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Abstract—This work tests the performance of Grover’s search
circuits on some IBM superconducting quantum devices in case
of the size of search space N = 24 and N = 25. Ideally, we
expect to get an outcome probability distribution that is clearly
peaked at the goal (marked) state. However, the quantum circuit
executed on real devices is vulnerable to noise which leads to
fluctuations in the results. The contributions of the paper are
therefore the following: a) it presents two new Grover’s search
circuits for N = 16 which were not yet reported in the state of
the art; b) it shows performance difference between simulation
results and results obtained on real devices; c) it shows the need
of adding error-correction on the circuit for N ≥ 25.

I. INTRODUCTION

Quantum computing has become one of the hottest topics
of the last decade in physics, mathematics and computer
science fields. This comes from the deployment of Noisy
Intermediate Scale Quantum (NISQ) devices, that allow to
accelerate execution of a number of algorithms. In contrast
to Large Scale Quantum (LSQ) systems, NISQ devices are
not based on fault-tolerant quantum circuits that use error-
correction codes, but make use of error mitigation techniques.

It is agreed that quantum error correction will play an
essential role in development of LSQ systems. A lot of
literature is devoted to the topic, and the research field is
quickly developing in last years [1], [2]. It would be also
interesting to investigate whether error-control coding might
be useful for NISQ technologies. To the best of our knowledge,
no tests with the use of error correction have been performed
on NISQ devices until very recently. At the end of 2022, the
authors of [3] have reported a performance improvement while
using a [[4,2,2]] error-detection code.

The goal of this work is to show performance limitations of
quantum algorithms implemented on available NISQ devices,
and to discuss their improvements, possibly with the use of
error correction, in line with recent results from [3]. For better
understanding, we are going to focus on a particular case
of the Grover’s search algorithm (GSA). This algorithm has
been suggested in [4] to search for a marked element over an
unsorted dataset and theoretically outperforms classical search
algorithms (the GSA has complexity growing as

√
N with

the dataset size N , while the best classical search algorithm
behaves as O(N)). An information-theoretic analysis of the
GSA can be found in [5].

The reason of choosing the GSA is two-fold. Firstly, it
makes part of the most common algorithms used for tests

on NISQ devices since the last two years, and a number of
references is available for a benchmark. Secondly, the Grover’s
algorithm is the one with the largest depth of quantum circuit,
therefore it is the most sensitive to noise [6]. In fact, there exist
recent publications presenting results on real devices where
the noise overshadows the signal. This observation will be
discussed later in the paper.

The paper is organized as follows. Section II presents the
Grover’s search algorithm, one circuit implementation from
the state of the art and two circuits suggested by the authors
of the paper. Section III presents numerical results obtained
by running the circuits over NISQ devices and Section IV
concludes the paper. It is to note that the circuits have been
first run on the Qiskit simulator [7] and then on IBM quantum
devices of 7 and 27 qubits.

A. State of the art

NISQ implementations. Among a large amount of results on
the NISQ implementation, appeared in the last several years,
let us report the most relevant tests of the Grover’s algorithm.
A 4-qubit String Detection Problem (SDP) circuit has been
introduced and tested in [8], for a multi-target search, both
on simulator and on quantum devices. It is to mention the
GSA with N = 8, reported there, first failed to find correct
marked states of the system when carried on quantum devices,
but it further succeeded with a slight modification. In order
to make the GSA with N = 8 to succeed in searching for
a correct marked state, a circuit with auxiliary qubits has
been presented in [9]. This introduced a GSA with a bigger
number of states than N , where the redundant states are further
removed by amplitude suppression. Furthermore, a GSA with
N = 8 and one single ancilla qubit has been implemented on
IBM quantum devices in [10], and a GSA with N = 8 both
with and without ancilla qubits has been executed on IonQ1

quantum devices in [11].
Error correction. Regarding the application of error-

correction techniques to the GSA implementation, the use of
an error-correction code was considered in [12], where the
authors have applied two quantum BCH codes of parameters
[[7,1]] and [[15,7]] in order to correct errors after each stage
of the GSA with N = 128 and N = 1024. In [12], the
performance evaluation of a noisy GSA has been done by

1Based on trapped atomic ion qubits
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simulation, assuming a depolarizing channel of probability p
within any two GSA stages, and no quantum devices have
been used at that time. Very recently, a NISQ implementation
of the GSA with N = 4 using a [[4,2,2]] error-detection code
has been reported in the literature [3].

B. Useful notation
Let us introduce some notation which will be used though

the paper. Denote two pure states by |0〉 =
(
1
0

)
and |1〉 =(

0
1

)
, and a superposed state by |q〉 = a|0〉+ b|1〉, with |a|2+

|b|2 = 1. One represents a system of n qubits as |system〉 =
|q1〉⊗ |q2〉⊗ ...|qN 〉, where ⊗ is the Kronecker product. Thus,
if |q1〉 = |q2〉 = ... = |qn〉 = |q〉, then |system〉 = |q〉⊗n.
Finally, let |+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
.

Let us denote by H , X and Z the gates given by respective
unitary matrices

1√
2

(
1 1
−1 1

)
,

(
0 1
1 0

)
, and

(
1 0
0 −1

)
.

Also, the CX the operator is given by the 4×4 unitary matrix

CX = I ⊕X,

where I is the 2× 2 identity matrix and ⊕ is the direct sum.
Similarly, let CZ = I ⊕ Z, and more generally let CiX =
I ⊕ . . .⊕ I︸ ︷︷ ︸

i times

⊕X and CiZ = I ⊕ . . .⊕ I︸ ︷︷ ︸
i times

⊕Z for all i ≥ 1.

II. GROVER’S ALGORITHM: THEORY AND
IMPLEMENTATION

A. GSA in Brief
The GSA can be briefly described as follows.

Algorithm 1 Grover’s search algorithm with N = 2n [4]
Initialization:
• Compute R = bπ

√
N/2− 1/2c.

• Prepare two states of n qubits each:
|sinitial〉 = |0〉⊗n
|sprepared〉 = H⊗n|sinitial〉 = |+〉⊗n

• One searches for a marked (goal) state |g〉 out of N
eligible states |g1〉, |g2〉, . . . , |gN 〉.

For 1 ≤ r ≤ R do:
• Phase Oracle: Perform the oracle operation
Uf = 1−2|g〉〈g|, which maps |g〉 7→ −|g〉, while leaving
all the other vectors unchanged.

• Diffuser: Apply the diffuser operator
V = 1− 2|sprepared〉〈sprepared|

Measurement: Mesure the final state |sfinal〉.
Output: Output the probability vector (p1, p1, . . . , pN ) related
to |sfinal〉. pi is an estimation of Prob(|g〉 = |gi〉), 1 ≤ i ≤ N .

The actual performance of the algorithm is highly dependent
on its circuit implementation, and this even for ideal noiseless
models, provided by quantum simulators. To make the differ-
ence clear, the section below introduces several versions of
GSA circuits, along with simulation results.

B. GSA Circuits and their Simulation
A first specificity of quantum circuits is in that they might

have or not contain auxiliary (ancilla) qubits. For various GSA
implementations for N = 8, the reader is for instance referred
to Fig. 1c of [11] for a circuit with one ancilla qubit, to Fig. 4b
of [10] for a circuit without ancilla qubits and to [13] for
circuits with and without ancilla qubits. The results presented
in [13] suggest that free-ancilla qubit circuits perform better
than those with ancilla qubits.

Let us focus on a more involved case of N = 16. This case
is covered by the SDP circuit presented in [8] and detailed
below. Also, in what follows we suggest two new GSA circuits
for N = 16 which are slight extensions of GSA circuits for
N = 8 from [11].

1) SDP circuit [8]: Fig. 1 shows the SDP circuit with 4
data qubits q0, q1, q2, q3, and one ancilla qubit q4. The SDP
circuit follows closely the implementation of Algorithm 1. At
the initialization stage, Hadamard (H) gates are applied to data
qubits in order to get |sprepared〉. Note that the ancilla qubit is
prepared in the |−〉 state by successive application of X and
H gates. A phase oracle over all qubits is further applied by
the MCMT-CZ gate2 from [7] (drawn in violet in Fig. 1). Note
that two X gates applied to q0 before and after the MCMT-CZ
gate serve to fix q0 to 0 (and other data qubits will therefore
be fixed to 1). Thus the goal state in the example of Fig. 1
is |g〉 = |q3q2q1q0〉 = |1110〉. The diffuser operator applied
after the phase oracle is in fact the phase oracle targeting
the |0000〉 state, put in between H gates. Note that the phase
oracle and the diffuser operations are to be repeated R times,
before proceeding to the final measurement of |sfinal〉. The
performance of the SDP circuit on a qasm simulator [7] (i.e.
equivalent to a noiseless quantum device) is given in Fig. 3
in blue. All the possible states |g1〉, . . . , |gN 〉 are presented
on the x-axis, while the y-axis gives the value of associated
probabilities. One can see that the goal state |1110〉 has been
correctly detected as it has a higher probability with respect
to all other states.

2) GSA with no ancilla qubit: We suggest a new GSA
circuit for N = 16 with only 4 qubits q0, q1, q2 and q3.
The initialization and the phase oracle stages of our circuit
are shown in Fig. 2, and the diffuser and measurement stages
are similar to those presented in Fig. 1. Note that, for the phase
oracle, the MCMT-CZ gate used in the SDP circuit, is replaced
by the C3Z gate3. The performance of the GSA circuit on a
qasm simulator is given in Fig. 4 in blue.

3) GSA with one ancilla qubit: We suggest another GSA
circuit with 4 data qubits q0, q1, q2, q3, and one ancilla qubit
q4. This circuit is very similar to the one presented in Fig. 1,
with only one exception: the MCMT-CZ gate of the phase
oracle is replaced by the C4X gate. Otherwise, as for SDP, q4
is prepared in |−〉 as before, and the diffuser and measurement
circuits are the same. Note that the performance of this circuit

2For simplicity of presentation the MCMT-CZ gate is not defined here, the
reader is invited to refer to [7].

3In Fig. 2, the C3Z gate is implemented as a C3X gate with H gates
before and after the gate X , by using the fact that HXH = Z.



Fig. 1. Circuit for the SDP for N = 16 from [8] with |1110〉 as the goal (marked) state and R = 1. q4 is the ancilla qubit.

Fig. 2. First two stages (Initialization and Oracle) of the GSA circuit for
N = 16 with the goal state |1110〉, when R = 1. Diffuser and Measurement
stages of the GSA are similar to those in Fig. 1. No ancilla qubits are present.

on qasm is the same as shown by the blue histogram in Fig.
4.

One can see that the difference between the three circuits
above is in the presence/absence of ancilla qubits and in
the implementation of the phase oracle. We will see in the
next section that this difference is essential for the circuit
performance on real quantum devices.

III. PERFORMANCE EVALUATION ON NISQ DEVICES

Let us run the circuits presented in Section II-B on real
quantum devices, available on an IBM-Q cloud, in partic-
ular on ibm_oslo (7 qubits), ibm_algiers (27 qubits) and
ibm_canberra (27 qubits). It is to note that all the results
reported in this section have been obtained by means of
Monte-Carlo tests with 1000 experiments (if simulation) or
4000 experiments (if test on real device).

1) Comparison of outcomes for a simulator and for a NISQ
device: Fig. 3 shows the output of a SDP circuit in Fig. 1
[8] for |g〉 = |1110〉, obtained on qasm_simulator and on
the device ibm_algiers. We can observe that the probability

Fig. 3. Outcome of SDP [8] on qasm_simulator and ibm_algiers, R = 1.

associated with the state |g〉 is larger w.r.t. the probabilities of
other states. Also, the results on ibm_algiers are more noisy
than the ones from qasm. A similar observation can be made
for Fig. 4, which compares outputs of GSA with and without
ancilla qubit, for |g〉 = |1110〉, tested both on qasm_simulator
and ibm_algiers. Both GSA circuits behave almost equally
on the simulator (blue histogram), but their outcomes are
more noisy on ibm_algiers. Moreover, the GSA without ancilla
qubit is more resistant to the noise induced by the quantum
device and has better performance (red histogram). Finally,
one notices that the GSA with no ancilla qubit is the most
efficient circuit among the three circuits introduced in Section
II-B.

2) Tests for different values of R on a simulator and on a
NISQ device: Consider the GSA circuit without ancilla qubit.
Fig. 5 (resp. Fig. 6) illustrates the outcome of the circuit on
the qasm_simulator (resp. on ibm_algiers) for R = 1; 2; 3.
Note that Algorithm 1 is shown to converge with the number



Fig. 4. Outcome of GSA with/without ancilla qubit on qasm_simulator and
ibm_algiers, R = 1.

Fig. 5. Implementation of GSA on qasm_simulator for different values of R.

of repetitions R. This is exactly what one observes in Fig. 5
(outcome on the simulator). However, Fig. 6 shows that the
outcome gets worse with R. This is due to the increase of the
depth (i.e. the quantity of gates in the circuit) with R and to
the accumulation of the noise induced by the gates.

3) Circuits vs. types of devices: Given the results above,
we are ready to make a more complete comparison of circuits
run on different devices.

Assume a GSA circuit is run over some NISQ device. Let
g be the index of the goal (marked state). Given a probability
vector (p1, p2, . . . , pN ) as outcome, define the selectivity Sg

[14] as follows:

Sg = 10 log10
pg

maxi 6=g pi
. (1)

In fact, the selectivity plays the same role as signal-to-noise
ratio in communication systems. It is considered [14] that, if

Fig. 6. Implementation of GSA ibm_algiers for different values of R.

Circuits
Devices ibm_algiers ibm_oslo qasm_simulator

SDP 4.5 N/A 7.2
GSA with ancilla 8.3 0.1 13.7
GSA w/o ancilla 10.8 5 13.37

TABLE I
SELECTIVITY FOR N = 8 WITH |g〉 = |110〉.

Sg ≥ 3, then the circuit is assumed to recognize the goal state
g successfully.

Tables I and II show the values of selectivity for the three
GSA circuits from Section II-B, implemented on two quantum
devices, as well as on the qasm_simulator, for N = 8 and
N = 16 respectively. Note that the GSA circuit performs
the best on quantum devices and the SDP the worst. This
observation can be explained by the number of gates within
the circuit. Indeed, the GSA circuit contains the least number
of gates w.r.t. the others, while the SDP circuits contains
the most. Moreover, the selectivity of a given circuit is the
best on qasm_simulator (perfect running environment) and is
worse for quantum devices. It also differs from one device
to another due to their differences in implementation (i.e.
connectivity of qubits on the circuit) and non-equal calibration
parameters. The obtained results also warn that the circuit
comparison based on simulation results might not reflect the
circuit behaviour on real devices. If one only considers the
qasm_simulator column, one would say that the GSA with
ancilla qubit is the best circuit. Meanwhile, if one considers
results on quantum devices, the GSA without ancilla qubit is
the one that distinguishes the goal state for all circuit examples.

4) Extension of GSA to N = 32: We extended the GSA
circuit without ancilla qubit to the case of N = 32 (n = 5).
The results obtained on a real device (see Fig. 7 for tests on
ibm_algiers) are not encouraging: as the number of gates in
the circuit grows with n, the selectivity Sg takes values close
to 0, meaning that the goal state is indistinguishable from the



Circuits
Devices ibm_algiers ibm_canberra qasm_simulator

SDP 1.36 1.9 6.38
GSA with ancilla 4 3.25 12.8
GSA w/o ancilla 6.54 4.57 9.46

TABLE II
SELECTIVITY FOR N = 16 WITH |g〉 = |1110〉 AND R = 1.

Fig. 7. Implementation of GSA without ancilla qubit, for N = 32 and
|g〉 = |11100〉, on ibm_algiers. The bar related to pg is underlined in red.

others. This result strongly suggests that, in order to be able
to run GSA circuits on real devices for larger values of N ,
a noise-reducing method is to be implemented along with the
initial algorithm.

IV. DISCUSSION

The example of the Grover’s search algorithm, presented
in this work, confirms some implementation rules of quantum
algorithms on NISQ devices: if possible, one should avoid a
high number of quantum gates in the circuit and/or ancilla
qubits. In case of GSA, this also means to keep the value of
N relatively low. Indeed, for N = 32 one seems to attain the
limit of the GSA circuit feasibility.

It is possible to improve the performance of the initial algo-
rithm by adapting it to the behaviour of quantum devices, like
is has been suggested in [15] with the aim to improve the GSA
through hybrid search algorithm, optimization, and divide-and-
conquer search algorithm. However, this is a tedious approach
which needs reconsidering every algorithm in particular, and
it might not be sufficiently general in practice.

Another approach is the quantum error mitigation (QEM)
[16], the goal of which is to minimize the mean square error
between the perfect circuit state and the noisy circuit state. The
QEM is an interesting approach to perform the calibration of
the quantum device of the system level, but it can also be
incorporated into the circuit level.

Finally, the third approach is the addition of error-control
coding (QEC) to a quantum circuit. To show the utility
of error-correction schemes for NISQ devices is an open
challenging question – in most of cases the code rate of

the quantum error-correction schemes is quite low, namely of
order 1/10, thus to add such a circuit implies an important
increase in the number of quantum gates in it, which in its turn
increases the induced circuit noise. Another alternative would
be the use of higher-rate error-detecting codes together with
a QEM, like it was first tried in [3]. In general, a systematic
approach connecting QEM methods to QEC and merging them
under a common framework of error suppression is another
open question.
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