.02mX , for the five simulated
codes13. Since mX ≈ n/2, the worst case complexity of the MP-SI decoder scales as
0.01n2 log(n). However, we note that the average case complexity approaches O(n log n)
in the low error rate region (that is, λave approaches 1 for low error probabilities, similar to
the observation made in Section 4.1).

The threshold given by SI is around 13%, while the one of OSD-0 is only 12%. Apart
from the numerical results, the computational advantage of SI becomes clear for codes
above a thousand qubits. The observed threshold phenomenon shows that the SI post-
processing scales well with longer codes, in spite of the fact that it inactivates only one
check at a time, and the inactivation is tested for quite a small (2%) fraction of checks.

5 Conclusion and Perspectives

The degeneracy of qLPDC codes is the main reason for the inefficiency of MP decoders.
To cope with this phenomenon, the SI post-processing method inactivates a set of qubits,
supporting a check in the dual code. Except for the resolution of a small, constant size, linear
system, the proposed MP-SI approach entirely relies on MP decoding. Its low complexity
and compatibility with various MP decoding algorithms and scheduling strategies make it an

12These codes can be found in the alist format at https://gricad-gitlab.univ-grenoble-alpes.
fr/ducrestj/qldpc-codes

13Precisely, λmax = 2, 3, 5, 10, 82, for code length n = 126, 254, 510, 1022, 8190, respectively.

13

https://gricad-gitlab.univ-grenoble-alpes.fr/ducrestj/qldpc-codes
https://gricad-gitlab.univ-grenoble-alpes.fr/ducrestj/qldpc-codes
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Figure 3: Threshold for SI[λmax = 0.02mX ] and OSD-0 on a family of generalized bicycle
codes with NMS and serial scheduling. For NMS, we use normalization factor 0.625 for
OSD (following [12]) and 0.9 for SI. All MP decoders use serial scheduling with at most
100 decoding iterations.

attractive and practical decoding solution. Our numerical simulations showed that MP-SI
provides effective results, especially when the constituent classical LDPC codes have column
weight at least 3, and no cycles of length 4. We have also shown that SI post-processing
can achieve a threshold on a family of generalized bicycle codes, outperforming the one
achieved by OSD.

Finally, we note that in this work we considered binary MP decoding algorithms, whereX
and Z errors are decoded separately. While correlation between X and Z errors can still be
taken into account by binary decoding (e.g., by initializing the Z-error decoding conditional
on the output of the X-error decoding), a more effective approach to deal with correlated
errors consists of the use non-binary decoding. Since the state of the art for correlated
Pauli errors remains the non-binary NMS decoder with OSD post-processing [12], it would
be interesting to generalize the proposed SI post-processing to the non-binary case.
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