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Abstract—The de-anonymization of users from anonymized
microdata through matching or aligning with publicly-available
correlated databases has been of scientific interest recently. While
most of the rigorous analyses of database matching have focused
on random-distortion models, the adversarial-distortion models
have been wanting in the relevant literature. In this work,
motivated by synchronization errors in the sampling of time-
indexed microdata, matching (alignment) of random databases
under adversarial column deletions is investigated. It is assumed
that a constrained adversary, which observes the anonymized
database, can delete up to a δ fraction of the columns (attributes)
to hinder matching and preserve privacy. Column histograms of
the two databases are utilized as permutation-invariant features
to detect the column deletion pattern chosen by the adversary.
The detection of the column deletion pattern is then followed by
an exact row (user) matching scheme. The worst-case analysis
of this two-phase scheme yields a sufficient condition for the
successful matching of the two databases, under the near-perfect
recovery condition. A more detailed investigation of the error
probability leads to a tight necessary condition on the database
growth rate, and in turn, to a single-letter characterization of
the adversarial matching capacity. This adversarial matching
capacity is shown to be significantly lower than the “random”
matching capacity, where the column deletions occur randomly.
Overall, our results analytically demonstrate the privacy-wise
advantages of adversarial mechanisms over random ones during
the publication of anonymized time-indexed data.

I. INTRODUCTION

With the ever-increasing popularity of smartphones, IoT
devices, and big data applications, the user data gathered by
companies and institutions has been growing as well. This
user-level microdata is then published or shared for scientific
and/or commercial purposes, after anonymization which refers
to the removal of any explicit identifiers. However, concerns
over the insufficiency of simple anonymization have been
articulated by the scientific [1] and corporate [2] communi-
ties. These concerns were further validated and amplified as
researchers devised practical privacy attacks on real data [3]–
[7] to show the vulnerability of anonymization on its own.

In the light of the above practical privacy attacks on
databases, several groups initiated rigorous analyses of the
database matching problem which has applications beyond
privacy, such as image processing [8], computer vision [9],
single-cell biological data alignment [10], [11] and DNA
sequencing, which is shown to be equivalent to matching
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Fig. 1. An illustrative example of database matching under column deletions.
The columns circled in red are deleted. Our goal is to estimate the row
permutation Θn which is in this example given as; Θn(1) = 5, Θn(2) = 1,
Θn(3) = 4, Θn(4) = 3 and Θn(5) = 2, by matching the rows of D(1) and D(2),
under column deletions with Idel = (2,5). Here the ith row of D(1) corresponds
to the Θn(i)th row of D(2).

bipartite graphs [12]. Matching of correlated databases has also
been rigorously investigated from information-theoretic and
statistical perspectives [13]–[21]. In [13], Cullina et al. derived
sufficient conditions for successful matching and a converse
result using perfect recovery as the error criterion. In [14],
Shirani et al. considered a pair of anonymized and obfuscated
databases and derived necessary and sufficient conditions on
the database growth rate for reliable matching, in the presence
of noise on the database entries, under near-exact recovery
criterion. In [15]–[17], the matching of a pair of databases
with jointly-Gaussian attributes is considered. In [17], [18], the
necessary and the sufficient conditions for detecting whether
two Gaussian databases are correlated are investigated.

In [19]–[21], motivated by the synchronization errors in the
sampling of time-series datasets, we investigated the matching
of two databases of the same number of users (rows), but
with different numbers of attributes (columns). In our model,
one of the databases suffers from random column repetitions.
Under this model, we devised various algorithms to detect the
underlying repetition pattern. In [21], we showed that in the
noisy setting, a batch of seeds whose size Bn grows logarithmic
in the number of rows mn of the database, can be utilized
for the detection of deletion locations and replicas can be
detected without any seeds. Similarly, in [20], we showed in
the noiseless setting, the repetition detection can be performed
without any seeds through a repetition detection algorithm.
These repetition detection algorithms were then followed by
joint-typicality-based matching schemes which allowed us to
derive achievable database growth rates. Then, we proved tight
converse results, characterizing the matching capacities of the
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database matching problem under noiseless and noisy random
column repetitions.

Motivated by potential settings in which a privacy-
preserving mechanism denies the sampling of the most in-
formative attributes after observing the anonymized database,
our objective in this paper is to investigate the necessary and
sufficient conditions for the successful matching of database
rows under adversarial column deletions. Unlike the previous
work [13]–[22] where distortions, in the form of noise and/or
synchronization errors, are random, we assume a constrained-
adversarial model as in channel coding literature [23]–[27].
We assume that synchronization errors, in the form of column
deletions, are chosen by the constrained adversary where the
constraint is of the form of a fractional column deletion
budget. An example of these column deletions is illustrated
in Figure 1. We stress that this “adversary” here is in fact a
privacy-preserving entity whose goal is to hinder matching of
the databases. Under this assumption, we improve upon and
utilize the histogram-based detection algorithm of [20] and
then propose an exact sequence matching algorithm. We note
that this adversarial model forces us to focus on the worst-case
scenario and in turn, prohibits the use of typicality and Fano’s
inequality, as done in [14], [19]–[21]. Therefore, the Hamming
distances between the rows (users) of the databases become
crucial in our analyses, as is often the case in the adversarial
channel literature [27].

The organization of this paper is as follows: We formulate
the problem in Section II. We state our main result on the
adversarial matching capacity and prove its achievability part
in Section III. Next, we prove the converse part in Section IV.
Finally, in Section V the results and ongoing work are dis-
cussed.
Notation: [n] denotes the set of integers {1, ...,n}. We denote
matrices with uppercase bold letters and for a matrix D, its
(i, j)th entry with Di, j. Furthermore, by An, we denote a row
vector consisting of scalars A1, . . . ,An and the indicator of
event E by 1E . H denotes Shannon’s entropy [28, Chapter
2]. The logarithms, unless stated explicitly, are in base 2.

II. PROBLEM FORMULATION

Throughout this work, we utilize the following definitions,
some of which are similar to [14], [19]–[21], to formulate our
database matching problem.

Definition 1. (Unlabeled Database) An (mn,n, pX ) un-
labeled database is a randomly generated mn×n matrix
D = {Di, j ∈ X} with i.i.d. entries drawn according to the
distribution pX with a finite discrete support X= {1, . . . , |X|}.

Definition 2. (Adversary, Column Deletion Pattern) The
column deletion pattern Idel = {i1, i2, ..., id} ⊆ [n] is a vector
consisting of d entries, chosen by the “adversary” after ob-
serving the unlabeled database D. The parameter δ ≜ d/n is
called the deletion budget.

Different from [20], [21] where column repetitions (dele-
tions and replications) are considered, in this work, we focus

D(1) Row Shuffling
Θn

Column
Deletion

Adversary Idel

D(2)

Fig. 2. Relation between the unlabeled database D(1) and the column deleted
labeled one, D(2).

on a deletion-only setting. This is because the additional
replicas either have no effect on the matching performance
as in the noiseless case [20] or offer additional information
acting as a repetition code of random length in the noisy setting
and in turn, boost the matching performance [21]. Hence, it
is expected for any privacy mechanism that tries to hinder
the matching process not to allow the replication of entries.
Therefore in the adversarial repetition setting, it is natural to
focus on the deletion-only case.

Note that the column deletion pattern Idel, as described in
Definition 2, is not independent of the unlabeled database D, as
assumed in [19]–[21]. We further assume that deletions occur
columnwise, i.e., every row experiences the same column
deletion pattern. Here, Idel indicates which columns of D are
deleted. When j ∈ Idel, the jth column of D is said to be
deleted. Otherwise, it is said to be retained.

Definition 3. (Column Deleted Labeled Database) Let D(1)

be an (mn,n, pX ) unlabeled database. Let Idel = (i1, . . . , id) be a
column deletion pattern, Θn be a uniform permutation of [mn],
independent of (D(1), Idel). Given D(1) and Idel, D(2) is called
the column deleted labeled database if the respective (i, j)th

entries D(1)
i, j and D(2)

i, j of D(1) and D(2) have the following
relation:

D(2)
i, j =

{
E, if j ∈ Idel

D(1)
Θ
−1
n (i), j

if j /∈ Idel
(1)

where D(2)
i, j = E corresponds to D(2)

i, j being the empty string.
The ith row of D(2) is said to correspond to the Θ

−1
n (i)th

row of D(1), where Θn is called the labeling function.

The relationship between D(1) and D(2), as described in
Definition 3, is illustrated in Figure 2. Our main goal is to
estimate the labeling function Θn with D(1) and D(2) without
observing Idel. In other words, the deletion locations are
unknown.

In this work, we assume that there is no noise on the retained
entries after row shuffling and column deletions, as is often
done in the synchronization channel literature [29].

Note that in this setting, although the deletions are not
random, the matching error event is still random due to the
random natures of D(1) and Θn. Furthermore, since the deletion
indices are chosen in an adversarial fashion, we adopt a worst-
case near-exact recovery performance metric in the following
definition:



Definition 4. (Successful Matching Scheme) A matching
scheme is a sequence of mappings φn : (D(1),D(2)) 7→ Θ̂n
where D(1) is the unlabeled database, D(2) is the column
deleted labeled database and Θ̂n is the estimate of the correct
labeling function Θn. The scheme φn is said to be successful
against an adversary with a δ -deletion budget, if

Pr(∀Idel = (i1, . . . , inδ )⊆ [n],Θ̂n(J) ̸= Θn(J))
n→∞−→ 0 (2)

where the index J is drawn uniformly from [mn] and the
dependence of the matching scheme Θ̂n on the column deletion
index set Idel is omitted for brevity.

We stress that both in database matching and correlation
detection settings, the relationship between the row size mn,
the column size n and the database distribution parameters
are the parameters of interest [16]–[18]. Note that as the row
size mn increases for fixed column size n, matching becomes
harder. This is because for a given column size n, as the row
size mn increases, so does the probability of mismatch as a
result of having a larger candidate row set. Furthermore, as
stated in [16, Theorem 1.2], for distributions with parameters
constant in n and mn, the regime of interest is the logarithmic
regime where n∼ logmn. Thus, we utilize the database growth
rate introduced in [14] to characterize the relationship between
the row size mn and the column size n.

Definition 5. (Database Growth Rate) The database growth
rate R of an (mn,n, pX ) unlabeled database is defined as

R = lim
n→∞

1
n

logmn. (3)

Definition 6. (Achievable Database Growth Rate) Consider
a sequence of (mn,n, pX ) unlabeled databases, an adversary
with a δ -deletion budget and the resulting sequence of column
deleted labeled databases. A database growth rate R is said to
be achievable if there exists a successful matching scheme
when the unlabeled database has growth rate R.

Definition 7. (Adversarial Matching Capacity) The adver-
sarial matching capacity Cadv(δ ) is the supremum of the set
of all achievable rates corresponding to a database distribution
pX and an adversary with a δ -deletion budget.

In this paper, our main goal is to characterize the adversarial
matching capacity Cadv(δ ), by proposing matching schemes
and a tight upper bound on all achievable database growth
rates. Since we are interested in the supremum of achievable
rates, throughout this work, we will assume a positive database
growth rate, i.e., R > 0.

III. MAIN RESULT AND ACHIEVABILITY

In this section, we present our main result on the adversarial
matching capacity (Theorem 1). We prove the achievability
part of Theorem 1 in this section and the converse part in
Section IV.

0 0.2 0.4 0.6 0.8 1
0
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Fig. 3. Matching capacities C vs. deletion probability/budget (δ ) when X ∼
Unif(X), X = [5]. Notice that in this case q̂ = 0.2 and for δ > 1− q̂ = 0.8
the adversarial matching capacity Cadv(δ ) is zero, while the random matching
capacity Crandom(δ ) is positive.

Theorem 1. (Adversarial Matching Capacity) Consider a
database distribution pX and an adversary with a δ -deletion
budget. Then, the adversarial matching capacity is

Cadv(δ ) =

{
D(δ∥1− q̂), if δ ≤ 1− q̂
0, if δ > 1− q̂

(4)

where q̂ ≜ ∑x∈X pX (x)2 and D(.∥.) denotes the Kullback-
Leibler divergence [28, Chapter 2.3] between two Bernoulli
distributions with given parameters.

Before proceeding with the proof of Theorem 1, we first
compare the matching capacities under adversarial column
deletions and under random column deletions, as characterized
in [20].

Note that using [20, Theorem 1], we can argue that when
each column is deleted independently with probability δ ,
independent of the unlabeled database D(1), the “random”
matching capacity becomes

Crandom(δ ) = (1−δ )H(X). (5)

The matching capacities for random and adversarial dele-
tions as a function of the deletion probability/budget are illus-
trated in Figure 3. For δ ≤ 1− q̂, the matching capacity is sig-
nificantly reduced when the column deletions are adversarial
rather than random. Furthermore for δ > 1− q̂, the Cadv(δ )= 0
whereas Crandom(δ ) = (1−δ )H(X)> 0, suggesting that for
a deletion budget/probability δ > 1− q̂, successful matching
with a positive database growth rate is possible only when the
deletions are random.

The rest of this section is on the proof of the achievability
part of Theorem 1. In Section III-A, we discuss our histogram-
based deletion detection algorithm which is a modified version
of the one used in [20] and prove a stronger asymptotic
performance than in [20]. Then, in Section III-B, we prove
the achievability of Theorem 1 through the utilization of



the histogram-based detection algorithm and exact sequence
matching.

A. Histogram-Based Deletion Detection

We propose to detect the deletions by extracting
permutation-invariant features of the columns of D(1) and D(2),
similar to [20], [21]. Our histogram-based deletion detection
algorithm works as follows: First, we construct the histogram
matrices H(1) and H(2) where the jth column H(r)

j of H(r)

denotes the histogram of the jth column of D(r), r = 1,2. More
formally, for r = 1,2 we have

H(r)
i, j ≜

mn

∑
t=1

1[
D(r)

t, j =i
],∀ j (6)

where Kn denotes the column size of D(2).
Next, we find the estimate Îdel the column deletion pattern

Idel as follows: We start with the initialization Îdel =∅. Then
for all j ∈ [n], if the jth column H(1)

j of H(1) is absent in H(2),
we announce the jth column of D(1) to be deleted, assigning
Îdel← Îdel∪ j. Otherwise, we infer that the jth column of D(1)

is retained.
Observe that the only possibility of an error in the procedure

above is when H(1)
i = H(1)

j for some i, j ∈ [n] with i ∈ Idel and
j /∈ Idel. Therefore as long as H(1)

j are unique, our deletion
detection algorithm is error-free.

In the following lemma, we derive a sufficient condition
on the relationship between mn and n for the asymptotic
uniqueness of the column histograms.

Lemma 1. (Asymptotic Uniqueness of the Histograms) Let
H(1)

j denote the histogram of the jth column of D(1). Then,

Pr
(
∃i, j ∈ [n], i ̸= j,H(1)

i = H(1)
j

)
→ 0 as n→ ∞ (7)

if mn = ω(n
4

|X|−1 ).

Proof. See Appendix A.

Remark 1. Observe that the order relation derived in
Lemma 1 (mn = ω(n4/|X|−1)) is better than the one derived
in [20, Lemma 1] (mn = ω(n4)), where histograms are “col-
lapsed” for tractability in the Markov case. Although the
weaker order relation of [20] is still satisfied for any positive
database growth rate R > 0, the novel stronger result would be
of interest in the zero-rate regime, where mn is not necessarily
exponential in n.

B. Row Matching Scheme and Achievability

We are now ready to prove the achievability part of Theo-
rem 1.
Proof of Achievability of Theorem 1. We focus on δ ≤ 1− q̂
first. For a given pair of matching rows, WLOG, Xn

1 of D(1)

and Y Kn
l of D(2) with Θn(1) = l, let Pe ≜ Pr(Θ̂n(1) ̸= l) be the

probability of error of the following matching scheme:
1) Construct the histogram vectors H(1)

i and H(2)
j as described

above, where Kn = n(1− δ ) denotes the column size of
D(2).

2) Check the uniqueness of the columns H(1)
j j ∈ [n] of

H(1). If there are at least two which are identical, declare
a detection error whose probability is denoted by µn.
Otherwise, proceed with Step 3.

3) Construct the estimated column deletion pattern Îdel as
described above. Note that conditioned on Step 2, this step
is error-free.

4) Obtain D̃(1) from D(1) by discarding the columns whose
indices lie in Îdel. Note that at this step D̃(1) and D(2) have
the same size.

5) Match the lth row Y Kn
l of D(2) with the 1st row Xn

1 of D(1),
assigning Θ̂n(1) = l if the 1st row X̃Kn

1 of D̃(1) is the only
row of D̃(1) equal to Y Kn

l . Otherwise, declare a collision
error.

Let I(δ ) be the set of all deletion patterns with nδ deletions.
For the matching rows Xn

1 , Y k
l of D(1) and D(2), define the

pairwise adversarial collision probability between Xn
1 and Xn

i
for any i ∈ [mn]\{1} as

Pcol,i ≜ Pr(∃Îdel ∈ I(δ ) : Xi([n]\ Îdel) = Y Kn
l ) (8)

= Pr(∃Îdel ∈ I(δ ) : Xi([n]\ Îdel) = X1([n]\ Îdel)). (9)

where Xi([n]\ Îdel) is the vector obtained from Xn
i by discarding

the elements whose indices lie in Îdel.
Note that the event ∃Îdel ∈ I(δ ) : Xi([n]\ Îdel) = X1([n]\ Îdel)

is equivalent to the case when the Hamming distance between
Xn

i and Xn
1 being upper bounded by nδ . In other words,

Pcol,i = Pr(dH(Xn
1 ,X

n
i )≤ nδ ) (10)

where dH denotes the Hamming distance. More formally,

dH(Xn
1 ,X

n
i ) =

n

∑
j=1

1[X1, j ̸=Xi, j ] (11)

Due to the i.i.d. nature of the database elements, dH(Xn
1 ,X

n
i )∼

Binom(n,1− q̂), where q̂ = ∑x∈X pX (x)2. Thus, for any δ ≤
1− q̂, using Chernoff bound [30, Lemma 4.7.2], we have

Pcol,i = Pr(dH(Xn
1 ,X

n
i )≤ nδ ) (12)

≤ 2−nD(δ∥1−q̂) (13)

Thus, given the correct labeling for Y k
l ∈D(2) is Xn

1 ∈D(1),
the probability of error Pe can be bounded as

Pe ≤ Pr(∃i ∈ [mn]\{1} : X̃Kn
i = X̃Kn

1 ) (14)

≤
2nR

∑
i=2

Pcol,i +µn (15)

≤ 2nRPcol,2 +µn (16)

where (16) follows from the fact the the rows are i.i.d. and
thus Pcol,i = Pcol,2, ∀i ∈ [mn] \ {1}. Combining (13)-(16), we
get

Pe ≤ 2nR Pr(dH(Xn
1 ,X

n
i )≤ nδ )+µn (17)

≤ 2nR2−nD(δ∥1−q̂)+µn (18)

= 2−n[D(δ∥1−q̂)−R]+µn (19)



By Lemma 1, µn→ 0 as n→∞. Thus, we argue that any rate
R satisfying

R < D(δ∥1− q̂) (20)

is achievable. The rest of the proof trivially follows from
the non-negativity of achievable database growth rate for any
δ ≥ 1− q̂.

We stress that the use of a rowwise matching scheme
after the deletion detection phase instead of matching at the
database level does not cause a performance loss in terms of
achieving the adversarial matching capacity, as we prove in
Section IV.

IV. CONVERSE

In this section, we show that the achievable rate derived in
Section III is in fact tight, by proving a tight upper bound on
the all achievable database growth rates and in turn on the
adversarial matching capacity Cadv(δ ).

Proof of Converse of Theorem 1. Let R be the database
growth rate, δ be the deletion budget of the adversary and
Pe be the probability that the scheme is unsuccessful for
a uniformly-selected row, WLOG Xn

1 . In other words, let
Pe ≜ Pr(Θ̂n(1) ̸= Θn(1))→ 0 as n→ ∞. Then, recalling (10),
we have

Pe = Pr(∃i ∈ [mn]\{1} : dH(Xn
1 ,X

n
i )≤ nδ ) (21)

= 1−Pr(∀i ∈ [mn]\{1} : dH(Xn
1 ,X

n
i )> nδ ) (22)

= 1−
mn

∏
i=2

Pr(dH(Xn
1 ,X

n
i )> nδ ) (23)

= 1−
mn

∏
i=2

[1−Pr(dH(Xn
1 ,X

n
i )≤ nδ )] (24)

= 1− [1−Pr(dH(Xn
1 ,X

n
2 )≤ nδ )]mn−1 (25)

where (22)-(25) follow from the fact that the rows of D(1) are
i.i.d. Since Dn,2 ∼ Binom(n,1− q̂), for δ ≤ 1− q̂, from [30,
Lemma 4.7.2], we obtain

Pr(Dn,2 ≤ nδ )≥ 2−nD(δ∥1−q̂)
√

2n
(26)

Plugging (26) into (25), we get

Pe ≥ 1−

[
1− 2−nD(δ∥1−q̂)

√
2n

]mn−1

(27)

Now let y =− 2−nD(δ∥1−q̂)
√

2n
∈ (−1,0). Then, we get

Pe ≥ 1− (1+ y)mn−1 (28)

Since y≥−1, and mn ∈ N, we have

1+ y(mn−1)≤ (1+ y)mn−1 ≤ ey(mn−1) (29)

where the LHS of (29) follows from Bernoulli’s inequality [31,
Theorem 1] and the RHS of (29) follows from the fact that

∀x ∈ R, ∀r ∈ R≥0 (1+ x)r ≤ exr (30)

Thus, we get

Pe ≥ 1− (1+ y)mn−1 (31)

≥ 1− ey(mn−1) (32)
≥ 0 (33)

since y< 0, mn−1> 0. Note that since Pe→ 0, by the Squeeze
Theorem [31, Theorem 2], we have

lim
n→∞

1− ey(mn−1)→ 0 (34)

This, in turn, implies ymn→ 0 since the exponential function
is continuous everywhere. In other words,

lim
n→∞
− 2−nD(δ∥1−q̂)

√
2n

mn→ 0 (35)

Equivalently, from the continuity of the logarithm function,
we get

lim
n→∞
−nD(δ∥1− q̂)+ logmn−

1
2

log(2n)→−∞ (36)

lim
n→∞
−n

[
D(δ∥1− q̂)− 1

n
logmn +

log(2n)
2n

]
→−∞ (37)

lim
n→∞

[
D(δ∥1− q̂)− 1

n
logmn +

log(2n)
2n

]
≥ 0 (38)

This implies

D(δ∥1− q̂)≥ lim
n→∞

1
n

logmn (39)

= R (40)

finishing the proof for δ ≤ 1− q̂. Thus, combining with the
achievability result of Section III-B, we have showed that

Cadv(δ ) = D(δ∥1− q̂) (41)

for δ ≤ 1− q̂.
We argue that for δ > 1− q̂, the adversarial matching

capacity is zero, by using two facts: i) Since any increase in the
adversarial deletion budget hinders matching, the adversarial
matching capacity satisfies

Cadv(δ )≤Cadv(δ ′), ∀δ ′ ≤ δ (42)

and ii) Cadv(1− q̂) = 0. Thus, ∀δ > 1− q̂, Cadv(δ ) = 0. This
finishes the proof.

V. CONCLUSION

In this work, we have investigated the database matching
problem under adversarial column deletions. We have showed
that, similar to the random repetitions setting, column his-
tograms could be used to detect the column deletion pattern.
Then, we proposed an exact sequence matching algorithm
and derived an achievable database growth rate. Finally, we
proved that this achievable database growth rate is in fact tight
and thus obtained a complete single-letter characterization of
the adversarial matching capacity. Comparing adversarial and
random matching capacities, we showed that the adversarial
matching capacity is significantly lower than the random
matching capacity. Furthermore, we observed that when the



deletion probability/budget exceeds a threshold, which is based
on the database distribution, the adversarial matching capacity
becomes zero, while the random matching capacity is strictly
positive. Overall, our results show that adopting an adversarial
privacy mechanism, instead of random sampling, can hinder
the matching of two correlated databases, providing insight
into privacy-preserving publication of user microdata.
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[12] J. Błażewicz, P. Formanowicz, M. Kasprzak, P. Schuurman, and G. J.
Woeginger, “DNA Sequencing, Eulerian Graphs, and the Exact Perfect
Matching Problem,” in International Workshop on Graph-Theoretic
Concepts in Computer Science. Springer, 2002, pp. 13–24.

[13] D. Cullina, P. Mittal, and N. Kiyavash, “Fundamental Limits of Database
Alignment,” in Proc. of IEEE International Symposium on Information
Theory (ISIT), 2018, pp. 651–655.

[14] F. Shirani, S. Garg, and E. Erkip, “A Concentration of Measure Ap-
proach to Database De-anonymization,” in Proc. of IEEE International
Symposium on Information Theory (ISIT), 2019, pp. 2748–2752.

[15] O. E. Dai, D. Cullina, and N. Kiyavash, “Database Alignment with
Gaussian Features,” in The 22nd International Conference on Artificial
Intelligence and Statistics. PMLR, 2019, pp. 3225–3233.

[16] D. Kunisky and J. Niles-Weed, “Strong recovery of geometric planted
matchings,” in Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 2022, pp. 834–876.

[17] R. Tamir, “Joint Correlation Detection and Alignment of Gaussian
Databases,” arXiv preprint arXiv:2211.01069, 2022.

[18] Z. K and B. Nazer, “Detecting Correlated Gaussian Databases,” in 2022
IEEE International Symposium on Information Theory (ISIT), 2022, pp.
2064–2069.

[19] S. Bakirtas and E. Erkip, “Database Matching Under Column Deletions,”
in Proc. of IEEE International Symposium on Information Theory (ISIT),
2021, pp. 2720–2725.

[20] ——, “Matching of Markov Databases Under Random Column Rep-
etitions,” in 2022 56th Asilomar Conference on Signals, Systems, and
Computers, 2022.

[21] ——, “Seeded Database Matching Under Noisy Column Repetitions,”
in 2022 IEEE Information Theory Workshop (ITW), 2022.

[22] S. Chen, S. Jiang, Z. Ma, G. P. Nolan, and B. Zhu, “One-Way Matching
of Datasets with Low Rank Signals,” arXiv preprint arXiv:2204.13858,
2022.

[23] I. Csiszar and P. Narayan, “The capacity of the arbitrarily varying chan-
nel revisited: positivity, constraints,” IEEE Transactions on Information
Theory, vol. 34, no. 2, pp. 181–193, 1988.

[24] B. Kumar Dey, S. Jaggi, M. Langberg, A. D. Sarwate, and C. Wang, “The
Interplay of Causality and Myopia in Adversarial Channel Models,”
in 2019 IEEE International Symposium on Information Theory (ISIT),
2019, pp. 1002–1006.

[25] I. A. Kash, M. Mitzenmacher, J. Thaler, and J. Ullman, “On the Zero-
Error Capacity Threshold for Deletion Channels,” in 2011 Information
Theory and Applications Workshop. IEEE, 2011, pp. 1–5.

[26] M. Langberg, S. Jaggi, and B. K. Dey, “Binary causal-adversary chan-
nels,” in 2009 IEEE International Symposium on Information Theory,
2009, pp. 2723–2727.

[27] R. Bassily and A. Smith, “Causal Erasure Channels,” in Proceedings of
the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms.
SIAM, 2014, pp. 1844–1857.

[28] T. M. Cover, Elements of Information Theory. John Wiley & Sons,
2006.

[29] M. Cheraghchi and J. Ribeiro, “An Overview of Capacity Results for
Synchronization Channels,” IEEE Transactions on Information Theory,
vol. 67, no. 6, pp. 3207–3232, 2021.

[30] R. B. Ash, Information Theory. Courier Corporation, 2012.
[31] D. A. Brannan, A First Course in Mathematical Analysis. Cambridge

University Press, 2006.
[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms. MIT press, 2022.

APPENDIX

A. Proof of Lemma 1

For brevity, we let

µn ≜ Pr(∃i, j ∈ [n], i ̸= j,H(1)
i = H(1)

j ). (43)

Notice that since the entries of D(1) are i.i.d., H(1)
i are i.i.d.

Multinomial(mn, pX ) random variables. Then,

µn ≤ n2 Pr(H(1)
1 = H(1)

2 ) (44)

= n2
∑
h|X|

Pr(H(1)
1 = h|X|)2 (45)

where the sum is over all vectors of length |X|, summing up
to mn. Let mi ≜ h(i), ∀i ∈ X. Then,

Pr(H(1)
1 = h|X|) =

(
mn

m1,m2, . . . ,m|X|

) |X|
∏
i=1

pX (i)mi (46)

Hence, we have

µn ≤ n2
∑

m1+···+m|X|=mn

(
mn

m1,m2, . . . ,m|X|

)2 |X|

∏
i=1

pX (i)2mi (47)

where
( mn

m1,m2,...,m|X|

)
is the multinomial coefficient correspond-

ing to the |X|-tuple (m1, . . . ,m|X|) and the summation is over
all possible non-negative indices m1, . . . ,m|X| which add up to
mn.

From [28, Theorem 11.1.2], we have

|X|

∏
i=1

pX (i)2mi = 2−2mn(H(p̃)+D(p̃∥pX )) (48)



where p̃ is the type corresponding to |X|-tuple (m1, . . . ,m|X|):

p̃ =

(
m1

mn
, . . . ,

m|X|
mn

)
(49)

From Stirling’s approximation [32, Chapter 3.2], we get(
mn

m1,m2, . . . ,m|X|

)2

≤ e2

(2π)|X|
m1−|X|

n Π
−1
p̃ 22mnH(p̃) (50)

where Π p̃ = ∏
|X|
i=1 p̃(i).

Combining (47)-(50), we get

µn ≤
e2

(2π)|X|
n2m1−|X|

n ∑
p̃

Π
−1
p̃ 2−2mnD(p̃∥pX ) (51)

Let

T = ∑
p̃

Π
−1
p̃ 2−2mnD(p̃∥pX ) = T1 +T2 (52)

where

T1 = ∑
p̃:D(p̃∥pX )>

ε2n
2loge 2

Π
−1
p̃ 2−2mnD(p̃∥pX ) (53)

T2 = ∑
p̃:D(p̃∥pX )≤

ε2n
2loge 2

Π
−1
p̃ 2−2mnD(p̃∥pX ). (54)

Here, εn, which is described below in more detail, is a small
positive number decaying with n.

First, we look at T2. From Pinsker’s inequality [28, Lemma
11.6.1], we have

D(p̃∥pX )≤
ε2

n

2loge 2
⇒ TV(p̃, pX )≤ εn (55)

where TV denotes the total variation distance. Therefore∣∣∣∣{ p̃ : D(p̃∥pX )≤
ε2

n

2loge
}
∣∣∣∣≤ |{p̃ : TV(p̃, pX )≤ εn}|

= O(m|X|−1
n ε

|X|−1
n ) (56)

where the last equality follows from the fact in a type we
have |X|−1 degrees of freedom, since the sum of the |X|-tuple
(m1, . . . ,m|X|) is fixed. Furthermore, when TV(p̃, pX )≤ εn, we
have

Π p̃ ≥
|X|

∏
i=1

(pX (i)− εn)≥ΠpX − εn

|X|

∑
i=1

∏
j ̸=i

pX ( j) (57)

Hence

Π
−1
p̃ ≤

1

ΠpX − εn

|X|
∑

i=1
∏
j ̸=i

pX ( j)

(58)

and

T2 ≤
1

ΠpX − εn

|X|
∑

i=1
∏
j ̸=i

pX ( j)

O(m|X|−1
n ε

|X|−1
n ) (59)

= O(m|X|−1
n ε

|X|−1
n ) (60)

for small εn.
Now, we look at T1. Note that since mi ∈ Z+, we have

Πp̃ ≤ m|X|n , suggesting the multiplicative term in the sum-
mation in (53) is polynomial with mn. If mi = 0 we can
simply discard it and return to Stirling’s approximation with
the reduced number of categories. Furthermore, from [28,
Theorem 11.1.1], we have∣∣∣∣{ p̃ : D(p̃∥pX )>

ε2
n

2loge 2
}
∣∣∣∣≤ |{p̃}| (61)

≤ (mn +1)|X| (62)

suggesting the number of terms which we take the summation
over in (53) is polynomial with mn as well. Therefore, as long
as mnε2

n → ∞, T1 has a polynomial number of elements which
decay exponentially with mn. Thus

T1→ 0 as n→ ∞ (63)

Define

Ui = e2(2π)−|X|m1−|X|
n Ti, i = 1,2 (64)

and choose εn = m
− 1

2
n Vn for some Vn satisfying Vn = ω(1)

and Vn = o(m1/2
n ). Thus, U1 vanishes exponentially fast since

mnε2
n =V 2

n → ∞ and

U2 = O(ε
|X|−1
n ) = O(m(1−|X|)/2

n V (|X|−1)
n ). (65)

Combining (63)-(65), we have

U =U1 +U2 = O(m(1−|X|)/2
n V (|X|−1)

n ) (66)

and we get

µn ≤ n2O(m(1−|X|)/2
n V (|X|−1)

n ) (67)

By the assumption m = ω(n
4

|X|−1 ), we have mn = n
4

|X|−1 Zn

for some Zn satisfying lim
n→∞

Zn = ∞. Now, taking Vn = o(Z1/2
n )

(e.g. Vn = Z1/3
n ), we get

µn ≤ O(n2n−2Z(1−|X|)/2
n V (|X|−1)

n ) = o(1) (68)

Thus m = ω(n
4

|X|−1 ) is enough to have µn→ 0 as n→∞.
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