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Fundamental Limits of Distributed

Optimization over Multiple Access Channel

Shubham K Jha

Abstract

We consider distributed optimization over a d-dimensional space, where K remote clients send

coded gradient estimates over an additive Gaussian Multiple Access Channel (MAC) with noise variance

σ2

z
. Furthermore, the codewords from the clients must satisfy the average power constraint P , resulting in

a signal-to-noise ratio (SNR) of KP/σ2

z
. In this paper, we study the fundamental limits imposed by MAC

on the convergence rate of any distributed optimization algorithm and design optimal communication

schemes to achieve these limits. Our first result is a lower bound for the convergence rate, showing that

communicating over a MAC imposes a slowdown of
√

d/ 1

2
log(1 + SNR) on any protocol compared

to the centralized setting. Next, we design a computationally tractable digital communication scheme

that matches the lower bound to a logarithmic factor in K when combined with a projected stochastic

gradient descent algorithm. At the heart of our communication scheme is carefully combining several

compression and modulation ideas such as quantizing along random bases, Wyner-Ziv compression,

modulo-lattice decoding, and amplitude shift keying. We also show that analog schemes, which are

popular due to their ease of implementation, can give close to optimal convergence rates at low SNR

but experience a slowdown of roughly
√
d at high SNR.

I. INTRODUCTION

In over-the-air distributed optimization [2], [3], the server wants to minimize an unknown

function by getting gradient updates from remote clients. In this setting, the clients must com-

municate their gradient updates over-the-air, namely through a wireless communication channel,

to the server. Due to its applications in federated learning [4], many interesting schemes have been
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recently proposed for this problem [5]–[12]. However, a clear understanding of the fundamental

limits of over-the-air distributed optimization is not present. In this paper, we close this gap

by characterizing the fundamental limits imposed on first-order distributed optimization due

to over-the-air gradient communication. We also design computationally tractable over-the-air

optimization protocols which are almost optimal.

We consider the setting where a server wants to minimize an unknown smooth convex function

with domain in R
d by making gradient queries to K clients. Each of the K clients can generate

gradient estimates within a bounded Euclidean distance σ of the true gradient. The clients can

communicate their gradient estimates over an additive Gaussian Multiple Access Channel (MAC)

with variance σ2
z . Furthermore, each client’s communication must also satisfy a power constraint

of P , which results in a signal-to-noise ratio (SNR) of KP/σ2
z . We establish an information-

theoretic lower bound on the convergence rate of any over-the-air optimization protocol. Our

lower bound shows that there is

(

√

d
min( 1

2
log(1+SNR),d)

)

factor slowdown in convergence rate

of any over-the-air optimization protocol when compared to that of centralized setting. Next,

we design a digital, computationally tractable communication scheme that, combined with the

standard projected stochastic gradient descent (PSGD) algorithm, almost matches this lower

bound.

We elaborate on several key ideas in our communication scheme. In this scheme, we divide

the clients into two halves and send the gradients updates from the first half of the clients to form

a preliminary estimate. We then employ Wyner-Ziv compression to send gradient updates from

the second half of clients. This first step is crucial in getting close-to-optimal dependence on

the parameter σ in the convergence rate. We also employ quantizing along random bases to get

optimal dependence on the dimension d in the convergence rate. Finally, to send a d-dimensional

gradient update in a minimum number of channel uses, we use lattice encoding and a modulo

lattice decoder, and amplitude shift keying (ASK) modulation.

We also derive tight lower and upper bounds on the performance of analog schemes. Our

bounds show that analog schemes are close to the optimal performing schemes at low SNR, but

they are highly suboptimal at high SNR and have a slowdown of
√
d as SNR tends to infinity.

Table I provides a concise summary of all our results.

Our work is closely related to [13] and [14]. [13], too, studies fundamental limits of over-the-

air optimization, but they do so in the single client setting and when the communication channel

is the more straightforward additive Gaussian noise channel. The application of distributed
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TABLE I: Convergence rates of our proposed schemes for large K, N , and for 1
2
log(1 + SNR)

less than d.

Lower Bound Proposed Scheme Lower Bound Proposed Scheme
(General) (General) (Analog) (Analog)

Dσ√
KN

·
√

d
1
2
log(1 + SNR)

D
√
Bσ√

KN
·
√

d(logK + log logN)
1
2
log(1 + SNR)

Dσ√
KN

·
√

d

SNR

DB√
KN

·
√

d

SNR

(Theorem III.3) (Theorem IV.3) (Theorem V.2) (Theorem V.3)

optimization considered in [14, Section 5] is similar to ours. However, in their setup, the K

remote clients can perfectly communicate any update up to r bits. While the more complicated

channel considered in this paper prohibits the direct application of schemes from these papers,

we build on the ideas proposed in these two papers to come up with our almost optimal scheme.

In a slightly different direction, distributed optimization with compressed gradient estimates

has also been extensively studied in recent years (see, for instance, [15]–[33]). Here gradient

compression is employed to mitigate the slowdown in convergence when full gradients are

communicated.

The rest of the paper is organized as follows. We setup the problem in the next section and

provide basic preliminaries and lower bounds in Section III. Section IV and V contain our

proposed schemes and the associated results. All the proofs are given in Section VI. Section VII

contains the experiments, followed by the concluding remarks in Section VIII.

II. SETUP

Consider the following distributed optimization problem. A server wants to minimize an

unknown convex function f : X → R over its domain X ⊂ R
d using gradient updates from

K remote clients. At each iteration, the server queries the clients for gradient estimates of the

unknown function. On receiving the query, each of the K clients generates a stochastic gradient

estimate of the function at the queried point, encodes it, and transmits it over a MAC. The output

of this channel is available to the server, which it first decodes and then uses it to update the

query point for the next iteration using a first-order optimization algorithm (such as Stochastic

Gradient Descent). This setting models practical distributed optimization scenarios arising in

federated learning and is of independent theoretical interest.
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Our goal is twofold: 1) To understand the fundamental limits imposed by communicating gra-

dients over a MAC on the convergence rate; 2) To design the encoding algorithms at the clients,

and the decoding and optimization algorithm at the server to come close to the aforementioned

fundamental limit.

A. Functions and gradient estimates

a) Convex and smooth function family: We assume that the server wants to minimize an

unknown function f which is convex and L-smooth functions. That is, for all1 x, y ∈ X ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), (1)

f(y)− f(x) ≤ ∇f(x)⊤(y − x) +
L

2
‖y − x‖2. (2)

b) Stochastic gradient estimates: We assume that client Ck, k ∈ [K], outputs a noisy

gradient ĝk(x) at a query point x ∈ X which satisfies the following standard conditions:

E [ĝk(x)|x] = ∇f(x), (unbiasedness) (3)

E
[

‖ĝk(x)−∇f(x)‖2|x
]

≤ σ2, (bounded deviation) (4)

‖ĝk(x)‖2 ≤ B2. (almost surely bounded) (5)

Denote by O the set of tuple (f, C) of functions and clients satisfying the conditions (1), (2),

(3), (4) and (5).

B. Communication schemes and the multiple access channel

For the tth query xt made by the server, clients C1, . . . , CK generate gradient estimates

ĝ1,t, . . . , ĝK,t, respectively. In our setting, these gradient estimates are not directly available to the

server. These are first encoded by the clients for error correction and then transmitted over MAC,

and only the output of the channel is available to the server. For all the clients, we consider

encoders of length ℓ with average power less than P . That is, the encoder ϕk : R
d × U → R

ℓ

used by client Ck satisfies the power constraint

E
[

‖ϕk(ĝk,t, U)‖2
]

≤ ℓP, ∀k ∈ [K], (6)

1‖ · ‖ refers to the standard euclidean norm.
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where U is string of public randomness available to all the k clients’ encoders and the server’s

decoder, and U is the space of such random strings. For notational convenience, we will drop

the argument U of ϕk in the rest of the paper.

The encoded codewords {ϕk(ĝk,t)}Kk=1 are sent over MAC using ℓ channel uses. The server

receives the channel output Yt ∈ R
ℓ given by

Yt(j) =

K
∑

k=1

ϕk(ĝk,t)(j) + Zt(j), ∀j ∈ [ℓ], (7)

where Zt(j) is Gaussian distributed with mean 0 and variance σ2
z . We denote the signal-to-noise

ratio by SNR :=
KP

σ2
z

.

The decoder ψ : Rℓ × U → R
d at the server projects back the ℓ-length channel output to a

vector in R
d, which the optimization algorithm uses to update the query point.

Any tuple of mappings (ϕ1, . . . , ϕk, ψ), is said to be a (d, ℓ, P,K)-communication scheme if

ϕk, k ∈ [K], and ψ are described as above. Denote by Qℓ the set of all possible (d, ℓ, P,K)-

communication schemes.

C. Over-the-air optimization over MAC

We now describe the optimization algorithm π interacting with the tuple (ϕ1, . . . , ϕk, ψ) ∈ Qℓ.

At iteration t, the optimization algorithm uses all the previous query points, {xt′}t−1
t′=1, and the

decoded gradient estimates, {ψ(Yt′)}t−1
t′=1, to decide on the query point xt ∈ X . The server then

queries the clients at the point xt, resulting in a gradient estimate ψ(Yt). This continues for T

iterations, after which the algorithm outputs a point xT ∈ X .
Denote by ΠT,ℓ the set of all optimization algorithms π making T queries to the clients and

interacting with a (d, ℓ, P,K)-communication scheme.

For an optimization algorithm π ∈ ΠT,ℓ and a communication scheme Q ∈ Qℓ, we call the

tuple (π,Q) an over-the-air optimization protocol. For a tuple of function and clients (f, C) ∈ O,

we measure the performance of any over-the-air optimization protocol (π,Q) by the convergence

error

E(f, C, π, Q) := E [f(x̄T )]−min
x∈X

f(x).

We will study this error when the total number of channel uses, Tℓ, is restricted to be at most

N . We can use communication schemes of arbitrary length ℓ. Note, however, that to increase

the length ℓ, we must decrease the number of queries T , since the total number of channel uses
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is limited to N. Conversely, to increase the number of queries, we must decrease the length of

the communication schemes. Let Λ(N) := {(π,Q) : π ∈ ΠT,ℓ, Q ∈ Qℓ, T ℓ ≤ N} be the set of

over-the-air optimization protocols with at most N channel uses. The smallest worst-case error

possible over all such protocols is given by

E∗(N,K, SNR,X ) := inf
(π,Q)∈Λ(N)

sup
(f,C)∈O

E(f, C, π, Q).

Let X := {X : supx,y∈X ‖x − y‖ ≤ D}. In this paper, we will characterize2 E∗(N,K, SNR) :=

supX∈X E∗(N,K, SNR,X ).

III. PRELIMINARIES AND AN INFORMATION THEORETIC LOWER BOUND

A. A benchmark from prior results

We recall the results for the centralized case, which we can model by setting SNR = ∞. In

this case, clients can perfectly communicate the gradient estimates in only one channel use.

Denote by E∗(N,K,∞) the smallest worst-case optimization in this case. A direct application

of [34, Theorem 6.3] leads to the following upper bound on E∗(N,K,∞) which serves as a

basic benchmark for our results in this paper.

Theorem III.1. E∗(N,K,∞) ≤
√
2Dσ√
KN

+
LD2

2N
.

B. A general convergence bound

Throughout the paper, we will use projected stochastic gradient descent (PSGD) as the first-

order optimization algorithm π; the overall over-the-air optimization protocol is described in

Algorithm 1. PSGD proceeds as stochastic gradient descent with the additional projection step

where it projects the updates back to domain X using the map ΓX (y) := minx∈X ‖x − y‖,

∀ y ∈ R
d. The convergence rate of Algorithm 1 is controlled by the square root of worst-case

root mean square error (RMSE) α(Q) and the worst-case bias β(Q) of the gradient estimates

decoded by the server. They are defined as follows:

α(Q) := sup
∀x,k∈[K],ĝk∈Rd:

E‖ĝk−∇f(x)‖2≤σ2

√

E [‖ψ(Y )−∇f(x)‖2],

2While our upper bound techniques can handle an arbitrary, fixed X , the supremum over X is to ensure that the lower bounds

are independent of the geometry of set X .
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1: for t = 0 to T − 1 do

2: xt+1=ΓX (xt − ηtψ(Yt))

3: Output x̄T = 1
T

∑T
t=1 xt

Algorithm 1: PSGD for over-the-air optimization

β(Q) := sup
∀x,k∈[K],ĝk∈Rd:

E‖ĝk−∇f(x)‖2≤σ2

‖E [ψ(Y )]−∇f(x)‖,

where for i ∈ [d], Y (i) satisfies (7) and the expectation is taken over all the randomness in the

set up. We now recall a lemma from [14] that upper bounds the convergence rate of Algorithm

1 in terms of α(Q) and β(Q).

Lemma III.2 ([14, Lemma II.2]). Let π be the PSGD algorithm making T queries to the clients

and Q be any communication scheme in Qℓ. Moreover, the over-the-air optimization protocol

uses the MAC channel N = T · ℓ times. Then, we have sup(f,O)∈O E(f, C, π, Q)

≤
√
2Dα(Q)
√

N/ℓ
+ β(Q)

(

D +
DB

α(Q)
√

2N/ℓ

)

+
LD2

2N/ℓ
.

with the learning rate ηt=min
{

1
L
, D
α(Q)

√
2T

}

, ∀t∈[T ].

As a result, it is enough to control the RMSE α and bias β of the communication scheme Q

to upper bound the overall convergence rate of the corresponding OTA optimization protocol.

Remark 1. We remark here that for the noiseless case, i.e., SNR = ∞, the choices for ϕ and ψ

are identity and averaging functions, respectively. Specifically, ϕ(ĝk,t) = ĝk,t and ψ(Y ) = Y/K

with Y =
∑

k ĝk,t. Further, due to no constraint on power, the d coordinates can be sent in

just one channel use, ℓ = 1. That gives α(Q) = σ√
K

and β(Q) = 0 retrieving the result in

Theorem III.1. Therefore, in a nutshell, the primary goal is to design an “efficient” distributed

mean estimator under MAC constraints in the sense that its performance parameters α, β, and ℓ

are close to these ideal values.

C. Lower bound for over-the-air optimization

We now present an information-theoretic lower bound for any over-the-air optimization pro-

tocol. We note that [13] shows a similar lower bound in the single client setting. We build on



8

their proof and extend the result to the more general setting of K clients. The key step involves

showing that over-the-air optimization over parallel independent additive Gaussian noise channel

is much easier than over MAC and then proceeding as in [13].

Theorem III.3. For some universal constant c ∈ (0, 1) and N ≥ d
K log(1+SNR)

, we have

E∗(N,K, SNR) ≥ cDσ√
KN

√

d

min{d, 1
2
log(1 + SNR)} .

Our lower bound states that, except for very high values of SNR, any over-the-air optimization

protocol will experience a slowdown by a factor of
√

d
1
2
log(1+SNR)

over the convergence rate of

centralized setting.

IV. A DIGITAL COMMUNICATION SCHEME FOR OVER-THE-AIR OPTIMIZATION

In this section, we present our main result: a digital communication scheme that, combined

with PSGD, will almost match the lower bound in Theorem III.3. Our scheme below is “uni-

versal” in the sense that the clients don’t require the knowledge of σ for the transmission of

gradient estimates. As pointed out in Remark 1, our focus should be on designing an efficient

distributed mean estimator.

A. Warm-up scheme: UQ-OTA

For ease of presentation, we first present a warm-up OTA optimization protocol, UQ-OTA,

based on uniform quantization. We will build on the components described below to present

our final digital scheme. Throughout the description of our schemes, we omit the subscript t for

convenience.

a) Uniform quantization.: Each client Ck first divides the gradient estimate ĝk by the

number of clients K to form g̃k and quantizes it using an unbiased v-level coordinate-wise

uniform quantizer v-CUQ. The v-CUQ takes ith coordinate g̃k(i)∈
[

−B
K
, B
K

]

as input and outputs

zk,i ∈ {0, ..., v − 1} as per the following rule:

zk,i =















⌈

(v−1)(Kg̃k(i)+B)
2B

⌉

, w.p.
g̃k(i)−⌊ g̃k(i)K(v−1)

2B
⌋

2B/(K(v−1))

⌊

(v−1)(Kg̃k(i)+B)
2B

⌋

, w.p.

⌈

g̃k(i)K(v−1)

2B

⌉

−g̃k(i)

2B/(K(v−1))

.

That is, the quantizer first finds the two consecutive quantization points containing g̃k(i) and

declares exactly one of the corresponding indices stochastically. The probability distribution is
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chosen in such a way that the output zk,i suffices to form an unbiased estimate of g̃k(i). Define

Zk := {zk,i : i ∈ [d]} as the quantized output for client k. We now process the quantized output

for transmission over MAC.

b) Lattice encoding and ASK modulation using M(Qk, v, p).: Client Ck sends Zk over MAC

by first encoding them onto a one-dimensional lattice and further modulating them onto an ASK

code. We describe below the entire procedure and refer to it by M(Qk, v, p) with parameters v

and p to be specified later.

For an integer3 p ≤ d, we first partition the set of coordinates [d] equally into blocks of

size p. That way, we have d/p blocks. For j ∈ [d/p], denote by Bj the jth block is given by

Bj = {(j − 1)p + 1, . . . , (j − 1)p + p}. For each Bj , the corresponding quantized values are

mapped onto a one-dimensional lattice Λw generated by a set of basis {w0, ..., wp−1} for some

positive integer w and is given by

Λw = {q1 · w0 + · · ·+ qp · wp−1 : 0 ≤ q1, ..., qp ≤ v − 1}.

Denote by τk,j the lattice point corresponding to block Bj for the client Ck is given by

τk,j = Zk(Bj(1)) + Zk(Bj(2)) · w + · · ·+ Zk(Bj(p)) · wp−1,

with w = K(v − 1) + 1. Note that this choice of w ensures successful recovery of the sum of

client updates at the server.

Definition IV.1. A code is an Amplitude Shift Keying (ASK) code satisfying the average power

constraint (6) if the range A of the encoder mapping is given by

A :=

{

−
√
P + (i− 1) · 2

√
P

r − 1
: i ∈ [r]

}

,

for some r ∈ N. Note that this is a code of length 1.Note that this is a code of length 1.

To satisfy the power constraints of MAC, we then modulate each τk,j to [−
√
P,

√
P ] using

an ASK code. Since each τk,j takes values in {0, ..., wp−1
K

}, we set the size of ASK code r =

wp−1
K

+ 1 to establish one-to-one correspondence. Consequently, the encoded value is given by

ϕk(j) = A(τk,j + 1), ∀j ∈ [d/p], ∀k ∈ [K]. The transmission takes place over MAC as in (7).

3For simplicity, we assume p divides d.
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c) Lattice decoding at server L(Y, v, p).: On the server side, our goal will be to compute an

unbiased estimate of sum
∑

k g̃k from Y . Note that the natural aggregation property of the MAC

channel makes it somewhat easier to recover this sum instead of individual Zks. This further

implies recovering the sum of quantized outputs
∑

k Zk which suffices to form the unbiased

estimate of
∑

k g̃k.

Towards that, each coordinate Y (j), j ∈ [ℓ], is first fed into a coordinate-wise MD decoder to

locate the nearest ASK codeword Ŷ (j) in {−K
√
P+(i−1)· 2

√
P

r−1
: i ∈ [r]}. Using the one-to-one

correspondence, the decoded point Ŷ (j) is then mapped back to the lattice4 Λw. Denote by ˆ̄τj

the decoded lattice point can be expressed as

ˆ̄τj = λ(Bj(1)) · w0 + · · ·+ λ(Bj(p)) · wp−1,

for some vector λ ∈ {0, ..., K(v − 1)}d. Therefore, to recover the desired sum, the server uses

a modulo-lattice decoder for each Bj , j ∈ [d/p], that successively outputs the corresponding

coordinates of λ. In particular, ∀i ∈ [p],

λ(Bj(i)) =
ˆ̄τj − λ(Bj(1)) · · · − λ(Bj(i− 1))wi−2

wi−1
mod w,

where for positive integers a, b,m and t such that a = m · b + t and 0 ≤ m ≤ b − 1, the

mod-operation is defined as a mod b = t. Note that such recovery is feasible with the current

choice of w as each coordinate of
∑

k∈[K] Zk is at most w − 1. The vector λ obtained above is

finally used to form ψ(Y ) to be used in Algorithm 1 as

ψ(Y ) = −B +
2B

K(v − 1)
· λ. (8)

Theorem IV.2. Let π be the optimization algorithm described in Algorithm 1, where ψ(Y ) is

obtained in (8) with v =
√
d+ 1. Then, for a universal constant c1 > 0 and integers p,K such

that d ≥ p ≥ 1 and K ≥ B2/σ2, we have

sup
(f,C)∈O

E(f, C, π, Q) ≤ c1DB√
KN

√

d

p
+
LD2d

2Np
,

where p =

⌊

log
(

1+
√

2KSNR

ln(KN1.5)

)

log(Kd)

⌋

.

Remark 2. We remark that both the encoding and decoding complexity of UQ-OTA is O(d).

4Note that under perfect decoding, this yields the sum of transmitted lattice points
∑

k
τk,j .



11

Remark 3. We remark that the size of A used for MAC transmission grows with the operating

SNR as r ≈ min(
√
d+ 1, ⌊1 +

√

2SNR/(K ln(KN1.5))⌋).

Remark 4. At large values of SNR ≥ 2(2d − 1), p ≈
1
2
log(1+SNR)

log(Kd)
. We remark that UQ-OTA incur

a (B/σ)
√

logK + log d+ log logN) factor slowdown in convergence rate compared to that of

centralized setting, which can still cause a slowdown for high-dimensional settings and large

values of B compared to σ.

B. Wyner-Ziv digital scheme: WZ-OTA

We are now ready to present our main digital scheme WZ-OTA which significantly improves

over the performance of UQ-OTA and is almost optimal.

In this scheme, we partition the clients C equally into two sets C1 and C2. In each iteration

t, the clients in C1 construct the side information at the server, and the remaining clients in C2
exploit this information to form a Wyner-Ziv estimate of ∇f(xt) at the server.

a) Side information construction: The clients in C1 use the previously described UQ-OTA

communication scheme to form a preliminary estimate (8) at the server. This requires ℓ = d/p

channel uses. Note that the clients in C2 send 0 during these transmissions.

The server divides this preliminary estimate by K/2 to form S and then rotates it by a random

matrix R to form the side information RS. Here R = 1/
√
dHD′ where H is the Walsh-

Hadamard5 matrix [35], and D′ is a random diagonal matrix with non-zero entries generated

uniformly and independently from {−1,+1}.

b) The Wyner-Ziv estimate: The clients in C2 use a Wyner-Ziv estimator boosted DAQ from

[14] to construct the final estimate, while those in C1 tranmit 0 in all channel uses. The boosted

DAQ uses the idea of correlated sampling between the input and the side information to reduce

quantization error. Specifically, for an input |x| ≤ M at the encoder and a corresponding side

information |y| ≤ M at the decoder, the boosted DAQ estimate is given by

X̂ = (2M/I)
∑

i∈[I]

(

1{Ui≤x} − 1{Ui≤y}
)

+ y, (9)

where each Ui ∼ unif[−M,M ] is a uniform random variable. Note that X̂ is an unbiased

estimate of x with MSE at most 2M |x− y|/I .

5Without loss of generality, we assume d is a power of 2. If not, we can zero-pad the gradient estimates and make the resulting

dimension power of 2; this only adds a constant multiplicative factor to our upper bounds.
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In our setting, each client Ck ∈ C2 first pre-processes its noisy estimate as g̃k =
2ĝk
K

and uses

shared randomness to draw I uniform random vectors Uk,i ∈ [−M,M ]d, i ∈ [I], independently.

The choice of M and I are crucial for our scheme and will be specified later. Using shared

randomness again, each g̃k is rotated using the same random matrix R used earlier. Each

coordinate of this rotated vector is then quantized to an element in {0, ..., I} as

Qk(j) =
∑

i∈[I]
1{Uk,i(j)≤Rg̃k(j)}, ∀j ∈ [d].

As an aside, it is instructive to note that under the event Vj = {|RS(j)| ≤M, |Rg̃k(j)| ≤ M},

Qk(j) suffices to form an unbiased estimate of Rg̃k(j) using boosted DAQ (see (9)). Coming

back to our scheme, each client k transmits the quantized vector Qk over the MAC channel by

first using the lattice encoder and then using ASK modulation. The entire operation is described

by the function M(Qk, v
′, p′) (see Section IV-A) with v′ = I + 1 and p′ to be specified shortly.

Note that there are ℓ = d/p′ channel uses per iteration.

At the server, the channel output Y ∈ R
d/p′ is passed through L(Y, v′, p′) to obtain λ. Following

the boosted DAQ estimator (9), the final output ψ(Y ) is given by

ψ(Y ) =
2M

I
R−1

∑

j∈[d]
(λ(j)− ω(j)) · ej +

K

2
S, (10)

where each ω(j) =
∑

k∈C2
∑

i∈[I] 1{Uk,i(j)≤RS(j)} can be realized at the server using shared ran-

domness and the available side-information. We next characterise the performance of WZ-OTA.

Theorem IV.3. Let c2, c3 be positive universal constants and π be the optimization algorithm

described in Algorithm 1, where ψ(Y ) is obtained using (10) with v = 7,M = c2B

K
√
d

√

ln(K1.5N)

and I = c2
√

ln(K1.5N). Then, for integers p, p′ and K such that K ≥ B2d/σ2 and d ≥ p, p′ ≥ 1,

we have

sup
(f,C)∈O

E(f, C, π, Q) ≤ c3D
√
Bσ√

KN

√

d

q
+
LD2d

2Nq
,

where 1
q
= 1

p
+ 1

p′
with p =

⌊

log
(

1+
√

KSNR

2 ln(KN1.5)

)

logK

⌋

and p′ =

⌊

log
(

1+
√

KSNR

2 ln(KN1.5)

)

logK+log logN

⌋

.

Remark 5. For large K,N , we remark that the WZ-OTA combined with PSGD is off only by

a factor of
√

(B/σ) (logK + log logN) from our lower bound. In comparison, from Theorem

IV.2, UQ-OTA combined with PSGD is off by a factor (B/σ)
√

(logK + log d+ log logN).

Quantization along random bases and Wyner-ziv compression allows WZ-OTA to improve by

factors log d and
√

B/σ over UQ-OTA.
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Remark 6. We remark that the random rotation step using the Walsh-Hadamard matrix can be

performed in nearly linear-time and, in particular, requires O(d log d) operations. Since this is

the most expensive step in WZ-OTA, the encoding and decoding complexity of WZ-OTA is

O(d log d).

V. PERFORMANCE OF ANALOG SCHEMES

Definition V.1. A communication scheme is an analog scheme if the encoder mapping ϕ is

linear, i.e., ϕ(x) = Ax for A ∈ R
ℓ×d and ℓ ≤ d. We allow random entries for A as long as the

randomness is independent of x. For the class of (d, ℓ, P,K)-communication schemes restricted

to using such analog schemes, we denote by E∗
analog(N,K, SNR) the corresponding min-max

optimization error. Clearly, E∗
analog(N,K, SNR) ≥ E∗(N,K, SNR).

We begin by proving a lower bound for analog communication schemes.

Theorem V.2. For some universal constant c ∈ (0, 1), and N ≥ d
K
(σ2 + σ2

SNR
), we have

E∗
analog(N,K, SNR) ≥

cD√
KN

√

dσ2 +
dσ2

SNR
.

The following lower bound also uses affine functions as difficult functions and builds on a

class of Gaussian oracles proposed, recently, towards proving a similar result in [13].

For our upper bound, we use the well-known scaled transmission scheme from [8]. In this

scheme, the gradient estimates are scaled-down by
√
dP/B by every client Ck ∈ C to satisfy the

power constraint in (6), sent coordinate-by-coordinate over d channel uses, and then scaled-up

by B/
√
dP and averaged at the server before using it in a gradient descent procedure. It is not

difficult to see the following upper bound.

Theorem V.3. Let π be the PSGD optimization algorithm and Q be the scaled transmission

communication scheme described above. Then, we have

sup
(f,C)∈O

E(f, C, π, Q) ≤
√
2D√
KN

√

dσ2 +
dB2

SNR
+
dLD2

2N
.

Remark 7. For SNR ≥ B2/σ2, Theorem V.2 shows that compared to the centralized setting

discussed in Theorem III.1, analog schemes will have a slowdown of
√
d. However, for small

values of SNR, an analog communication scheme combined with PSGD gives close optimal

performance. It matches the lower bound in Theorem III.3 up to a factor of B/σ. This observation

follows by noting that log(1 + SNR) ≈ SNR for small values of SNR.
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VI. PROOFS

Difficult functions for lower bound

For our lower bounds, we use affine functions as difficult functions which are 0-smooth and

are admissible in the class of L-smooth functions. These functions are considered in the same

spirit as in showing the lower bounds for convex, smooth optimization under communication

constraints [14]. We consider the domain X = {x ∈ R
d : ‖x‖∞ ≤ D/(2

√
d}, and consider the

following class of functions on X : For v ∈ {−1, 1}d, let

fv(x) :=
2σδ√
d

d
∑

i=1

∣

∣

∣

∣

x(i)− v(i)D

2
√
d

∣

∣

∣

∣

, ∀ x ∈ X ,

and x∗v be its minimizer. Note that the gradient of fv at x ∈ X is independent of x, i.e.,

−2σδv/
√
d. For any such fv, each coordinate of d-dimensional noisy gradient ĝk,t(i) takes

−σ/
√
d or σ/

√
d independently with probabilities (1+2δv(i))/2 and (1−2δv(i))/2, respectively.

The parameter δ > 0 is to be chosen later. Note that the above construction satisfies the set of

assumptions in (3), (4) and (5).

A. Proof of Theorem III.3

Draw V ∼ unif{−1, 1}d. With respect to the associated random function fV , each client

Ci chooses a quantizer ϕ to generate output ϕ(ĝk,t). Denote by Y T=(Y1, . . . , YT ) the vector

of ℓ-dimensional MAC channel outputs observed at the server. We follow a standard approach

to reduce the underlying optimization problem to a multiple hypothesis problem of estimating

V from output Y T . Denote by pY T

+i and pY T

−i the distribution of Y T given V (i) = +1 and

V (i) = −1, respectively. We can relate the expected gap to optimality to the average total

variational distance between pY T

+i and pY T

−i using the techniques from [36, Lemma 3, 4], which

in turn builds on [37], [38]. In particular,

E [fV (x̄T )− fV (x
∗
V )] =

d
∑

i=1

E

[

2σδ√
d

∣

∣

∣

∣

x̄T (i)−
V (i)D

2
√
d

∣

∣

∣

∣

]

≥ Dσδ

3d

d
∑

i=1

P

(

2σδ√
d

∣

∣

∣

∣

x(i)− V (i)D

2
√
d

∣

∣

∣

∣

≥ Dσδ

3d

)

≥ Dσδ

6

[

1− 1

d

d
∑

i=1

dTV

(

pY T

+i ,p
Y T

−i

)

]

,
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where the first inequality is Markov’s inequality and the second is the standard lower bound

on probability of error in binary hypothesis testing under uniform prior. The average total-

variational distance term can be further bounded using the convenient “plug-and-play” bound

from [38, Theorem 2]
(

1

d

d
∑

i=1

dTV

(

pY T

+i ,p
Y T

−i

)

)2

≤ 284Tδ2

d
max

v∈{−1,1}d
max
ϕ∈Q

I (ĝ1,1, ..., ĝK,1 ∧ Y1)

≤ 284Tδ2

d
·min( max

v∈{−1,1}d
max
ϕ∈Q

I (ϕ(ĝ1,1), ..., ϕ(ĝK,1) ∧ Y1) , Kdℓ),

where the first inequality holds for δ ∈ (0, 1/6), and the second inequality uses I (ĝ1,1, ..., ĝK,1 ∧ Y1) ≤
H(I (ĝ1,1, ..., ĝK,1 ∧ Y1)) ≤ Kdℓ and data-processing for the second. Further, we consider an

auxiliary generative model for obtaining the MAC output Y1. Specifically, we assume K parallel

Gaussian noise outputs given by

Yk,1(i) = ϕ(ĝk,1)(i) + Zk,1(i), i ∈ [ℓ], k ∈ [K],

where Zk,1 ∼ N (0, σ2
z/KIℓ). Note that the output Y1 and the sum of

∑

k∈[K] Yk,1 are statistically

equivalent. Thus, we can write

I (ϕ(ĝ1,1), ..., ϕ(ĝK,1) ∧ Y1) = I (ϕ(ĝ1,1), ..., ϕ(ĝK,1) ∧ Y1,1 + ...+ YK,1)

≤ I (ϕ(ĝ1,1), ..., ϕ(ĝK,1) ∧ Y1,1, ..., YK,1)

≤ Kℓ

2
log(1 + SNR).

Combining, we have for some universal constant c′,

E [fV (x̄T )− fV (x
∗
V )] ≥

Dσδ

3

[

1−

√

c′KNδ2min(d, 1
2
log(1 + SNR))

d

]

.

Setting δ =
√

d/(2c′ min(2d, log(1 + SNR))KN), we finally get for some universal constant

c ∈ (0, 1).

E [fV (x̄T )− fV (x
∗
V )] ≥

cDσ√
KN

√

d

min(d, 1
2
log(1 + SNR))

,

where we need N ≥ 18d/(c′′′K log(1+SNR)) in order to enforce δ ≤ 1/6. The proof is completed

by noting that E∗(N,K, SNR) ≥ E [fV (x̄T )− fV (x
∗
V )] .



16

B. A general recipe for upper bounds

We now provide the general recipe to prove our upper bounds. For the minimum-distance

decoder, denote by AN the event where all the ASK constellation points sent in N channel uses

are decoded correctly by the algorithm and by Ac
N its complement, i.e., Ac

N := ∪N
t=1{|Zt(1)| ≥

2
√
P/(r − 1)}, where Zt(1) is defined in (7). We have

E [f(x̄T )− f(x∗)] = E [(f(x̄T )− f(x∗)) | AN ] · P (AN) + E [(f(x̄T )− f(x∗)) | Ac
N ] · P (Ac

N)

≤ E [(f(x̄T )− f(x∗)) | AN ] +DB · P (Ac
N) .

Using Chernoff’s bound: P (Ac
N) ≤ N exp

(

− 2KSNR

(wp−1)2

)

≤ 1
K
√
N
, where the last line follows

by setting p = ⌊logw
(
√

2KSNR

ln(KN1.5)
+ 1
)

⌋. The first term under perfect decoding is bounded by

calculating the performance measures α(Q) and β(Q) for different schemes, and the proof is

completed using Lemma III.2.

C. Proof of Theorem IV.2

Note that the number of channel uses ℓ = d/p per iteration. Under perfect decoding, λ =
∑

k Qk

implying β(Q) = 0. Using conditional expectation, we also have

E





∥

∥

∥

∥

∥

∥

ψ(Yt)−
∑

k∈[K]

g̃k,t

∥

∥

∥

∥

∥

∥

2

 ≤ 4B2d

K(v − 1)2
.

Further, from (4) we have E

[

∥

∥

∥

∑

k∈[K] g̃k,t −∇f(xt)
∥

∥

∥

2
]

≤ σ2

K
. At last, using the inequality

(a+ b)2 ≤ 2(a2 + b2), setting v =
√
d+ 1, and the fact σ ≤ B, we get α2(Q) ≤ 10B2

K
.

D. Proof of Theorem IV.3

Based on the proof for [39, Lemma 4.1], we begin by a lemma capturing the performance of

boosted DAQ estimator.

Lemma VI.1. Given that x, y ∈ [−M,M ]d. For the boosted DAQ estimate X̂ in (9), we have

E[X̂ ] = x and E

[

‖X̂ − x‖2
]

≤ (2M/I)
√
d‖x− y‖.

We have λ(j)=
∑

k∈C2
∑

i∈[I] 1{Uk,i(j)≤Rg̃k(j)} under perfect decoding, which implies

Rψ = (2M/I)
∑

j∈[d]

∑

k∈C2

∑

i∈[I]
1{Uk,i(j)≤Rg̃k(j)}ej − 1{Uk,i(j)≤RS(j)}ej + (K/2)RS.
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Similar to the proof of Theorem IV.2, we first bound E
[

‖ψ(Y )−∑k∈C2 g̃k‖2
]

using conditional

expectation. Define ψk:=(2M/I)R−1
∑

j∈[d]
∑

i∈[I](1{Uk,i(j)≤Rg̃k(j)}−1{Uk,i(j)≤RS(j)})ej+S, such

that ψ=
∑

k ψk. We have

E



E





∥

∥

∥

∥

∥

∑

k∈C2

ψk −
∑

k∈C2

g̃k

∥

∥

∥

∥

∥

2

|R









=
∑

k∈C2

E
[

E
[

‖ψk − g̃k‖2|R
]]

+
∑

k 6=k′

E [E [〈ψk − g̃k, ψk′ − g̃k′〉|R]]

=
∑

k∈C2

E
[

‖ψk − g̃k‖2
]

+
∑

k 6=k′

E [〈E [ψk − g̃k|R] ,E [ψk′ − g̃k′|R]〉]

=
∑

k∈C2

E
[

‖ψk − g̃k‖2
]

+ E





(

∑

k∈C2

‖E [ψk − g̃k|R] ‖
)2


− E

[

∑

k∈C2

‖E [ψk − g̃k|R] ‖2
]

≤
∑

k∈C2

E
[

‖ψk − g̃k‖2
]

+
K

2

∑

k∈C2

E
[

‖E [ψk − g̃k|R] ‖2
]

, (11)

where the second equality uses the fact that ψk−g̃k and ψk′−g̃k′ are independent given R, and the

last line uses Jensen’s inequality. Now consider an event Vj = {|RS(j)| ≤ M, |Rg̃k(j)| ≤ M}
and use unitary property of R to write the first term in (11) as

∑

k∈C2

E
[

‖Rψk −Rg̃k‖2
]

(12)

=
∑

k∈C2

∑

j∈[d]
E
[

(Rψk(j)−Rg̃k(j))
2 · 1Vj

]

+ E

[

(Rψk(j)−Rg̃k(j))
2 · 1Vc

j

]

(13)

The first term in (12) is bounded as

∑

k∈C2

∑

j∈[d]
E
[

(Rψk(j)−Rg̃k(j))
2 · 1Vj

]

≤
∑

k∈C2

E
[

‖Rψk −Rg̃k‖2
]

=
∑

k∈C2

E
[

E
[

‖Rψk −Rg̃k‖2|S, ĝk
]]

≤ 2M
√
d

I

∑

k∈C2

E [‖Rg̃k −RS‖]

≤ 2M
√
d

I

∑

k∈C2

√

E [‖Rg̃k −RS‖2]

≤ 4M
√
d

KI

√

4σ2

K
+

32B2d

K(v − 1)2
+ σ2

≤ 4
√
3M

√
dσ

I
,
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where the first inequality uses 1Vj
≤ 1, the second inequality is due to Lemma VI.1, the third

inequality is Jensen’s inequality, the fourth one uses the fact that (K/2)S is the output of

UQ − OTA along with the proof of Theorem (IV.2), and the last inequality holds for parameters

v = 7, K ≥ B2d/σ2. For the second term in (12), each summand is bounded as

E

[

(Rψk(j)−Rg̃k(j))
2 · 1Vc

j

]

≤ 8M2 · P(Vc
j ) + 2E

[

(R(S − g̃k)(j))
2 · 1Vc

j

]

= 8M2 · P(Vc
j ) + 2E

[

(R(S − g̃k)(j))
2 · 1Vc

j
· 1V ′

j

]

+ 2E
[

(R(S − g̃k)(j))
2 · 1Vc

j
· 1V ′c

j

]

≤ 8M2 · P(Vc
j ) + 2M2 · P(Vc

j ) + 2E
[

(R(S − g̃k)(j))
2 · 1V ′c

j

]

where the first inequality uses the definition of ψk along with (a + b)2 ≤ 2(a2 + b2), and the

second equality follows from considering a new event V ′
j = {|R(S−g̃k)(j)| ≤M} and 1V ′c

j
≤ 1.

Note that for first two terms above P(Vc
j ) ≤ 4e−

dK2M2

8B2 . For the third term above, we note that

R(S− g̃k)(j) is sub-Gaussian with variance factor 16B2

dK2 (see for instance, [21, Lemma V.8]) and

use the following concentration result.

Lemma VI.2. [39, Lemma 8.1] For a sub-Gaussian random Z with variance factor σ2 and

every t ≥ 0, we have

E
[

Z2
1{|Z|>t}

]

≤ 2(2σ2 + t2)e−t2/2σ2

.

Using e−
dK2M2

8B2 ≤ e−
dK2M2

32B2 and the Lemma VI.2, we now have
∑

k∈C2

∑

j∈[d]
E

[

(Rψk(j)−Rg̃k(j))
2 · 1Vc

j

]

≤
(

64B2

K
+ 22M2dK

)

e−
dK2M2

32B2

≤ 26δ2, (14)

where for the last inequality, we choose M2= c2B2

K2d
ln
(

c2B√
Kδ

)

, for δ ∈
(

0, c2B√
K

)

. Further, the

second term in (11) is 0 under V and can be bounded under Vc using the Jensen’s inequality as
∑

k∈C2

E
[

‖E [ψk − g̃k|R] ‖2
]

=
∑

k∈C2

∑

j∈[d]
E
[

(E [Rψk(j)−Rg̃k(j)|R])2
]

=
∑

k∈C2

∑

j∈[d]
E

[

(E [Rψk(j)−Rg̃k(j)|R])2 · 1Vc
j

]

≤
∑

k∈C2

∑

j∈[d]
E

[

E
[

(Rψk(j)−Rg̃k(j))
2|R
]

· 1Vc
j

]

=
∑

k∈C2

∑

j∈[d]
E

[

(Rψk(j)−Rg̃k(j))
2 · 1Vc

j

]
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≤ 26δ2,

where the first equality uses the unitary property of R, the second uses the fact that boosted

DAQ yields an unbiased estimate (see Lemma VI.1), the first inequality follows from Jensen’s

inequality, and the last line uses the bound in (14). Finally, we set δ = c2B
K2N

. Combining all

above in (11) and using (4), we get

α2(Q) =
4
√
3Mσ

√
d

I
+ 26δ2 + 13Kδ2 +

2σ2

K

≤ 4
√
3Bσ

K
+

3σ2

K
,

where the last line holds whenever K ≥ B2d/σ2 and by choosing I =
⌈√

c2 ln(
c2B√
Kδ

)
⌉

. Also,

β2(Q) = ‖E [ψ(Y )]−
∑

k∈C2

g̃k‖2

≤
(

∑

k∈C2

‖E [Rψk −Rg̃k] ‖
)2

≤ K
∑

k∈C2

‖E [Rψk −Rg̃k] ‖2

= K
∑

k∈C2

∑

j∈[d]
E

[

(Rψk(j)−Rg̃k(j)) · 1Vc
j

]2

≤ K
∑

k∈C2

∑

j∈[d]
E

[

(Rψk(j)−Rg̃k(j))
2 · 1Vc

j

]

≤ 9Kδ2

=
9c5B

2

K3N2
,

where the first identity follows from (3), the first inequality is triangle inequality, the second

inequality uses Cauchy-Schwarz, the second identity uses unbiased nature of estimate under Vj ,

the third inequality is Jensen’s, and the last inequality uses the bound in (14). Since the final

output is obtained in d/p+d/p′ channel uses per iteration, where p =
⌊

logw

(

1 +
√

KSNR

2 ln(KN1.5)

)⌋

and p′ =
⌊

logw′

(

1 +
√

KSNR

2 ln(KN1.5)

)⌋

with w = 3K+1, w′ = KI/2+1. Using Lemma III.2, the

proof is completed.

VII. EXPERIMENTS

We demonstrate the performance of our proposed digital schemes UQ-OTA and WZ-OTA for

the following mean estimation task under MAC constraints.



20

104 105
0

200

400

600

B/σ

R
M

S
E
×√

ℓ

UQ-OTA

WZ-OTA

Fig. 1: Comparison of UQ-OTA and

WZ-OTA at SNR = 50dB and d = 32.
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Fig. 2: Comparison of UQ-OTA and

WZ-OTA at SNR = 75dB and d = 32.
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Fig. 3: Comparison of UQ-OTA and

WZ-OTA at SNR = 100dB and d = 64.
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Fig. 4: Comparison of UQ-OTA and

WZ-OTA at SNR = 180dB and d = 64.

Each client Ck has a d-dimensional vector ĝk, defined as ĝk = µ + U c
k , where µ ∈ [−1, 1]d

is a constant mean vector, and U c
k is a random vector whose coordinates are independently

drawn from a uniform random variable denoted as unif(−σ′, σ′). Note that E [ĝk] = µ and

E [‖ĝk − µ‖2] = dσ′
2

3
. The goal is to recover the sample average ḡ = 1

K

∑

k∈K ĝk which is an

unbiased estimate for the mean vector µ.

We compare the two proposed digital over-the-air schemes UQ-OTA and WZ-OTA for estimat-

ing ḡ. We evaluate the performance of our proposed schemes by RMSE between the µ and the

estimated sample average vector ˆ̄g formed by the server. We then plot a combined error metric

which is the product of RMSE and the square root of number of MAC channel transmissions.

Such a metric, in essence with the Lemma III.2, is a crucial term contributing to the overall
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Fig. 5: Comparison of UQ-OTA and

WZ-OTA at SNR = 100dB, B/σ = 1.36 ×
105, and d = 64.
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Fig. 6: Comparison of UQ-OTA and

WZ-OTA at SNR = 180dB, B/σ = 1.36 ×
105 , and d = 64.

performance analysis. Our codes are implemented in Python language and are available online

on GitHub [40].

We fix the number of clients K = 500 and conduct the experiments for dimensions d = 32 at

SNR = 50dB and 75dB, and for dimensions d = 64 at SNR = 100dB and 180dB. We fix the value

of σ′ = 0.05196 which gives a valid choice for σ to be 0.03
√
d. For all of these experiments,

we vary the B/σ for different choices of B. All the experiments are averaged over 20 runs for

statistical consistency.

In Figures 1, 2, 3, and 4, we observe that the WZ-OTA outperforms the UQ-OTA for large

values of B/σ. However, for lower values of B/σ, UQ-OTA performs better than WZ-OTA. This

observation is in accordance with the Remark 5.

In other direction, we note that for both the schemes, there is decrease in the error performance

for the same B/σ and dimension d as the SNR increases. This is because of better channel

decoding with increasing operating SNR.

Next, we demonstrate the error performance of both the digital schemes for increasing number

of clients. Specifically, we fix the values of ratio B/σ = 1.36×105 and the dimension d = 64. In

Figure 5, we show the error performances of our schemes at SNR = 100dB and for the number of

clients K = 200, 400, 600, 800, and 1000. In Figure 5, we show the same at SNR = 180dB and

for the number of clients K = 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000. As
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can be seen from both the figures, the error performance decreases with increase in the number

of clients.

VIII. CONCLUSION

We provide an almost complete characterization of the min-max convergence rate of over-the-

air distributed optimization. Our bounds show that a simple analog coding scheme is optimal

at low values of SNR, but they can be far from optimal at high values of SNR (Remark 7). This

observation mirrors the observation made by [13], albeit in the single client setting. Furthermore,

we design an explicit digital communication scheme based on lattice coding to match our lower

bound for all values of SNR. We hope our work inspires other explicit communication schemes

for similar distributed optimization problems. Our upper bound matches our lower bound up

to a nominal
√
logK + log logN factor (Theorem IV.3). Further closing the gap between our

upper and lower bound would lead to new communication schemes or lower bound techniques

for distributed optimization and is an exciting research direction.
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APPENDIX

MATHEMATICAL DETAILS CONCERNING REMARKS 4 AND 5

a) Sub-optimality of UQ-OTA at high SNR: Let x = SNR, y = K
2 ln(KN1.5)

. Then, we can

write

p ≥ log(1 +
√
xy)

log(Kd)
− 1

=
log (1 +

√
x)

log(Kd)
+

log
(

1
1+

√
x
+

√
xy

1+
√
x

)

log(Kd)
− 1

≥ log (1 +
√
x)

log(Kd)
+

log
(

min(1,
√
y)
)

log(Kd)
− 1

≥ log (1 +
√
x)

log(Kd)
− 1

https://arxiv.org/abs/2104.00979
http://arxiv.org/abs/2010.06562v5
https://github.com/shubhamjha-46/OTA_MAC/
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≥
1
2
log (1 + x)

log(Kd)
− 1,

where the first inequality holds due to the fact that ⌊p⌋ ≥ p−1, the second inequality is due to the

term inside the second convex combination of points 1 and
√
y, the third inequality holds for K

sufficiently large satisfying y ≥ 1, and the last one holds as log(1+
√
x) = 1

2
log(1+x+2

√
x) ≥

1
2
log(1 + x).

b) Approximation of p, p′ at large K,N and SNR: At large N , we have w ≤ w′ which

implies p ≥ p′ and thus q ≥ p′/2. Again, considering x = SNR, y = K
2 ln(KN1.5)

and proceeding

as earlier, we can show that p′ ≈
1
2
log(1+SNR)

log(KI)
for large SNR ≥ 2(2d − 1) regime.
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