
Rate-Distance Trade-offs for List-Decodable Insertion-Deletion

Codes

Bernhard Haeupler∗

Carnegie Mellon University & ETH Zurich
haeupler@cs.cmu.edu

Amirbehshad Shahrasbi∗†

Microsoft
ashahrasbi@microsoft.com

Abstract

This paper presents general bounds on the highest achievable rate for list-decodable insertion-
deletion codes. In particular, we give novel outer and inner bounds for the highest achievable
communication rate of any insertion-deletion code that can be list-decoded from any γ fraction
of insertions and any δ fraction of deletions. Our bounds simultaneously generalize the known
bounds for the previously studied special cases of insertion-only, deletion-only, and zero-rate
and correct other bounds that had been reported for the general case.

∗Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-1910588, NSF CAREER
award CCF-1750808, a Sloan Research Fellowship, and funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (ERC grant agreement 949272).

†Supported in part by CRA Computing Innovation Postdoctoral Fellowship.

ar
X

iv
:2

00
9.

13
30

7v
2

 [
cs

.I
T

]
 9

 A
ug

 2
02

2

1 Introduction

Error-correcting codes are classic combinatorial objects that have been extensively studied since
late 40s with broad applications in a multitude of communication and storage applications. While
error-correcting codes are mostly studied within the setting that concerns symbol substitutions
and erasures (i.e., Hamming-type errors), there has been a recent rise of interest in codes that
correct from synchronization errors, such as insertions and deletions, from both theoretical [3–9,
11,14,16–20,22,24,28] and practical perspectives [1,2,10,12,31,33]. Such codes and their relevant
qualities are defined in the same fashion as error-correcting codes, except that the minimum distance
requirement is with respect to the pairwise edit distance between code words.

Compared to error-correcting codes for Hamming errors synchronization codes are far less un-
derstood and many fundamental questions about them remain to be explored. One such important
question is the rate-distance trade-off for (worst-cases) synchronization errors, i.e., determining
the largest rate that any synchronization code can achieve in the presence of a certain amount of
synchronization errors. We address this question in the list-decoding setting.

A code is list-decodable if there exists a decoder D which, for any corrupted codeword (within
the desired error bounds), outputs a small size list of codewords that is guaranteed to include the
uncorrupted codeword. More formally, an insertion-deletion code C ⊆ Σn (or insdel code, for short)
is (γ, δ, L)-list-decodable if there exists a function D : Σ∗ → 2C such that |D(w)| ≤ L for every
w ∈ Σ∗ and for every codeword x ∈ C and every word w obtained from x by at most γ ·n insertions
and at most δ · n deletions, it is the case that x ∈ D(w). The parameter L is called the list-size.
These definitions naturally extend to families of codes with increasing block lengths in the usual
way: A family of codes is (γ, δ, L(·))-list decodable if each member of the family is (γ, δ, L(n))-list
decodable where n denotes the block length. Often the function L is omitted and a family of q-ary
codes C is said to be (γ, δ)-list decodable if there exist some polynomial function L(·) for which C is

(γ, δ, L(·))-list decodable. The rate R of a family of q-ary codes C is defined as R = limn→∞
logq |Cn|

n .

The fundamental question studied in this paper is to understand the inherent trade-off between
the communication rate of a q-ary list-decodable insdel code and the amount of synchronization
errors it can correct, i.e., the error parameters γ and δ. For every fixed alphabet size q, this trade-
off can be nicely plotted as a 3D-surface in a 3D-chart which plots the maximum communication
rate on the z-axis for all γ and δ (plotted on the x- and y-axes respectively). See Figure 1 for an
example of such a 3D-plot.

Of course, determining the exact communication rate values for any q and any non-trivial values
of (γ, δ) is beyond the capability of current techniques. Prior work (described in Section 1.2) has
furthermore mainly focused on obtaining a better understanding of certain special cases, which
correspond to projections or cuts of the general trade-off plot. In particular, Figure 2 shows the 2D
cuts/projections onto the xz- and yz-planes, which correspond to the insertion-only setting with
δ = 0 and the deletion-only setting with γ = 0, as well as the projection/cut onto the yz-plane
specifying for which error rate combinations of γ and δ the communication rate hits zero. See
Figure 2 for examples of these three 2D-projections. It has also been studied how the shape of the
3D-plot changes asymptotically as q gets larger.

1.1 Our Results

This paper is among the first to give results for the entirety of the 3D trade-off between communica-
tion rate and the two error rates for every fixed alphabet size q. We primarily focus on giving good
outer bounds, i.e., impossibility results proving limits on the best possible communication rate (for

1

Figure 1: Depiction of our outer bound for q = 5.

any given γ, δ, and q). The novel outer bounds we prove are given in the 3D-plot of Figure 2 for
an alphabet size of q = 5 (similar plots for any given q apply). We develop these outer bounds in
Section 2. (See Theorem 2.6)

A notable property of our new outer bound is that, for every q, it exactly matches the best
previously known results on all three aforementioned projections/cuts. That is, the outer bound
implied for deletion-only codes (i.e., the cut on γ = 0 plane) matches the deletion-only bound from
[23]. Similarly, we match the best insertion-only bounds known (also from [23]) when restricting or
projecting our new general outer bound result to the δ = 0 plane. Finally, the error resilience implied
by our bound (i.e., where the curve in Figure 2 hits the floor) precisely matches the list-decoding
error resilience curve for insertions and deletions as identified by [14]. As such, our bound fully
encapsulates and truly generalizes the entirety of the current state-of-the-art of the fundamental
rate-distance trade-off for list-decodable insertion-deletion codes for any fixed alphabet size q.

Lastly, for the sake of completeness and as a comparison point, we also provide a general inner
bound in Section 3. This general existence result is obtained by analyzing the list-decodability of
random codes. We do this mainly through a simple bound on the size of the insertion-deletion
sphere. Figure 3 illustrates this inner bound in contrast to the outer bound depicted in Figure 2,
also for q = 5. It is worth noting that, in contrast to our outer bound, the cut onto the xy-plane
does not match the precise error resilience identified (through matching inner and outer bounds)
in [14]. However, the cuts onto the xz and yz planes do match the inner bounds of [23] for insertion-
only and deletion-only cases, which were also derived by analysis of random codes. We generally
believe our outer bounds to be closer to the true zero-error list-decoding channel capacity.

2

F
ig

u
re

2:
D

ep
ic

ti
on

of
ou

r
ou

te
r

b
ou

n
d

fo
r
q

=
5

a
n

d
it

s
th

re
e

p
ro

je
ct

io
n

s
fo

r
th

e
in

se
rt

io
n

-o
n

ly
ca

se
(o

n
th

e
ri

g
h
t)

,
th

e
d

el
et

io
n

-o
n

ly
ca

se
(o

n
th

e
le

ft
),

an
d

th
e

ze
ro

-r
at

e
ca

se
(o

n
th

e
b

ot
to

m
).

T
h

e
p

ro
je

ct
io

n
g
ra

p
h

s
a
re

ex
a
ct

ly
m

a
tc

h
in

g
th

e
st

a
te

-o
f-

th
e-

a
rt

re
su

lt
s

o
f

[1
4
,2

3
].

3

Figure 3: Depiction of our inner and outer bounds for q = 5 from two angles. The more transparent surface
is the outer bound of Section 2 and the surface underneath is the inner bound derived in Section 3.

1.2 Related Work

This paper studies the fundamental rate-distance trade-off for error correcting codes which are
capable of list-decoding from worst-cases insertions and deletions, a topic which has attracted
significant attention over the last three years [14,17,23,25,28,32]. We summarize these prior works
in detail in this section. The multitude of related work on similar questions, such as, (efficient) list-
decoding from Hamming errors, unique-decodable insdel codes, or decoding from random insertions
or deletions are too many to list or discuss here. Instead, we refer the interested reader to the
following (recent) surveys [9, 13,21,29,30], which give detailed accounts of such works.

As noted above, with the exception of [28], mostly special cases of the general rate-distance
trade-off for list-decodable insdel codes have been studied up to now. This includes in particular
(combinations of) the deletion-only case (with γ = 0), the insertion-only case (with δ = 0), the
zero-rate regime or resilience case asking for what extremal values of (γ, δ) a non-zero rate can be
obtained, and the case of large alphabets where the alphabet size q = O(1) is allowed to be a large
constant that can depend on the error rates (γ, δ).

1.2.1 List-Decodable Insdel Codes Over Large Constant-Size Alphabets

The rate-distance tradeoff for list-decodable error correcting codes has been studied in [23] under the
large alphabet setting, that is the question of finding the largest possible achievable rate that (γ, δ)-
list-decodable families of codes can achieve as long as their alphabet size is constant q = Oγ,δ(1) (i.e.,
independent of the block length). Using a method of constructing insdel codes by indexing ordinary
error-correcting codes with synchronization strings introduced in [22], [23] shows the following: For
every δ ∈ (0, 1), γ ≥ 0, and sufficiently small ε > 0, there exists an efficient family of (γ, δ)-list-
decodable codes over an alphabet of size q = Oγ,δ,ε(1) that achieve a rate of 1− δ − ε or more. It
is easy to verify that no such family of codes can achieve a rate larger than 1− δ.

The result of [23] points out an interesting and indeed very drastic distinction between insertions
and deletions in the list-decoding setting. In the unique-decoding setting the effect of insertions and
deletions are symmetric, and the rate-distance tradeoff can be fully measured solely in terms of the
edit-distance between codewords. For list-decoding it turns out that insertions behave completely

4

different than deletions. Indeed while any δ fraction of deletions will definitely reduce the rate at
the very least to 1− δ, in the very extreme the impact of insertion errors can be fully compensated
by taking the alphabet appropriately large. This is what makes the maximum achievable rate
for arbitrarily large constant alphabets merely a function of the deletion error rate δ. This stark
distinction in the effects insertions and deletions have on the rate-distance tradeoff for list-decodable
codes is the reason why it is crucial to use the two parameters γ and δ to keep track of insertions
and deletions separately.

1.2.2 Error Resilience of List-Decodable Insdel Codes

An important special case of the rate-distance trade-off for list-decodable insertion-deletion codes
is the question of the best possible error resilience. In particular, the question of “what is the
“largest” fraction of errors against which list-decoding is possible for some positive-rate code” –
or differently speaking, at what point(s) the maximum achievable rate of a list-decodable code
becomes zero. Understanding this question is, in some way, a prerequisite to meaningfully talk
about more general positive rates. Nevertheless, even when restricted to binary deletions-only or
insertions-only codes, finding good bounds on the error resilience is highly non-trivial (in contrast
to the Hamming case) [14,15,17,25] and has only recently been solved [14]. (along with the general
case where insertions and deletions occur together.)

For deletion-only codes, i.e., the special case where γ = 0, Guruswami and Wang [17] gave
binary codes that are list-decodable from a δ = 1

2 − ε fraction of errors attaining a poly(ε) rate for
any ε > 0. This implies that the error resilience for deletion coding is precisely δ0 = 1

2 since, with
a fraction of deletions δ ≥ 1

2 , an adversary can simply eliminate all instances of the least frequent

symbol and convert any codeword from {0, 1}n into either 0n/2 or 1n/2.

In 2017 a work of Wachter-Zeh [32] gave Johnson-type bounds on list-decodability and list-sizes
of codes given their minimum edit-distance. In 2018, Hayashi and Yasunaga [25] made corrections
to the results presented in [32], and further showed that such bounds give novel results for the
insertion-only case of resilience. In particular, they prove that the codes introduced by Bukh,
Guruswami, and H̊astad [4] can be list-decoded from up to γ = 0.707 fraction of insertions (and no
deletions) while maintaining a positive-rate.

Very recently, Guruswami et al. [14] improved this fraction of insertions to an optimal γ < 1.
Much more generally [14] were able to tightly and fully identify the error resilience region for codes
that are list-decodable from a mixture of insertions and deletions, i.e., determine exactly and for
any given q the set of all (γ, δ)s where the largest achievable rate for q-ary (γ, δ)-list decodable
codes is non-zero. This fully resolved the zero-rate projection of the question addressed in this
paper (shown in the bottom 2D chart of Figure 2).

1.2.3 Alphabet dependent rate results for the deletion-only and insertion-only case

The two other projections, i.e., bounds on the highest achievable rate for the insertion-only (δ = 0)
and deletion-only (γ = 0) cases in dependence on q and the error parameter (γ and δ respectively)
were given by Haeupler et al. [23]. These projections are shown in Figure 2 to the right and left
respectively. The inner bounds presented in [23] are derived by analyzing list-decoding properties
of random codes. Here, we briefly review (the ideas of) the outer bounds from [23] as these will be
helpful for the remainder of this paper.

5

Deletion-only case. A simple observation for deletion-only channels is that no family of positive-
rate q-ary codes can be list-decoded from δ ≥ 1 − 1

q fraction of deletions. This is due to a simple
strategy that adversary can employ to eliminate all occurrences of all symbols of the alphabet except
the most frequent one to convert any sent codeword into a word like an(1−δ) for some a ∈ [q]. [23]
suggests a similar strategy called Alphabet Reduction for the adversary when δ = d

q for some

integer d. With δ = d
q fraction of deletions, an adversary can remove all instances of the d least

frequent symbols and, hence, convert any transmitted codeword into a member of an ensemble

of (q − d)n(1−δ) strings. This implies an outer bound of log(q−d)n(1−δ)

n log q = (1 − δ)
(

1− logq
1

1−δ

)
on the largest rate achievable by list-decodable deletion codes for special values of δ = d

q where
d = 1, 2, · · · , q− 1. Using a simple time sharing argument between the alphabet reduction strategy
over these points, [23] provides a piece-wise linear outer bound for all values of 0 < δ < 1− 1

q .

Insertion-only case. In an insertion channel, the received word contains the sent codeword as a
subsequence. To provide an outer bound on the highest achievable rate by insertion codes, [23] used
the probabilistic method: For a given codeword x ∈ [q]n, [23] computes the probability of a random
string y ∈ [q]n(1+γ) containing x as a subsequence. Having this quantity, one can compute the
expected number of codewords of a given code C with rate r that are contained in a random string
y ∈ [q]n(1+γ). Note that if r is so high that this expectation is exponentially large in terms of n, then,
by linearity of expectation, there exists some string ȳ ∈ [q]n(1+γ) which contains exponentially many
codewords of C which is a contradiction to its list-decodability from γn insertions. This implies an
outer bound for the communication rate which we describe in more details below.

1.2.4 General Case

Liu et al. [27] was the first and only other work studying the rate of list-decodable insertion-deletion
codes in full generality, like this paper. After direct contradictions between the results reported
here and the claims in [27] were discovered, several correctness issues with key approaches of [27]
for outer bounds were identified. These results have been removed in [28], the final version of [27].
The underlying issues seem hard to fix without substantially new ideas, as also reported in the
acknowledgements of [28]. As a result, [28] is less directly relevant to this work, with the largest
overlap being the inner bounds, similarly derived via a simple analysis of random insertion-deletion
codes. Our bound is stronger for all pairs (γ, δ) when q ≥ 3.

2 Outer Bounds

2.1 Linear Outer Bounds from Resilience Results

We start this section by providing a simple outer bound for best possible rate of an insdel code by
generalizing the tight results for the resilience region of [14] into a rate bound for any (γ, δ). Recall
that the resilience region Fq for any (integer) alphabet size q > 2 is defined as the set of error rates
for which there exists list-decodable codes with positive rate, i.e.,

Fq =

{
(γ, δ)

∣∣∣0 ≤ δ ≤ q − 1

q
, 0 ≤ γ ≤ q − 1, ∃ (γ, δ)-list dec. q-ary code family with positive rate

}
.

In [14], the following exact description of Fq was given:

6

Figure 4: Resilience region for q = 5.

Theorem 2.1 (Theorem 1.3 of [14]). For any positive integer q ≥ 2, the resilience region Fq is

exactly the concave polygon defined over vertices
(
i(i−1)
q , q−iq

)
for i = 1, · · · , q and (0, 0), not includ-

ing the borders except the two segments [(0, 0), (q − 1, 0)) and [(0, 0), (0, 1− 1/q)). (See Figure 4)
In particular, for any ε > 0 and any (γ, δ) ∈ (1−ε)Fq, there exists a family of q-ary codes with posi-
tive rate that is (γ, δ)-list-decodable. Further, for any (γ, δ) 6∈ Fq there exists no (γ, δ)-list-decodable
family of q-ary codes with positive rate.

We show that the multiplicative distance to this resilience region gives a valid outer bound on
the rate of any list-decodable insertion-deletion code:

Theorem 2.2. For any alphabet size q and any (γ, δ) ∈ Fq let α ≥ 1 be the smallest number1 such
that (αγ, αδ) /∈ Fq. Any family of (γ, δ)-list decodable q-ary codes cannot achieve a rate of more
than 1− 1/α.

A different way of looking at this outer bound is to think of it as the collection of lines that
connect every point on the (border of the) resilience region Fq identified in Theorem 2.1 on the
r = 0 plane and the point (γ, δ, r) = (0, 0, 1) which indicates the trivial achievable rate of 1 in the
absence of noise. (See Figure 5)

The proof of Theorem 2.2 is easy once one recalls how the outer bound for the feasibility region
Fq is proven in [14]. It basically consists of a simple strategy transforming any sent string into one
of a small Oq(1) number of canonical strings, thus erasing almost all information sent. One can
prove Theorem 2.2 by doing the same but only on an 1

α fraction of the string. Here though, for
the sake of brevity and completeness, we present an alternative and shorter formal proof in the
following.

Proof of Theorem 2.2. Assume for the sake of contradiction that for some (γ, δ) ∈ Fq, for which
(αγ, αδ) /∈ Fq, there exists a family of (γ, δ)-list-decodable codes C with a higher rate than 1− 1

α ,
i.e., codes C = {C1, C2, · · · } with block lengths n1 < n2 < · · · and rates r1, r2, · · · that satisfy
r = limi→∞ ri = 1− 1

α + ε for some ε > 0.

We convert this family of codes to a new family of codes C′ by converting each code Ci into a
code C ′i as follows: In all codewords of Ci, consider the ni (1− 1/α)-long prefix. Among all such
prefixes, let p be the most frequent one. We set C ′i to be a code containing all codewords of Ci that
start with p. Since all such codewords start with p, we omit the prefix p from all such codewords.

1such minimum exists due to the definition of Fq.

7

Figure 5: Illustration of the outer bound from Theorem 2.2 for q = 5.

Note that the block length of C ′i is n′i = ni − ni (1− 1/α) = ni/α. Also, since there are qni(1−1/α)

q-ary strings of length ni (1− 1/α),

|C ′i| ≥
|Ci|

qni(1−1/α)
=

qniri

qni(1−1/α)
= qni(ri−1+1/α).

This implies that the rate of C ′i is at least

r′i =
logq |C ′i|
n′i

≥ ni(ri − 1 + 1/α)

n′i
= α(ri − 1 + 1/α)

and, hence, the rate of the family of codes C′ is at least limi→∞ r
′
i ≥ αε > 0.

Further, we claim that if C is (γ, δ, L(n))-list decodable, then C′ will be (αγ, αδ, L(αn′))-list
decodable. To show this, we construct such list-decoder for all codes C ′i ∈ C′ with input y′ by
simply padding the most frequent ni(1 − 1/α)-prefix of codewords of Ci ∈ C, p, in front of y′ and
running the list-decoder of Ci with input y = p · y′. Among the list generated by the decoder of
Ci, the ones that do not start with p are withdrawn. The remaining strings will form the output of
our list-decoder for C ′i after omitting their prefix p. Note that this indeed gives a (αγ, αδ, L(αn′))-
list-decoder since for any codeword x ∈ C ′i that is (αγ, αδ)-close to y, p · x ∈ Ci is (γ, δ)-close to
p · y.

We were able to show that the family of codes C′ achieves a positive rate and is (αγ, αδ)-list
decodable for (αγ, αδ) /∈ Fq. This is a contradiction to Theorem 2.1 proving that the rate of C′
may not exceed 1− 1

α , thus, proving the theorem.

We remark that one can interpret the outer bound from Theorem 2.2 as a convexity argument
in the following manner: We know that no code can achieve a rate of one in the presence of

8

even a small amount of noise. The point (γ, δ, r) = (0, 0, 1) is therefore part of the (in)feasibility
boundary. Further, the resilience result from [14] demonstrates that all points within the region
R = {(γ, δ, 0) | (γ, δ) 6∈ Fq} are infeasible. Theorem 2.2 shows that any convex combination
of (0, 0, 1) and any point in R is infeasible as well, implying a pyramid-shaped feasibility region
with Fq as its base and (0, 0, 1) as its apex. (See Figure 5.) We remark that generally convex
combinations of infeasible points in the rate-distance tradeoff are not known to be infeasible - even
for much simpler settings including Hamming errors or unique-decoding. Even convexity results
between known infeasible points can be quite challenging. Case in point, our tighter outer bound
in Section 2.2 is proven by showing infeasibility of convex combinations of (easier) infeasible points.

2.2 Stronger Bounds Using Generalizations of Bounds from [23]

While Theorem 2.2 gives a bound for all (γ, δ), it is easy to see that it can be quite far from
guarantees given by other state-of-the-art outer bounds. This is especially apparent for the deletion-
only and insertion-only cases where Theorem 2.2 implies fairly trivial rate bounds of 1− δ

1−1/q and

1 − γ
q−1 , respectively. In particular, for the insertion-only case the following outer bound of [23]

gives much tighter bounds than 1− γ
q−1 :

Theorem 2.3 (From [23]). For any alphabet size q and error rate γ < q − 1, any family of q-
ary codes C which is list-decodable from a γ fraction of insertions has a rate of no more than

1− logq(γ + 1)− γ
(

logq
γ+1
γ − logq

q
q−1

)
.

Next, we show how to use Theorem 2.3 in a black-box fashion to give a very clean and easily
statable outer bound for settings with both insertions and deletions, but in which the fraction of
deletions has a nice form, in particular, is a multiple of 1

q . This outer bound forms the backbone
of our final result.

Theorem 2.4. For any fixed alphabet size q, any insertion rate γ < q − 1 and any deletion rate
δ = d

q for some integer d < q, it is true that any family of q-ary codes C which is (γ, δ)-list-decodable

has a rate of at most (1− δ)
[(

1 + γ
1−δ

)
logq

q−d
γ

1−δ+1
− γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]
.

Proof. Consider a code C that is (γ, δ)-list-decodable and assume that δ = d
q for some integer d.

Assume that we restrict the adversary to utilize its deletions in the following manner: The adversary
uses the d

q deletion to remove all occurrences of the d-least frequent symbols of the alphabet. If
there are remaining deletions, the adversary removes symbols from the end of the transmitted word.

Let us define the code C ′ that is obtained from C by deleting a δ fraction of symbols from each
codeword of C as described above. Note that the block length of C ′ is n′ = n(1− δ) and each of its
codewords consist of up to q′ = q(1− δ) = q− d symbols of the alphabet though this subset of size
q − d may be different from codeword to codeword. We partition the codewords of C ′ into

(
q
q−d
)

sets C ′1, C
′
2, · · · , C ′(q

q−d)
based on which (q − d)-subset of the alphabet they consist of.

Since C is (γ, δ)-list-decodable, each of the C ′is are list-decodable from γn insertions. Therefore,
Theorem 2.3 implies that the size of each code C ′i is no larger than

q
′n′
[
1−logq′ (γ

′+1)−γ′
(

logq′
γ′+1
γ′ −logq′

q′
q′−1

)]
where q′ = q− d, n′ = n(1− δ), and γ′ = γ

1−δ . Therefore, the size of the code C is no larger than(
q

q − d

)
q
n(1−δ)

[
logq q

′−logq(γ
′+1)−γ′

(
logq

γ′+1
γ′ −logq

q′
q′−1

)]

9

and, consequently, its rate is no larger than

(1− δ)
[
logq(q − d)− logq

(
γ

1−δ + 1
)
− γ

1−δ ·
(

logq
γ+1−δ
γ − logq

q−d
q−d−1

)]
= (1− δ)

[(
1 + γ

1−δ

)
logq

q−d
γ

1−δ+1
− γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]
.

Given the nice and explicit form of Theorem 2.4 for any q and γ with multiple specific val-
ues of δ, it seems tempting to conjecture that the restriction of δ is unnecessary making (1 −
δ)
[(

1 + γ
1−δ

)
logq

q−d
γ

1−δ+1
− γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]
a valid outer bound for any value of δ (and γ).

This, however, could not be further from the truth. Indeed, for any δ not of the form restricted
to by Theorem 2.4, there exists a γ for which this extended bound is provably wrong because it
contradicts the existence of the list-decodable codes constructed in [14].

In fact, for the valid points where δ is a multiple of 1
q , the rate bound of Theorem 2.4 hits zero at

exactly the corner points of the piece-wise linear resilience region Fq characterized by Theorem 2.1.
Taking this as an inspiration, one could try to extend the bound of Theorem 2.4 to all values
of δ by considering for each q and each rate r the roughly q

r points where Theorem 2.4 hits the
plane corresponding to rate r and extend these points in a piece-wise linear manner to a complete
2D-curve for this rate r. This would give a rate bound for any γ, δ, and q as desired, which reduces
to a piece-wise linear function for any fixed r and also correctly reproduce Fq for r = 0.

It turns out that this is indeed a correct outer bound. However, a stronger form of convexity,
which takes full 3D-convex interpolations between any points supplied by Theorem 2.4 and in
particular combines points with different rates, also holds and is needed to give our final outer
bound.

Theorem 2.5. For a fixed q, suppose that (γ0, δ0 = d0
q) and (γ1, δ1 = d1

q) are two error rate combi-
nations for which Theorem 2.4 implies a maximal communication rate of r0 and r1, respectively. For
any 0 ≤ α ≤ 1 consider the following convex combinations of these quantities: γ = αγ0 + (1−α)γ1,
δ = αδ0 + (1− α)δ1, and r = αr0 + (1− α)r1. It is true that any (δ, γ)-list-decodable q-ary code C
has a rate of at most r.

See Figure 6 for an illustration of this bound for q = 5. Red curves indicate the outer bound
described above for the special values of δ of the form d

q as given by Theorem 2.4.

Theorem 2.5 together with Theorem 2.4 gives a conceptually very clean description of our
outer bound. However, an (exact) evaluation of the outer bound as given by Theorem 2.5 is not
straightforward since there are many convex combinations which all produce valid bound but how
to compute or select the one which gives the strongest guarantee on the rate for a given (γ, δ) pair
is not clear. This is particularly true since, as already mentioned above, the optimal points to
combine do not lie on the same rate-plane. To remedy this, we give, as an alternative statement
to Theorem 2.5, the next theorem which produces an explicit outer bound for any (γ, δ) as an
α-convex combination of two points (γ0, δ0) and (γ1, δ1) only in dependence on the free parameter
γ0. We then show in Theorem 2.7 an explicit expression for the optimal value for γ0. Together,
this produces a significantly less clean but on the other hand fully explicit description of our outer
bound.

Theorem 2.6. Let C be a q-ary insertion-deletion code that is list-decodable from γ ∈ [0, q − 1]
fraction of insertions and δ ∈ [0, 1− 1

q] fraction of deletions. Then, the rate of C is no larger than

α

(
1− d

q

)(
(1 + γ0) logq

q − d
1 + γ0

− γ0 logq
q − d− 1

γ0

)
10

F
ig

u
re

6:
O

u
te

r
b

ou
n

d
fo

r
ra

te
fo

r
q

=
5
.

T
h

e
sp

ec
ia

l
ca

se
w

h
er

e
δ

=
d q

fo
r

so
m

e
in

te
g
er
d

is
in

d
ic

a
te

d
w

it
h

re
d

li
n

es
.

11

+ (1− α)

(
1− d+ 1

q

)(
(1 + γ1) logq

q − d− 1

1 + γ1
− γ1 logq

q − d− 2

γ1

)
for d = bδqc, α = 1 − δq + d, and all γ0, γ1 ≥ 0 where α(1 − d

q)γ0 + (1 − α)(1 − d+1
q)γ1 = γ. We

present the optimal choice of γ0 in Theorem 2.7.

Proof of Theorems 2.5 and 2.6. We first note that the statements of Theorem 2.6 and Theorem 2.5
are merely a rephrasing of each other with the exception that Theorem 2.6 only allows and optimizes
over convex combinations of neighboring spokes of Theorem 2.4, namely the ones for d0 = d and
d1 = d + 1 for d = bδqc. This restriction, however, is without loss of generality. Indeed, for any

values from the domain
{

(γ, δ) | δ = d
q , 0 ≤ d ≤ q − 1, d ∈ Z

}
, Theorem 2.4 gives values which come

from the function f(γ, δ) = (1− δ)
[(

1 + γ
1−δ

)
logq

q(1−δ)
γ

1−δ+1
− γ

1−δ ·
(

logq
q(1−δ)−1

γ
1−δ

)]
. This function is

convex. (see Appendix A for a formal proof.) Any value given as a convex combination between two
non-neighboring spokes can therefore be at least matched (and indeed, thanks to the strict convexity
of f(·, ·) always be improved) by choosing a different convex combination between neighboring
spokes. This justifies the “restricted” formulation of Theorem 2.6, which helps in reducing the
number of parameters and simplifies calculations.

In order to prove Theorem 2.6 we, again, fix a specific strategy for the adversary’s use of
deletions. In particular, the adversary will use nαdq deletions on the first nα symbols of the
transmitted codeword to eliminate all instances of the d least-frequent symbols there. Similarly, he
removes all instances of the respective d+1 least frequent symbols from the last n(1−α) symbols of

the codeword. The resulting string is one out of some Σ
nα(1− d

q
)

0 ×Σ
n(1−α)(1− d+1

q
)

1 where Σ0,Σ1 ⊆ [q],
q0 = |Σ0| = q− d, q1 = |Σ1| = q− d− 1. This deletion strategy fits within the budgeted number of
deletions since δ = αdq + (1− α)d+1

q for d = bδqc and α = 1− δq + d.

Note that while the adversary can convert any codeword of C to a string of such form, the
sub-alphabets Σ0 and Σ1 will likely be different between different codewords of C. Let (Σ0,Σ1) be
the pair of the most frequently reduced to alphabets and let C0 be the set of codewords of C that,

after undergoing the above-described procedure, turn into a string out of Σ
nα(1− d

q
)

0 ×Σ
n(1−α)(1− d+1

q
)

1 .

Note that |C|
(qd)(

q
d+1)

≤ |C0| ≤ |C|. Further, let D0 be the set of codewords in C0 after undergoing

the alphabet reduction procedure mentioned above. To give an outer bound of the rate of C it
thus suffices to bound from above the size of C0–or equivalently, D0; Since C is (L = poly(n))-list-
decodable, no more than L members of C0 can be mapped to a single member of D0 during the
above procedure, thus, |D0| ≥ |C0|

poly(n) which results in a negligible o(1) difference in the rate.

We bound above the size of D0 by showing that if |D0| is too large, there will be some received
word that can be obtained by exponentially many words in D0 after nγ insertions. Similar to [23],
we utilize the linearity of expectation to derive this. Let us pick a random string Z = (Z0, Z1)
that consists of nα(1 − d

q)(1 + γ0) symbols chosen uniformly out of Σ0 (referred to by Z0) and

n(1 − α)(1 − d+1
q)(1 + γ1) symbols uniformly chosen out of Σ1 (referred to by Z1). We have that

α(1 − d
q)γ0 + (1 − α)(1 − d+1

q)γ1 = γ. (γ0 and γ1 will be determined later.) We calculate the
expected number of the members of D0 that are subsequences of such string – denoted by X.
In the following, we will often describe members of D0 like y as the concatenation (y0, y1) where

12

|y0| = n0 = nα(1− d
q) and |y1| = n1 = n(1− α)(1− d+1

q).

E[X] =
∑

y=(y0,y1)∈D0

Pr{y is a subsequence of Z}

≥
∑

y=(y0,y1)∈D0

Pr{y0 is a subsequence of Z0} · Pr{y1 is a subsequence of Z1}

=
∑

y=(y0,y1)∈D0

∏
j=0,1

Pr{yj is a subsequence of Zj}

=
∑

y=(y0,y1)∈D0

∏
j=0,1

∑
1≤a1<a2<···<anj≤nj(1+γj)

1

|Σj |nj

(
1− 1

|Σj |

)anj−nj
(1)

= |D0|
∏
j=0,1

(|Σj | − 1)−nj
nj(1+γj)∑
l=nj

(
l − 1

nj − 1

)(
|Σj | − 1

|Σj |

)l

≥ |D0|
∏
j=0,1

(|Σj | − 1)−nj
(
nj(1 + γj)− 1

nj − 1

)(
|Σj | − 1

|Σj |

)nj(1+γj)

(2)

= |D0|
∏
j=0,1

(|Σj | − 1)−nj
1

1 + γj

(
nj(1 + γj)

nj

)(
|Σj | − 1

|Σj |

)nj(1+γj)

= |D0|
∏
j=0,1

(|Σj | − 1)njγj |Σj |−nj(1+γj)2
nj(1+γj)H

(
1

1+γj

)
+o(n)

= |D0|
∏
j=0,1

qnj(γj logq(qj−1)−(1+γj) logq qj+(1+γj) logq(1+γj)−γj logq γj+o(1))

= |D0|
∏
j=0,1

q
nj

(
γj logq

qj−1

γj
−(1+γj) logq

qj
1+γj

+o(1)

)

= |D0|q
∑
j=0,1 nj

(
γj logq

qj−1

γj
−(1+γj) logq

qj
1+γj

+o(1)

)
(3)

Step (1) is obtained by conditioning the probability of yj being a subsequence of Zj over the leftmost
occurrence of yj in Zj indicated by a1, a2, · · · , an as indices of Zj where the leftmost occurrence of
yj is located. In that event, Zj [ai] = yj [i] and yj [i] cannot appear in Zj [ai−1 + 1, ai− 1]. Therefore,

the probability of this event is
(

1
qj

)nj (
1− 1

qj

)an−nj
. To verify Step (2), note that we substituted

a summation of positive values with one single term among them.

Finally, by (3), there exists some realization of Z to which at least

|D0|q
∑
j=0,1 nj

(
γj logq

qj−1

γj
−(1+γj) logq

qj
1+γj

+o(1)

)

codewords of C are subsequences. In order for C to be list-decodable, this quantity needs to be

13

sub-exponential. Therefore,

rC =
logq |D0|+O(1)

n
≤
∑
j=0,1

nj
n

(
(1 + γj) logq

qj
1 + γj

− γj logq
qj − 1

γj

)

= α

(
1− d

q

)(
(1 + γ0) logq

q0

1 + γ0
− γ0 logq

q0 − 1

γ0

)
+(1− α)

(
1− d+ 1

q

)(
(1 + γ1) logq

q1

1 + γ1
− γ1 logq

q1 − 1

γ1

)
= α

(
1− d

q

)(
(1 + γ0) logq

q − d
1 + γ0

− γ0 logq
q − d− 1

γ0

)
+(1− α)

(
1− d+ 1

q

)(
(1 + γ1) logq

q − d− 1

1 + γ1
− γ1 logq

q − d− 2

γ1

)
(4)

Note that (4) is an outer bound for the rate for all choices of γ0, γ1 ≥ 0 where α(1− d
q)γ0 + (1−

α)(1− d+1
q)γ1 = γ.

Theorem 2.7. The optimal choice for the value of γ0
2 in Theorem 2.6 (i.e., the one that yields

the tightest bound) satisfies(
1 +

1

γ1

)(
1− 1

q − d− 1

)
=

(
1 +

1

γ0

)(
1− 1

q − d

)
.

Together with the equation α(1− d
q)γ0 + (1− α)(1− d+1

q)γ1 = γ, this gives the following explicit

expression for γ0 in terms of q,γ, d = bδqc, and α = 1− δq + d:

γ0 =
1

2α(q − d)
·
(
A−

√
B2 + C

)
for A = 3αd2q+ d2q− 3αdq2 − 2dq2 + 4αdq+ 2dq+ αq3 − 2αq2 + q3 − 2q2 + γq+ q− αd3 − 2αd2

B = αd3 + 2αd2 − 3αd2q − d2q + 3αdq2 + 2dq2 − 4αdq − 2dq − αq3 + 2αq2 − q3 + 2q2 − γq − q

C = 4(αq − αd)
(
γd2q − 2γdq2 + 2γdq + γq3 − 2γq2

)
Proof. To find the optimal value for γ0, we find the choice of γ0 that minimizes (1). To this end, we
calculate the ratio between the values of (1) when nγ insertions are distributed between two parts
as (n0γ0, n1γ1) and when distributed as (n0γ0 +1, n1γ1−1). We show that this ratio monotonically
increases as one increases γ0. Therefore, to find the value of γ0 for which (1) is minimized, one only
needs to find the choice of γ0 for which this ratio is equal to one.

(
n0(1+γ0)

n0

) (|Σ0|−1
|Σ0|

)n0(1+γ0) (
n1(1+γ1)

n1

) (|Σ1|−1
|Σ1|

)n1(1+γ1)

(
n0(1+γ0)+1

n0

) (|Σ0|−1
|Σ0|

)n0(1+γ0)+1 (
n1(1+γ1)−1

n1

) (|Σ1|−1
|Σ1|

)n1(1+γ1)−1

2Note that choosing γ0 also determines a value for γ1.

14

=

(
n0(1+γ0)

n0

)(
n1(1+γ1)

n1

) (|Σ1|−1
|Σ1|

)
(
n0(1+γ0)+1

n0

) (|Σ0|−1
|Σ0|

) (
n1(1+γ1)−1

n1

)
=

(
n0(1+γ0)

n0

)(
n1(1+γ1)

n1

)(
n0(1+γ0)+1

n0

)(
n1(1+γ1)−1

n1

) × |Σ0| × (|Σ1| − 1)

(|Σ0| − 1)× |Σ1|

=

n1(1+γ1)
n1(1+γ1)−n1

n0(1+γ0)+1
n0(1+γ0)+1−n0

× |Σ0| × (|Σ1| − 1)

(|Σ0| − 1)× |Σ1|

=

n1(1+γ1)
n1γ1

n0(1+γ0)+1
n0γ0+1

× |Σ0| × (|Σ1| − 1)

(|Σ0| − 1)× |Σ1|

=
1 + 1

γ1

1 + 1
γ0+1/n0

×
1− 1

|Σ1|

1− 1
|Σ0|

Note that as one increases γ0, the numerator grows and the denominator becomes smaller–meaning
that the overall value goes up. Therefore, the optimal choice of γ0 would be one for which:

1 + 1
γ1

1 + 1
γ0+1/n0

×
1− 1

|Σ1|

1− 1
|Σ0|

= 1

⇔
(

1 +
1

γ1

)(
1− 1

|Σ1|

)
=

(
1 +

1

γ0 + 1/n0

)(
1− 1

|Σ0|

)
Given that families of codes with increasing block lengths n are considered, the term 1

n0
= 1

n·α(1−d/q)
vanishes. Thus, we are looking for a choice of γ0 that satisfies(

1 +
1

γ1

)(
1− 1

|Σ1|

)
=

(
1 +

1

γ0

)(
1− 1

|Σ0|

)
.

Putting this together with the equation α(1− d
q)γ0 + (1−α)(1− d+1

q)γ1 = γ from Theorem 2.6
and solving the resulting system of equations analytically using computer software, the stated
equation for the optimal choice of γ0 is derived.

3 Inner Bound via Analyzing Random Codes

In this section, we provide an inner bound on the highest rate achievable by list-decodable insertion-
deletion codes. We start with a preliminary lemma in the following. Throughout this section, we
define Bi(S, ni) or the insertion sphere of radius ni as the set of all strings that can be obtained
by ni insertions from S. Bd(S, nd) and B(S, ni, nd) are similarly defined as the deletion sphere of
radius nd and the insertion-deletion sphere of insertion radius ni and deletion radius nd around S.

Lemma 3.1 (From [26]). Let n, ni, and q be positive integers and S ∈ [q]n. Then, the size of the
insertion sphere of radius ni around S is

|Bi(S, ni)| =
ni∑
i=0

(
n+ ni
i

)
(q − 1)i.

In the following, we give a simple bound on the size of the insertion-deletion sphere.

15

Lemma 3.2. Let x ∈ [q]n, δ ∈
[
0, 1− 1

q

]
and γ ∈ [0, (q − 1)(1 − δ)]. The size of the insertion-

deletion sphere of insertion-radius γn and deletion-radius δn around x is no larger than

|B(x, γn, δn)| ≤ qn
(
Hq(δ)+(1−δ+γ)Hq

(
γ

1−δ+γ

)
−δ logq(q−1)

)
+o(n)

where Hq(·) denotes the q-ary entropy function (see definition in (8)).

Proof.

|B(x, γn, δn)| ≤
∑

x0∈Bd(x,δn)

|Bi(x0, γn)|

≤
(
n

δn

) γn∑
i=0

(
n(1− δ + γ)

i

)
(q − 1)i (5)

≤ nγ

(
n

nδ

)(
n(1− δ + γ)

nγ

)
(q − 1)γn (6)

= q
n
(
Hq(δ)−δ logq(q−1)+(1−δ+γ)Hq

(
γ

1−δ+γ

)
−γ logq(q−1)+γ logq(q−1)

)
+o(n)

(7)

= q
n
(
Hq(δ)+(1−δ+γ)Hq

(
γ

1−δ+γ

)
−δ logq(q−1)

)
+o(n)

Note that (5) follows from Lemma 3.1 and (6) is true because the term in summation reaches its
maximum when i = nγ. To see this, we test the ratio between the value of the term for two
consecutive parameter values i and i+ 1:(

n(1−δ+γ)
i+1

)
(q − 1)i+1(

n(1−δ+γ)
i

)
(q − 1)i

=
n(1− δ + γ)− i

i+ 1
(q − 1)

Note that n(1−δ+γ)−i
i+1 (q − 1) ≥ 1 ⇔ n(1−δ+γ)−i

i+1 ≥ 1
q−1 ⇔ iq + 1 ≤ n(1 − δ + γ)(q − 1). This holds

for all i ≤ nγ because:

nγq + 1 ≤ n(1− δ + γ)(q − 1)⇔ nγ < n(1− δ)(q − 1).

Finally, (7) follows from the definition of the q-qry entropy function

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x) (8)

and the equation
(
n
np

)
= qn(Hq(p)−p logq(q−1))+o(n).

Using the bound on the size of the insertion-deletion radius presented above, we give the follow-
ing inner bound on the highest achievable rate for (γ, δ)-list-decodable codes derived by analysis of
the list-decodability of random codes.

Theorem 3.3. For any integer q ≥ 2, δ ∈
[
0, 1− 1

q

]
and γ ∈ [0, (q−1)(1− δ)], a family of random

q-ary codes with rate

0 ≤ R < 1− (1− δ + γ)Hq

(
γ

1− δ + γ

)
−Hq (δ) + γ logq(q − 1)

is list-decodable from γn insertions and δn deletions with high probability.

16

We remark that the condition γ ≤ (q− 1)(1− δ) does not weaken the statement of the theorem
since there is no positive-rate family of codes that can list-decode from (γ, δ) fraction of errors
where γ ≥ (1 − δ)(q − 1). To see this, similar to the proof of Theorem 2.6, one can think of an
adversary that reduces the alphabet to one of size q− d in the first nα symbols of the message and
to q − d− 1 in the rest of it where d = bδqc and α = 1− δq + d. With

γn ≥ n(1− δ)(q − 1) ≥ nα
(

1− d

q

)
(q − d− 1) + n(1− α)

(
1− d+ 1

q

)
(q − d− 2)

insertions, the adversary can turn any sent message into a string out of an ensemble of
(
q
q−d
)(

q
q−d−1

)
strings by turning each message into repetitions of the reduce alphabet members as described in
the proof of Theorem 2.6.

Proof of Theorem 3.3. Take the random codeword X ∈ [q]n and some string y ∈ [q]n(1−δ+γ) of
length n′ = n(1− δ+γ). Using Lemma 3.2, the probability of X being inside the insertion-deletion
sphere of deletion-radius δ′n′ = γn and insertion-radius γ′n′ = δn of y is

Pr{X ∈ B(y, γ′n′, δ′n′)} ≤ q
n′
(
Hq(δ′)+(1−δ′+γ′)Hq

(
γ′

1−δ′+γ′

)
−δ′ logq(q−1)

)
+o(n)

qn

=
q
n(1−δ+γ)

(
Hq(

γ
1−δ+γ)+ 1

1−δ+γHq(δ)−
γ

1−δ+γ logq(q−1)
)

+o(n)

qn

= q
n
(
Hq(δ)+(1−δ+γ)Hq

(
γ

1−δ+γ

)
−γ logq(q−1)−1

)
+o(n)

For the random code C with rate R to not be l-list decodable for some integer l, there has to exists
some string y ∈ [q]n(1−δ+γ) that can be obtained by l + 1 codewords of C via δn deletions and γn
insertions, i.e., codewords that lie in B(y, δn, γn). Using the union bound over all y ∈ [q]n(1−δ+γ),
the probability of the existence of such y is at most.

qn(1−δ+γ)
(
qnR

)l+1
(
q
n
(
Hq(δ)+(1−δ+γ)Hq

(
γ

1−δ+γ

)
−γ logq(q−1)−1

)
+o(n)

)l+1

= q
n(l+1)

(
R+Hq(δ)+(1−δ+γ)Hq

(
γ

1−δ+γ

)
−γ logq(q−1)−1+ 1−δ+γ

l+1
+ol(1)

)
(9)

Note that we used the trivial bound
(
qnR

l+1

)
≤
(
qnR

)l+1
in the above calculation. Equation (9) implies

that as long as

R < 1− (1− δ + γ)Hq

(
γ

1− δ + γ

)
−Hq (δ) + γ logq(q − 1),

for an appropriately large l = Oγ,δ,q(1), the exponent of (9) is negative and, therefore, the family
of random codes is (γ, δ)-list-decodable with high probability.

We next show that this bound is stronger than the one presented by [28] for the case of alphabet
size q ≥ 3.

Theorem 3.4. The bound presented in Theorem 3.3 is stronger (i.e. larger) than the following
that is provided in Lemma 15 of [28] for any δ and γ.

1− (1− δ + 2γ)Hq

(
γ

1− δ + 2γ

)
−Hq (δ) + γ logq(q − 1)

17

Proof. To prove this, one simply needs to verify that

(1− δ + γ)Hq

(
γ

1− δ + γ

)
≤ (1− δ + 2γ)Hq

(
γ

1− δ + 2γ

)
⇔ −γ logq

(
γ

1− δ + γ

)
− (1− δ) logq

(
1− δ

1− δ + γ

)
+ γ logq(q − 1)

≤ −γ logq

(
γ

1− δ + 2γ

)
− (1− δ + γ) logq

(
1− δ + γ

1− δ + 2γ

)
+ γ logq(q − 1)

⇔ −γ logq

(
γ

1− δ + γ

)
− (1− δ) logq

(
1− δ

1− δ + γ

)
≤ −γ logq

(
γ

1− δ + 2γ

)
− (1− δ + γ) logq

(
1− δ + γ

1− δ + 2γ

)
⇔ 2γ logq

(
1− δ + γ

1− δ + 2γ

)
≤ (1− δ) logq

(
(1− δ)(1− δ + 2γ)

(1− δ + γ)2

)
⇔ 2(1− δ + γ) logq(1− δ + γ) ≤ (1− δ) logq(1− δ) + (1− δ + 2γ) logq(1− δ + 2γ)

The last line of the above sequence of equations is true due to the f
(
a+b

2

)
≤ f(a)+f(b)

2 inequality
that holds for the convex function f(x) = x logq x and points a = 1−δ and b = 1−δ+2γ. Therefore,
the claim we began with is correct.

18

Appendices

A Proof of the Convexity of f(γ, δ)

In this section, we show that the bivariate function

f(γ, δ) = (1− δ)

[(
1 +

γ

1− δ

)
logq

q(1− δ)
γ

1−δ + 1
− γ

1− δ
·

(
logq

q(1− δ)− 1
γ

1−δ

)]

is convex. To prove the convexity, our general strategy is to show that the Hessian matrix of f is
positive semi-definite. In order to do so, we take the following steps: We first characterize a domain
D for f(γ, δ), over which we analyze the convexity. We then calculate the Hessian matrix of the
function f , Hf . To show the positive semi-definiteness of Hf , we form its characteristic polynomial
and then show that both of its solutions are real and non-negative – meaning that both eigenvalues
of Hf are non-negative over the domain D. This would imply that Hf is positive semi-definite and,
hence, f is convex over D.

Determining the domain D. Let us begin with describing the domain D. As stated in Sec-
tion 1.2, for the purposes of this paper, we only consider the error rates that are within δ ∈ [0, 1−1/q]
and γ ∈ [0, q−1]. Note that for any fixed value δ ∈ [0, 1−1/q), f(γ = 0, δ) is positive. We will show
that as γ grows, the value of f(γ, δ) continuously drops until it reaches zero at γ = (1−δ)(q−qδ−1).
This suggests that the domain D has to be defined as follows:

D =

{
(γ, δ) | 0 ≤ δ ≤ 1− 1

q
, 0 ≤ γ ≤ (1− δ)(q − qδ − 1)

}
.

To show the claim above, we demonstrate two simple facts: (I) The partial derivative of f with
respect to γ is negative within 0 ≤ γ ≤ (1− δ)(q − qδ − 1) and, (II) f(γ, δ) = 0 for γ = (1− δ)(q −
qδ − 1).

To see claim (a), note that

∂f

∂γ
= logq

(
(1− δ)2q

1− δ + γ

)
− logq

(
(1− δ)(q − qδ − 1)

γ

)
= logq

(
q(1− δ)γ

(1− δ + γ)(q − qδ − 1)

)
which is non-positive as long as

∂f

∂γ
≤ 0 ⇔ q(1− δ)γ

(1− δ + γ)(q − qδ − 1)
< 1

⇔ q(1− δ)γ ≤ (1− δ + γ)(q − qδ − 1) (10)

⇔ γ ≤ (1− δ)(q − qδ − 1)

Note that (10) is valid since 1 − δ + γ ≥ 0 and δ ≤ 1 − 1
q ⇒ q − qδ − 1 ≥ 0. One can also easily

evaluate f(γ, δ) for γ = (1− δ)(q − qδ − 1) to confirm claim (b).

Hessian Matrix and Characteristic Polynomial. We now proceed to calculating the Hessian
matrix of f and forming its characteristic polynomial.

19

Hf =

[
H1,1 H1,2

H2,1 H2,2

]
=

∂2f
∂γ2

∂2f
∂γ∂δ

∂2f
∂δ∂γ

∂2f
∂δ2

=

1−δ

γ(1−δ+γ) log(q)
γ+(1−δ)2q

(1−δ)(1−δ+γ)(q−qδ−1) log(q)

γ+(1−δ)2q
(1−δ)(1−δ+γ)(q−qδ−1) log(q)

(1−δ)3q2(1−δ+2γ)+(2(1−δ)q−1)(γ2−γ(1−δ)−(1−δ)2)
(1−δ)2(1−δ+γ)(q−qδ−1)2 log(q)

 (11)

We prove semi-definiteness by deriving the characteristic polynomial of Hf . The eigenvalues of
Hf are the roots of this polynomial.

det(Hf − λI) = 0 ⇔
∣∣∣∣H1,1 − λ H1,2

H2,1 H2,2 − λ

∣∣∣∣ = 0

⇔ (H1,1 − λ)(H2,2 − λ)−H1,2H2,1 = 0

⇔ λ2 − (H1,1 +H2,2)λ+ (H1,1H2,2 −H1,2H2,1) = 0 (12)

To prove the semi-definiteness of Hf , we show that both of its eigenvalues are non-negative, or
equivalently, the roots of the quadratic equation (12) are both non-negative. We remind the reader
of the straightforward fact that in a quadratic equation of form x2−Sx+P = 0, S is the sum of the
roots and P is their product. Therefore, to show that both roots are non-negative, we only need to
show that S and P are both non-negative and that the roots are both real, i.e., ∆ = S2 − 4P ≥ 0.

1. H1,1 +H2,2 ≥ 0

2. H1,1H2,2 −H1,2H2,1 ≥ 0

3. (H1,1 +H2,2)2 − 4(H1,1H2,2 −H1,2H2,1) ≥ 0

In the remainder of this section, we prove the three items listed above.

Proof of Item 1. Given (11), we have that

H1,1 +H2,2 =
1

log(q)
·
(

1

γ
+

γq2

(q − qδ − 1)2
+

γ(1− γ − δ)
(1− δ)2(1− δ + γ)

)
=

1

log(q)
·
(

1

γ
+

γ

(1− 1/q − δ)2
+

γ

(1− δ)(1− δ + γ)
− γ2

(1− δ)2(1− δ + γ)

)
(13)

Note that terms 1
γ and γ

(1−δ)(1−δ+γ) are positive. Therefore, to prove thatH1,1+H2,2 is non-negative,
we show that

γ

(1− 1/q − δ)2
− γ2

(1− δ)2(1− δ + γ)
≥ 0. (14)

Note that

1− δ − 1/q < 1− δ ⇒ γ

(1− 1/q − δ)2
≥ γ

(1− δ)2
. (15)

Also, since δ ≤ 1, we have that 1− δ+ γ ≥ γ ⇒ γ
1−δ+γ ≤ 1. Thus, (15) holds even if one multiplies

its right-hand side by γ
1−δ+γ which gives (14) and, thus, proves Item 1.

20

Proof of Item 2. Given (11), we have that

H1,1H2,2 −H1,2H2,1 =
(1− δ)2(q − qδ − 1)2 − γ2

γ(1− δ)2(1− δ + γ)(q − qδ − 1)2 log2(q)
.

Note that all terms in the denominator are positive. The numerator is positive as well since, as
mentioned earlier, the domain D is defined only to include points (γ, δ) where γ ≤ (1−δ)(q−qδ−1).

Proof of Item 3. This claim can be simply shown to be true as follows:

(H1,1 +H2,2)2 − 4(H1,1H2,2 −H1,2H2,1) = (H1,1 −H2,2)2 + 4H1,2H2,1 = (H1,1 −H2,2)2 + 4H2
1,2

The final term is trivially positive. Note that the last step follows from the fact thatH1,2 = H2,1.

21

References

[1] Meinolf Blawat, Klaus Gaedke, Ingo Huetter, Xiao-Ming Chen, Brian Turczyk, Samuel Inverso,
Benjamin W Pruitt, and George M Church. Forward error correction for DNA data storage.
Procedia Computer Science, 80:1011–1022, 2016.

[2] James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and Karin
Strauss. A DNA-based archival storage system. ACM SIGARCH Computer Architecture News,
44(2):637–649, 2016.

[3] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Transactions on Information Theory, 64(5):3403–
3410, 2018.

[4] Boris Bukh, Venkatesan Guruswami, and Johan H̊astad. An improved bound on the fraction
of correctable deletions. IEEE Transactions on Information Theory, 63(1):93–103, 2017.

[5] Kuan Cheng, Venkatesan Guruswami, Bernhard Haeupler, and Xin Li. Efficient linear and
affine codes for correcting insertions/deletions. In Proceedings of the 2021 ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1–20, 2021.

[6] Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. Synchroniza-
tion strings: highly efficient deterministic constructions over small alphabets. In Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2185–2204,
2019.

[7] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange protocols,
and almost optimal binary codes for edit errors. In Proceedings of the 59th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 200–211, 2018.

[8] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Block edit errors with transpositions:
Deterministic document exchange protocols and almost optimal binary codes. In Proceedings
of the 46th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 132 of LIPIcs, pages 37:1–37:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[9] Mahdi Cheraghchi and João Ribeiro. An overview of capacity results for synchronization
channels. IEEE Transactions on Information Theory, 2020.

[10] George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information storage
in DNA. Science, 337(6102):1628–1628, 2012.

[11] Tai Do Duc, Shu Liu, Ivan Tjuawinata, and Chaoping Xing. Explicit constructions of two-
dimensional reed-solomon codes in high insertion and deletion noise regime. IEEE Transactions
on Information Theory, 67(5):2808–2820, 2021.

[12] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeProust, Botond
Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance information stor-
age in synthesized DNA. Nature, 494(7435):77, 2013.

[13] Venkatesan Guruswami. List decoding of error-correcting codes: winning thesis of the 2002
ACM doctoral dissertation competition, volume 3282. Springer Science & Business Media,
2004.

22

[14] Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. Optimally resilient
codes for list-decoding from insertions and deletions. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 524–537, 2020.

[15] Venkatesan Guruswami, Xiaoyu He, and Ray Li. The zero-rate threshold for adversarial bit-
deletions is less than 1/2. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), pages 727–738, 2022.

[16] Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion codes for high-
noise and high-rate regimes. In Proceedings of the IEEE International Symposium on Infor-
mation Theory (ISIT), pages 620–624, 2016.

[17] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

[18] Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In Proceedings of the 60th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 334–347, 2019.

[19] Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. Near-linear time
insertion-deletion codes and (1+ε)-approximating edit distance via indexing. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 697–708,
2019.

[20] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Explicit construc-
tions, local decoding, and applications. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 841–854, 2018.

[21] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and codes for inser-
tions and deletions–a survey. IEEE Transactions on Information Theory, 2021.

[22] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Codes for insertions
and deletions approaching the Singleton bound. Journal of the ACM (JACM), 68(5):1–39,
2021.

[23] Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. Synchronization strings: List
decoding for insertions and deletions. In Proceedings of the 45th International Colloquium on
Automata, Languages, and Programming (ICALP), volume 107 of LIPIcs, pages 76:1–76:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[24] Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. Synchronization strings:
Channel simulations and interactive coding for insertions and deletions. In Proceedings of the
45th International Colloquium on Automata, Languages, and Programming (ICALP), volume
107 of LIPIcs, pages 75:1–75:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[25] Tomohiro Hayashi and Kenji Yasunaga. On the list decodability of insertions and deletions.
In Proceedings of the IEEE International Symposium on Information Theory (ISIT), pages
86–90, 2018.

[26] Vladimir I Levenshtein. Elements of coding theory. Diskretnaya matematika i matematicheskie
voprosy kibernetiki, pages 207–305, 1974.

23

[27] Shu Liu, Ivan Tjuawinata, and Chaoping Xing. On list decoding of insertion and deletion
errors. CoRR, abs/1906.09705, 2019.

[28] Shu Liu, Ivan Tjuawinata, and Chaoping Xing. Efficiently list-decodable insertion and deletion
codes via concatenation. IEEE Transactions on Information Theory, 67(9):5778–5790, 2021.

[29] Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. A survey of error-correcting codes
for channels with symbol synchronization errors. IEEE Communications Surveys & Tutorials,
12(1):87–96, 2010.

[30] Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

[31] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Kon-
stantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen,
et al. Scaling up DNA data storage and random access retrieval. BioRxiv, page 114553, 2017.

[32] Antonia Wachter-Zeh. List decoding of insertions and deletions. IEEE Transactions on Infor-
mation Theory, 64(9):6297–6304, 2018.

[33] SM Hossein Tabatabaei Yazdi, Han Mao Kiah, Eva Garcia-Ruiz, Jian Ma, Huimin Zhao,
and Olgica Milenkovic. DNA-based storage: Trends and methods. IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, 1(3):230–248, 2015.

24

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.2.1 List-Decodable Insdel Codes Over Large Constant-Size Alphabets
	1.2.2 Error Resilience of List-Decodable Insdel Codes
	1.2.3 Alphabet dependent rate results for the deletion-only and insertion-only case
	1.2.4 General Case

	2 Outer Bounds
	2.1 Linear Outer Bounds from Resilience Results
	2.2 Stronger Bounds Using Generalizations of Bounds from haeupler2018synchronization4

	3 Inner Bound via Analyzing Random Codes
	A Proof of the Convexity of f(,)

