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Lossy Computing with Side Information via

Multi-Hypergraphs

Deheng Yuan, Tao Guo, Bo Bai, and Wei Han

Abstract—We consider a problem of coding for computing,
where the decoder wishes to estimate a function of its local
message and the source message at the encoder within a given
distortion. We show that the rate-distortion function can be
characterized through a characteristic multi-hypergraph, which
simplifies the evaluation of the rate-distortion function.

Index Terms—Lossy coding for computing, rate distortion,
multi-hypergraph.

I. INTRODUCTION

Consider the lossy computing problem with side informa-

tion. Let f be a function of two sources X and Y , which are

observed by the encoder and the decoder respectively. Upon

receiving a message from the encoder, the decoder makes an

estimate of the function f(X,Y ). Our goal is to determine the

minimum number of transmitted bits so that the estimation is

within a given distortion.

Wyner and Ziv studied the case of f(x, y) = x in [1], which

is known as the rate-distortion problem with side information.

The rate-distortion function for a general f was given by

Yamamoto [2] in terms of an auxiliary random variable, for

which however the intuitive meaning is not clear.

The notions of graph entropy and characteristic graph were

introduced by Körner [3] and Witsenhausen [4] for zero-error

coding problems. Orlitsky and Roche [5] extended the tools

and obtained a graph-based characterization of the minimum

rate for lossless computing with side information. The aux-

iliary random variable involved therein is clearly represented

by the independent set of a characteristic graph.

To better understand the lossy computing problem, a natural

generalization of the graph entropy approach in [5] was given

in [6] and [7] by defining the D-characteristic graph, where

an efficient but suboptimal coding scheme was obtained. In [8]

and [9], Basu, Seo and Varshney generalized the independent

sets to hyperedges and defined an ǫ-characteristic hypergraph,

where a hyperedge exists only when the corresponding source

values induce a distortion on f less than or equal to ǫ. The

rate-distortion function was characterized for a limited class

of distortion measure whose average represents the probability

that the distance between f and the reconstruction is larger

than a given distortion level. Their generalization, however,

cannot cope with general distortion measures.

In the current paper, we further generalize the characteristic

hypergraph to characteristic multi-hypergraph by allowing a

larger set of hyperedges that is independent of the distortion.

The rate-distortion function can be characterized for any

general distortion measures, wherein the auxiliary random

variable can be constructed from the hyperedges in the char-

acteristic multi-hypergraph. The proposed multi-hypergraph

also provide a graph-based optimal coding scheme. Our result

naturally subsumes that in [8] as a special case by specifying

a distortion measure.

In Section II we formulate the problem and describe some

preliminaries. The main results are given in Section III. In

Section III-D we show the advantage of the probabilistic

multi-hypergraph in evaluating the rate-distortion function and

designing optimal coding schemes. Essential proofs can be

found in Section IV and we conclude the paper in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Denote a discrete random variable by a capital letter and its

finite alphabet by the corresponding calligraphic letter, e.g.,

X ∈ X and Ẑ ∈ Ẑ . We use the superscript n to denote an

n-sequence, e.g., Xn = (Xi)
n
i=1. Let (Xi, Yi) ∼ p(x, y), i ∈

{1, 2, · · · , n} be i.i.d. random variables distributed over X ×
Y . Without loss of generality, assume p(x) > 0, ∀x ∈ X
throughout this paper.

Consider the lossy computing problem with decoder side

information depicted in Fig. 1. The source messages Xn and

Y n are observed by the encoder and the decoder, respectively.

Let f : X × Y → Z be the function to be computed and

d : Z×Ẑ → [0,∞) be a distortion measure. Denote f(Xi, Yi)
by Zi for 1 ≤ i ≤ n. Without ambiguity, we abuse the notation

of f and g to denote their vector extensions, and define

f(xn, yn) =
(

f(xi, yi)
)n

i=1
,

d(zn, ẑn) =
1

n

n
∑

i=1

d(zi, ẑi).

An (n, 2nR) code is defined by an encoding function

ge : X
n → {1, 2, ..., 2nR}

and a decoding function

gd : {1, 2, ..., 2nR} × Yn → Ẑn.

Then the decoded messages are Ẑn = gd(ge(X
n), Y n).

A rate-distortion pair (R,D) is said achievable if there

exists an (n, 2nR) code such that

lim
n→∞

E[d(Zn, Ẑn)] ≤ D.

We define the rate-distortion function R(D) to be the infimum

of all the achievable rates such that (R,D) is achievable.
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Fig. 1: Lossy computing with side information

B. Existing Results

Yamamoto obtained the rate-distortion function in [2]. We

characterize the result in the following lemma.

Lemma 1. The rate-distortion function is given by

R(D) = min
U−X−Y

∃g:E[d(f(X,Y ),g(U,Y ))]≤D

I(X ;U |Y ). (1)

Note that the minimum is taken over all random variables U

such that U −X − Y forms a Markov chain, and there exists

a decoding function g : U × Y → Ẑ such that

E[d(f(X,Y ), g(U, Y ))] ≤ D.

Moreover, the size of the alphabet can be bounded by

|U| ≤ |X |+ 1. (2)

It was further noted in [2] that the above rate-distortion

function is decreasing and convex in D for D ∈ [0,∞).

C. Characteristic Multi-Hypergraph

A multi-hypergraph [10] consists of a pair Gm = (V,E),
where V is a finite vertex set and E is a family of subsets of V

that allows multi-hyperedge, i.e., the same subset of V may

appear more than once in E. If there is no multi-hyperedge,

i.e., any subset of V can appear at most once in E, then we

call Gm a hypergraph.1 In other words, the edge set E of a

hypergraph is a subset of the power set of V .

Without loss of generality, we consider only the multi-

hypergraphs satisfying

V 6= ∅, E 6= ∅, and w 6= ∅ for all w ∈ E.

For simplicity, let P(V ) = {w|w ⊆ V,w 6= ∅}.

For any hypergraph G = (V,E) and a finite set J , we can

regard E × J as the set of hyperedges of a multi-hypergraph

Gm = (V,E×J) by duplicating |J | times of each hyperedge

w ∈ E as wj1 , wj2 , · · · , wj|J|
.

Let ẑy ∈ Ẑ denote the realization of ẐY corresponding to

the realization of Y = y ∈ Y . Then

ẑY , (ẑy1
, ẑy2

, · · · , ẑy
|Y|

) (3)

can be viewed as a mapping from Y to Ẑ , and ẐY is the

corresponding random variable. We define

ẐY = {ẑY : ẑyi
∈ Ẑ for i = 1, 2, · · · , |Y|}

to be the collection of all such mappings, or equivalently, the

collection of all tuples with each component ẑyi
taking values

from Ẑ .

1A hypergraph is always a multi-hypergraph. Note that the multi-hypergraph
defined here is simply called a hypergraph in some literature, e.g., [10].

In light of a hypergraph G = (X ,P(X )), we can define the

characteristic multi-hypergraph2 as follows.

Definition 1. The characteristic multi-hypergraph for the

lossy computing problem is defined by

Gm,χ = (X ,P(X )× ẐY).

For a random variable (hyperedge) W ∈ P(X ), we say

X ∈ W if P[X ∈ W ] = 1. In other words, p(w, x) > 0 only

if x ∈ w.

Note that for zero distortion case, Gm,χ reduces to a

characteristic hypergraph G∗ = (X ,Γd), where the hyperedge

set Γd will be defined in Section III-C.

III. MAIN RESULTS

A. General Results

We first establish the main result that fully solves the lossy

computing problem with general distortion measures. Some

interesting reductions will be discussed subsequently. The

proofs of our results can be found in Section IV.

Theorem 1. For any D ≥ 0, the rate-distortion function R(D)
is given by

R(D) = min I(X ; W̃ |Y ), (4)

where the minimum is taken over all the random variables

W̃ = (W, ẐY) satisfying W̃ −X − Y , X ∈ W ∈ P(X ), and

E[d(f(X,Y ), ẐY )] ≤ D.

Remark 1. From the proof in Section IV (c.f. (9)), we see that

there always exists some W̃ which achieves the minimum in

Theorem 1 and has a sparse distribution (a small support).

More precisely, there are at most |X |+1 of w̃ ∈ W̃ satisfying

p(w̃) > 0, which shows that the support of W̃ is relatively

small despite the large cardinality of W̃ . The sparsity is

inherited by the auxiliary random variables in Theorems 2

and 3, which can be seen from their proofs.

Remark 2. Note that W ∈ P(X ) is a hyperedge in the

hypergraph G = (X ,P(X )) and W̃ ∈ W̃ = P(X ) × ẐY

is a hyperedge in the characteristic multi-hypergraph Gm,χ.

In addition to solving the rate-distortion function, the char-

acteristic multi-hypergraph also induces a coding protocol. We

explain the brief ideas as follows, and the details are illustrated

through an example in Section III-D. Each hyperedge w̃ is

composed of two parts, w ⊆ X and the candidate recoveries

ẑY . While observing x ∈ X , the encoder encodes it into

w̃ = (w, ẑY) such that x ∈ w, with probability p(w̃|x). Upon

receiving w̃ and observing y, the decoder generates an estimate

ẑy by looking up the candidate recovery part of w̃ to find the

component with index y.

2Note that there is a simple transition from multi-hypergraphs to bipartite
graphs, so our results can also be interpreted in terms of bipartite graphs. We
omit the details here and will discuss in future work.



B. Direct Reduction

We see from Remark 1 that the support of W̃ can be

relatively small. Now we simplify Theorem 1 by specifying

a more concise auxiliary random variable in the following

theorem.

Theorem 2. For any D ≥ 0, the rate-distortion function R(D)
can be characterized by

R(D) = min I(X ; W̃ |Y ), (5)

where the minimum is taken over all random variables W̃ =
ẐY satisfying W̃ −X − Y and E[d(f(X,Y ), ẐY )] ≤ D.

Remark 3. Consider the special case that Y is a constant

and f(x) = x, then Theorem 2 reduces to Shannon’s rate-

distortion theorem.

Remark 4. Theorem 2 implies that the candidate recovery

part ẐY contains enough information and suffices to recover

the subset part W of the hyperedge in the multi-hypergraph,

which is also shown in the proof of Theorem 2.

With the result in Theorem 2, one may argue the sig-

nificance of multi-hypergraphs and the characterization in

Theorem 1. However, we will see in the following section that

the subset part W in the hyperedge plays an important role

in the special case of D = 0, where the candidate recovery

part ẐY can even be deleted. Moreover, the explicit meaning

of W in the hyperedge can help to solve the optimization

problem, which will be demonstrated through an example in

Section III-D.

C. Zero Distortion Case

Consider the case of D = 0, and assume that for each

z ∈ Z , there exists some ẑ ∈ Ẑ such that d(z, ẑ) = 0. Then

the support of the auxiliary random variable W̃ = (W, ẐY)
can be determined by only local properties of the hyperedges,

which are described by the following definition.

Definition 2. For each w ⊆ X and y ∈ Y , let wy = {f(x, y) :
x ∈ w and p(x, y) > 0}. Then Γd is the collection of all w

satisfying the following conditions:

(i) w 6= ∅, in other words, w ∈ P(X ).
(ii) For each y ∈ Y , there exists some ẑ ∈ Ẑ , such that

wy ⊆ B(ẑ, 0), where B(ẑ, δ) , {z ∈ Z : d(z, ẑ) ≤ δ}
for δ ≥ 0.

We see from above that each x ∈ X must be contained in

some S ∈ Γd since x ∈ {x} ∈ Γd. With the definition of Γd,

Theorem 1 reduces as follows, where the characteristic multi-

hypergraph Gm,χ reduces to a hypergraph G∗ = (X ,Γd) with

much less hyperedges.

Theorem 3. For D = 0, the rate-distortion function is

R(0) = min I(X ;W |Y ), (6)

where the minimum is taken over all random variables W

satisfying W −X − Y and X ∈ W ∈ Γd.

Remark 5. Let dǫ(z, ẑ) = 1{d(z, ẑ) > ǫ} for any ǫ ≥ 0,

where 1 denotes the indicator function. Then the main result

of [8, Theorem 3] can be obtained by applying Theorem 3 to

the distortion measure dǫ.

Remark 6. Assume Z = Ẑ and d satisfies

d(z, ẑ) = 0 ⇐⇒ z = ẑ. (7)

Then the hyperedges in Γd become independent sets of the

characteristic graph in [5] and Theorem 3 reduces to the

significant results of Theorem 2 therein.

Theorem 3 is a reduction of Theorem 1, in the following,

we discuss the main differences between them, which may

help explain why the zero distortion case in Theorem 3

and [5][8][9] is much simpler and give further insights on

why multi-hypergraphs are essential to fully solve the lossy

computing problem.

Firstly, the feasible region of hyperedges in Theorem 3 is

limited to Γd and is much smaller than that in Theorem 1,

which is the whole hyperedge set. The intuition behind is

the “zero effect” for D = 0, i.e., for each hyperedge w̃

with p(w̃) > 0, the distortion induced by w̃ must be zero.

However, for D > 0, even hyperedges inducing a distortion

larger than D are still possible, since the average distortion is

of final concern.

Secondly, in the general problem considered in Theorem 1,

fix a y ∈ Y , for any hyperedge w ⊆ X , the induced

reconstruction is required to take different values in Ẑ in

order to achieve a smaller average distortion. To illustrate

the correspondence between the hyperedges and the recon-

struction, we need a hyperedge in the original hypergraph

(X ,P(X )) to repeat multiple times which are distinguished by

their different candidate recovery in the characteristic multi-

hypergraph Gm,χ, and the candidate recovery ẐY for each

w ∈ P(X ) can only be determined in the minimization

process. However, in Theorem 3, the candidate recovery for

each hyperedge w ∈ Γd is simply chosen to be the ẑ that

induces zero distortion.

D. Example

We use an example to illustrate how the optimization in

the rate-distortion function can be simplified by the explicit

meaning of hyperedges in the multi-hypergraph.

Example 1 (Online card game). Alice and Bob each randomly

select one out of three cards labeled 1, 2, and 3 without

replacement. Alice agrees to help Bob determine who selected

the card with a larger label.

Denote the label of Alice’s card by X , and Bob’s by Y .

Then (X,Y ) ∼ p(x, y) with p(i, j) = 1
6 (1−δi,j), i, j = 1, 2, 3,

and f(x, y) = 1{x > y}, where δi,j = 1 if i = j and 0 oth-

erwise. Let d be the Hamming distortion on Z = Ẑ = {0, 1}.

Then we compute the rate-distortion function as follows.

Assume 0 ≤ D < 1
6 , since it is easily seen that R(D) = 0

for D ≥ 1
6 . By the decreasing and convex properties of R(D)

for D ≥ 0, we see R(D) is strictly decreasing in 0 ≤ D ≤ 1
6 .
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Fig. 2: Coding scheme induced by multi-hypergraph

In light of Theorem 2, we have

R(D) = min
W̃−X−Y,W=ẐY ,E[d(f(X,Y ),ẐY )]≤D

I(X ; W̃ |Y ).

Consider the optimal W̃ that attains the rate-distortion

function. Let w(w̃) = {x ∈ X : p(w̃, x) > 0}. Then for

each w̃ such that p(w̃) > 0, (w(w̃), w̃) is a hyperedge in

the characteristic multi-hypergraph Gm,χ. For each y with

p(w̃, y) > 0, the recovery ẑy must be optimal on w(w̃), oth-

erwise replacing it with the optimal one can induce a smaller

average distortion without increasing the mutual information,

which contradicts the strictly decreasing property of R(D).
Similarly, by contradiction, the equality holds in the distortion

constraint E[d(f(X,Y ), ẐY )] ≤ D.

If Y = 1, then X = 2 or 3, and thus X > Y . So Ẑ1 = 1,

and similarly, Ẑ3 = 0. For W̃ that achieves R(D), only w̃0 =
(1, 0, 0) and w̃1 = (1, 1, 0) can have positive probabilities.

For i = 1, 2, 3, let p(w̃0|x = i) = pi, then p(w̃1|x =
i) = 1 − pi and 0 ≤ pi ≤ 1. Since Y and W̃ are mutually

independent given X , we have

p(w̃0, y = j, x = i) =
1

6
pi(1− δij),

p(w̃0, y = j, x = i) =
1

6
(1− pi)(1− δij), i, j = 1, 2, 3.

The optimality condition on the subset {1, 2, 3} for Y = 2
gives p1 ≥ p3. Moreover, the distortion constraint with

equality implies 1
6 (1− p1 + p3) = D.

The conditional mutual information is calculated as follows:

I(X ; W̃ |Y ) = H(W̃ |Y )−H(W̃ |X)

=
1

3
(H(

p1 + p2

2
) +H(

p1 + p3

2
) +H(

p2 + p3

2
))

−
1

3
(H(p1) +H(p2) +H(p3))

=
1

3
[H(

1− 6D + p2 + p3

2
) +H(p3 +

1− 6D

2
)

+H(
p2 + p3

2
)−H(p3 + 1− 6D)−H(p2)−H(p3)]

By the convexity, the minimum rate is obtained by differen-

tiating the above function that R(D) = 2
3 (H(1+6D

4 )−H(3D))
for 0 ≤ D < 1

6 , and the minimum is achieved at p1 = 1−3D,

p2 = 1
2 , p3 = 3D. The single-letter coding scheme is

then obtained, and depicted in Fig. 2. Each single X is

encoded into one of the hyperedges ({1, 2, 3}, (1, 0, 0)) and

({1, 2, 3}, (1, 1, 0)) in the characteristic multi-hypergraph with

the transition probability p(w̃|x), and with Y the decoder can

recover the estimate Ẑ.

IV. PROOFS

Proof of Theorem 1: By Lemma 1, we only need to show

min
U−X−Y

∃g:E[d(f(X,Y ),g(U,Y ))]≤D

I(X ;U |Y ) = min I(X ; W̃ |Y ),

where the right hand side is defined in Theorem 1.

We first prove “≤”. Suppose that W̃ = (W, ẐY) satisfies

W̃ −X − Y , X ∈ W ∈ P(X ), and E[d(f(X,Y ), ẐY )] ≤ D.

Let U = W̃ , then U −X−Y holds. We only need to find the

function g, such that E[d(f(X,Y ), g(W̃ , Y )] ≤ D.

Define g(w̃, y) = ẑy for w̃ = (w, ẑY) ∈ P(X ) × ẐY and

y ∈ Y . By the assumption, we have

E[d(f(X,Y ), g(W̃ , Y ))] = E[d(f(X,Y ), ẐY )] ≤ D.

Then the U and g defined above satisfy the minimization

constraints, which proves “≤”.

Next we show the other direction of “≥”. Let U and g

satisfy U − X − Y , and E[d(f(X,Y ), g(U, Y ))] ≤ D. We

try to find a W̃ satisfying the constraints in Theorem 1, i.e.,

W̃ = (W, ẐY) such that W̃ −X − Y , X ∈ W ∈ P(X ), and

E[d(f(X,Y ), ẐY )] ≤ D. For any u ∈ U , define a set

w(u) = {x ∈ X : p(u, x) > 0},

and let w = w(u), which implies X ∈ W ∈ P(X ). Let

w̃ = (w, ẑY). For (u, x, y) such that p(u, x, y) > 0, define the

conditional probability by

p(w̃|u, x, y) = 1{w = w(u)} ·
∏

y′∈Y

1{ẑy′ = g(u, y′)}. (8)

We see that p(w̃|u, x, y) is a function of u and independent of

(x, y), which implies the Markov chain W̃ −U−X−Y . Then

we have I(U ;X |Y ) ≥ I(W̃ ;X |Y ) by the data processing

inequality. Now it remains to show the distortion constraint.

In light of (8), we have

E[d(f(X,Y ), ẐY )]

=
∑

u,x,y

p(u, x, y)
∑

w,ẑY

p(w, ẑY |u, x, y)d(f(x, y), ẑy)

=
∑

u,x,y

p(u, x, y)d(f(x, y), g(u, y))

= E[d(f(X,Y ), g(U, Y ))]

≤ D,

where the last inequality follows by assumptions on U and g.

This completes the proof.

In the second part of the proof, if we further suppose the

cardinality bound in (2), then we have by (8) that

W̃ = (w(U), (g(U, y′))y′∈Y)



is a function of U and each u satisfying p(u) > 0 is mapped

to at most one w̃ such that p(w̃) > 0. Then the support of W̃

satisfies

|{w̃|p(w̃) > 0}| ≤ |{u|p(u) > 0}| ≤ |U| ≤ |X |+ 1. (9)

Proof of Theorem 2: By Theorem 1, we need to show

min I(X ; W̃1|Y ) = min I(X ; W̃2|Y ),

where W̃1 and W̃2 are defined in Theorems 1 and 2, respec-

tively.

We first prove the ”≤” direction. Suppose W̃2 = ẐY

satisfies W̃2 −X − Y and E[d(f(X,Y ), ẐY )] ≤ D. For any

w̃2 = ẑY ∈ ẐY , let

w(w̃2) = {x ∈ X : p(w̃2, x) > 0}. (10)

We then define

W̃1 = (w(W̃2), W̃2). (11)

Since W̃1 is a function of W̃2, we have the Markov chain

W̃1 − W̃2 −X − Y which by the data processing inequality

implies that I(W̃1;X |Y ) ≤ I(W̃2;X |Y ). Moreover, we have

E[d(f(X,Y ), ẐY )] ≤ D by the assumption on W̃2.

For any w̃1 satisfying p(w̃1) > 0, there exists a w̃2 such that

w̃1 = (w(w̃2), w̃2) and p(w̃2) > 0. In addition, there exists

an x such that p(w̃2, x) > 0, from which we see that w(w̃2)
is not empty by its definition in (10). By setting w = w(W̃2),
we have W 6= ∅ with probability 1 and then W ∈ P(X ).

For (w, x) satisfying p(w, x) > 0, there exists a w̃1 =
(w, ẑY) such that p(w̃1, x) > 0, which implies the existence

of w̃2 such that p(w̃1, w̃2, x) > 0. By the definition of W̃1

in (11), we have w̃1 = (w(w̃2), w̃2). Then by p(w̃2, x) > 0,

and the definition in (10), we have x ∈ w(w̃2) = w, which

proves that X ∈ W and thus the “≤” direction.

Next we prove the ”≥” direction. Let W̃1 = (W, ẐY) such

that W̃1−X−Y , X ∈ W ∈ P(X ), and E[d(f(X,Y ), ẐY )] ≤
D. We directly define W̃2 = ẐY which is a function of W̃1

and satisfies W̃2−W̃1−X−Y , E[d(f(X,Y ), ẐY )] ≤ D. The

inequality I(W̃1;X |Y ) ≥ I(W̃2;X |Y ) is obtained by the data

processing inequality. This completes the proof.

Proof of Theorem 3: Applying Theorem 1 to the case

that D = 0, we only need to prove

min
W−X−Y
X∈W∈Γd

I(X ;W |Y ) = min I(X ; W̃ |Y ),

where the minimum on the right hand side is taken over all

random variables W̃ = (W ′, ẐY), satisfying W̃ − X − Y ,

X ∈ W ′ ∈ P(X ), and

d(f(x, y), ẑy)= 0 for w̃= (w′, ẑY) s.t. p(w̃, x, y) > 0. (12)

First we prove the ”≤” direction. For any W̃ = (W ′, ẐY)
satisfying the constraints of the right hand side, let

w(w̃) = {x ∈ X : p(w̃, x) > 0}. (13)

Then we define

w = w(W̃ ), (14)

which implies the Markov chain W − W̃ −X − Y and thus

we have I(W ;X |Y ) ≤ I(W̃ ;X |Y ) by the data processing

inequality.

For any w such that p(w) > 0, there exists a

w̃ = (w′, ẑY) (15)

such that p(w̃) > 0 and w = w(w̃) by (14). So for any y ∈ Y
and x ∈ w = w(w̃) such that p(x, y) > 0, we have p(w̃, x) >
0 by the definition in (13). Since W̃ − X − Y is a Markov

chain, we have

p(w̃, x, y) =
p(w̃, x)p(x, y)

p(x)
> 0,

which together with (12) and (15) implies d(f(x, y), ẑy) = 0.

So we have wy ⊆ B(ẑy, 0) (c.f. Definition 2) for any y ∈ Y .

Then by the assumption that p(w) > 0, we have W ∈ Γd.

Moreover, for any x such that p(w, x) > 0, there exists a w̃

such that p(w, w̃, x) > 0, which implies p(w̃, x) > 0. Then by

(13) and (14), we have X ∈ W . This proves the “≤” direction.

Next we show the ”≥” direction. Let W be a random

variable satisfying W − X − Y and X ∈ W ∈ Γd. For

any w ∈ Γd and y′ ∈ Y , there exists a ẑw,y′ such that

wy′ ⊆ B(ẑw,y′ , 0), i.e., d(f(x, y), ẑw,y′) = 0 for any x ∈ w

satisfying p(x, y′) > 0.

We then define the conditional probability of W̃ = (W ′, ẑY)
given (W,X, Y ) to be

p(w′, ẑY |w, x, y) = 1{w′ = w} ·
∏

y′∈Y

1{ẑy′ = ẑw,y′}.

Then the Markov chain W̃ − W − X − Y holds, which by

the data processing inequality implies that I(X ;W |Y ) ≥
I(X, W̃ |Y ). Furthermore, it is easy to see that X ∈ W ′ ∈
P(X ) from X ∈ W ∈ Γd. Finally, for w̃ = (w′, ẑY) such

that p(w̃, x, y′) > 0, we have x ∈ w′ ∈ Γd and ẑy′ = ẑw′,y′ ,

which imply that

d(f(x, y′), ẑy′) = d(f(x, y′), ẑw′,y′) = 0.

This proves the “≥” direction and thus the theorem.

V. CONCLUSION

In this paper, we proposed a characteristic multi-hypergraph

for the lossy computing problem with side information. The

graph-based rate-distortion function was characterized. Two

reductions of the multi-hypergraph for reducing the support of

the auxiliary random variable and for the zero distortion case

were studied. We also demonstrated through an example how

to design graph-based coding schemes and compute the rate-

distortion function in light of the multi-hypergraph. Possible

generalizations of the multi-hypergraph to other multi-terminal

computing problems are under investigation.
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