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We study a distributed binary hypothesis testing (HT) problem
with communication and security constraints, involving three
parties: a remote sensor called Alice, a legitimate decision center
called Bob, and an eavesdropper called Eve, all having their
own source observations. In this system, Alice conveys a rate-
R description of her observations to Bob, and Bob performs
a binary hypothesis test on the joint distribution underlying
his and Alice’s observations. The goal of Alice and Bob is to
maximize the exponential decay of Bob’s miss-detection (type-II
error) probability under two constraints: Bob’s false-alarm (type-
I error) probability has to stay below a given threshold and Eve’s
uncertainty (equivocation) about Alice’s observations should stay
above a given security threshold even when Eve learns Alice’s
message. For the special case of testing against independence, we
characterize the largest possible type-II error exponent under
the described type-I error probability and security constraints.

Index Terms—Distributed hypothesis testing, error exponents,
security constraints, side information.

I. INTRODUCTION

IN future ultra-massive type communications, billions of

IoT devices and sensors will be connected and cooperate

together to detect, measure, and monitor environmental phe-

nomena and events in distributed monitoring and alert systems.

The different events can be considered as different hypotheses

and are assumed to determine the joint probability distribution

underlying the data observed at the various nodes. We focus on

binary hypothesis testing where we have two possible events:

a normal situation, called null hypothesis H0, and an alert

situation, called alternative hypothesis H1. In this case, there

are two types of errors. Type-I error refers to the event that

the decision center decides on H0 while the true hypothesis is

H1. Type-II error refers to the event that the decision center

decides on H1 while the true hypothesis is H0.

We consider in this paper distributed hypothesis testing

(DHT) with a single sensor Alice and a single decision

center Bob, each observing an independently and identically

distributed (i.i.d.) source sequence, where the two sequences

are jointly drawn according to the known probability mass

function PXY under hypothesis H0 and according to the prod-

uct of the marginals PXPY under H1. Information-theorists

refer to this setup as testing against independence. Alice can

send a rate-R message to Bob describing her observations

and aiming to help Bob in deciding on the true hypothesis.

The focus here is on the Stein exponent, i.e., on the largest

possible exponential decay for Bob’s type-II error probability

under the requirement that his type-I error probability stays

below a given threshold ǫ ∈ (0, 1). This largest possible type-II

error exponent in this setup was determined by Ahlswede and

Csiszár [1] and does not depend on the value of ǫ. In this paper,

we consider an extension of the Ahlswede-Csiszár result to a

setup including an additional eavesdropper Eve that observes a

local i.i.d. source sequence, intercepts Alice’s message to Bob

M , and wishes to learn about Alice’s source sequence Xn. In

this extended setup, Alice is required to choose her message

in a way that Eve’s equivocation about the source Xn stays

above pre-determined thresholds given the two hypothesis.

Hypothesis testing has also been considered under other

security constraints. In particular, the works in [2]–[7] focused

on ensuring data privacy in various forms. For instance, [5]

considered a model where a sensor has to pre-randomize

its data before using it on the distributed hypothesis testing

problem. In [2], not the sensor’s data but only a related

information has to be kept private from the decision center,

either in an average distortion or equivocation sense. The work

in [7] allowed for interactive communication and applied a

privacy constraint inspired by the cryptography literature.

The secrecy scenario with an external eavesdropper that we

study in the present paper, was already treated in [8] and in [9]

for the more general scenario of testing against conditional in-

dependence. As we show, in the special case of testing against

independence, the type-II error exponents proposed in [8], [9]

are optimal in the limit of vanishing type-I error probabilities

ǫ → 0 but are generally suboptimal for fixed ǫ > 0. For general

ǫ > 0, the optimal exponent is achieved by using the scheme in

[8], [9] with probability (1−ǫ) and using a degenerate scheme

with probability ǫ. In this degenerate scheme, Alice sends

a dummy zero-message, and upon receiving this message,

Bob declares the alternative hypothesis H1. The converse is

shown through a change-of-measure argument and by proving

asymptotic Markov chains, similar to the converse proofs in

[10], [11], see also [12]. In this paper, we however need extra

non-trivial steps for the converse bounds on the equivocation

under the two hypotheses.

Notation: We follow standard notations. In particular, we

denote by o(1) any function that tends to 0 as n → ∞. Also,

we denote by T
(n)
µ (PXY ) the strongly typical set defined in

[1], and we abbreviate T
(n)

n−1/3(PXY ) simply by T (n)(PXY ).
We further abbreviate probability mass function by pmf. When

the pmf is not clear from the context, we write HP (·) and

IP (·; ·) to indicate that entropy and mutual information are

meant with respect to PXY .

II. PROBLEM SETUP AND MAIN RESULT

Consider the DHT setup illustrated in Figure 1 involving the

three terminals Alice, Bob, and Eve. Depending on the binary

http://arxiv.org/abs/2211.03475v1
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Xn Alice: fn Bob: gn

Eve

Y n

Zn

Ĥ

H(Xn|MZn)

M

Fig. 1: DHT with communication and security constraints.

hypothesis H0 or H1, the observations at the three terminals

obey the following joint distribution

under H0 : (Xn, Y n, Zn) ∼ P⊗n
XY Z (1)

under H1 : (Xn, Y n, Zn) ∼ Q⊗n
XY Z , (2)

where QXY Z = PXPY PZ|XY .

Alice observes the independent and identically distributed

(i.i.d.) length-n sequence Xn and sends M = fn(X
n) for

some randomized encoding function of the form fn : Xn →
M and message space M , {1, . . . , ⌈2nR⌉}, where R > 0
is the maximum allowed rate of transmission. Given its own

observation Y n and after observing message M , Bob guesses

the true hypothesis as Ĥ = gn (M,Y n) using a decision rule

of the form M×Yn → {H0,H1}. Bob’s type-I and type-II

error probabilities are then given by

αn (fn, gn) := P(Ĥ = H1|H0) (3)

βn (fn, gn) := P(Ĥ = H0|H1). (4)

Definition 1: Given ǫ > 0, a tuple (R, θ,∆0,∆1) is

achievable, if there exists a sequence of encoding and decoding

functions {(fn, gn)}n satisfying

lim
n→∞

αn(fn, gn) ≤ ǫ (5a)

lim
n→∞

−
1

n
log βn(fn, gn) ≥ θ (5b)

lim
n→∞

1

n
H (Xn|M,Zn,Hj) ≥ ∆j , j ∈ {0, 1}. (5c)

Theorem 1: For ǫ ∈ (0, 1), the quadruple (R, θ,∆0,∆1) is

achievable if, and only if, there exists a conditional pmf PU|X

so that

R ≥ IP (U ;X), (6)

θ ≤ IP (U ;Y ), (7)

∆0 ≤ (1− ǫ)HP (X |UZ) + ǫHP (X |Z) , (8)

∆1 ≤ (1− ǫ)HQ(X |UZ) + ǫHQ (X |Z) , (9)

where indices P and Q refer to the joint pmfs

PUXY Z = PU|XPXY Z (10)

QUXY Z = PU|XPXPY PZ|XY . (11)

Remark 1: In the limit ǫ → 0 and for ∆1 ≥ HQ(X |Z), the

fundamental rate-exponent-equivocations region in Theorem 1

recovers the regions presented in [8], [9], which only consid-

ered an equivocation constraint under the null hypothesis H0.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

R

θ

Theorem 1

Exponent in [8]

Exponent in [1]

Fig. 2: Type-II error exponent θ in function of R.

For a general positive ǫ > 0, the fundamental rate-exponent-

equivocations region in Theorem 1 however is larger, unless

∆0 is sufficiently small.

We evaluate Theorem 1 for a specific example.

Example 1: Consider a binary source X , and assume

that Y and Z are obtained by passing X through a binary

erasure channel (BEC) and a binary symmetric channel (BSC),

respectively. Source and channel parameters are given by

PX(0) = 1− PX(1) = 0.8, (12)

PY |X(e|x) = 0.4, (13)

PZ|X(1− x|x) = 0.2, (14)

QZ|X(1− x|x) = 0.3. (15)

We also fixed ∆0 = ∆1 = 0.13 and ǫ = 0.2. For this example,

the equivocation constraint under H1 is always less stringent

than under H0.

Figure 2 shows the largest exponent θ for which the quadru-

ple (R, θ,∆0,∆1) is achievable according to Theorem 1, and

compares it to the exponent proposed in [8] and the largest

exponent achievable without any security constraints [1]. For

small rates R, all three exponents coincide and the equivo-

cation constraints under both hypotheses seem inactive. For

larger rates R, the optimal exponent in Theorem 1 dominates

the sub-optimal exponent in [8] because ǫ > 0. For even larger

rates R, the security constraints become stringent the exponent

in Theorem 1 is below the Ahlswede-Csiszàr exponent in [1].

III. OPTIMAL CODING SCHEME

Choose a conditional pmf PU|X so that

R > IP (U ;X) (16)

where we defined the joint pmf

PUXY Z = PU|XPXY Z . (17)

Codebook generation: Independently generate ⌈2nR⌉ se-

quences un(1), . . . , un(⌈2nR⌉) by picking each entry of each

sequence i.i.d. according to PU . Denote the realization of the

set of codewords C.

Encoder Alice: Fix a small value µ > 0. Alice behaves in

a randomized way, described by a Bernoulli-(1 − ǫ) random
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variable Ξ and the likelihood encoder corresponding to the

chosen codebook C [13], [14]

P
LE,C
M ′|Xn(m|xn) =

P⊗n
X|U (x

n|un(m))
∑

m∈{1,...,⌈2nR⌉} P
⊗n
X|U (x

n|un(m))
.(18)

If Ξ = 0, then Alice sends M = 0. Otherwise, for

Xn = xn, it picks M ′ ∈ {1, . . . , ⌈2nR⌉} according to the con-

ditional distribution P
LE,C
M ′|Xn(·|xn). If the pair (un(M ′), xn) ∈

T (n)(PUX ), then Alice sends M = M ′ and otherwise she

sends M = 0.

Decoder Bob: Assume Y n = yn and M = m. Bob declares

Ĥ = H0 if m 6= 0 and (un(m), yn) ∈ T
(n)
2µ (PUY ). Else it

declares Ĥ = H1.

Sketch of Analysis: Given Ξ = 0, the analysis is simple.

Trivially, the type-II error probability equals 0 and the type-II

error probability equals 1. Moreover, equivocations under the

two hypotheses are HP (X |Z) and HQ(X |Z).

P⊗n
XY Z

or

Q⊗n
XY Z

P
LE,C
M ′|Xn

Xn

Y n

Zn

C(n)
M ′ un(M ′)

Fig. 3: Encoding

Given Ξ = 1, the analysis is similar to [2] and based on

the soft covering lemma in [14]. The likelihood encoding

system is depicted in Figure 3. Since R > I(U ;X), the

pair (un(M ′), Xn) is jointly typical under both hypotheses

with a probability (when averaged over the random code

construction) tending exponentially fast to 1 as n → ∞. One

can thus restrict the analysis to this assumption. Moreover,

since R > I(U ;X), by the generalized soft-covering lemma

in [14], on average over the random code construction the joint

pmf induced by the real system in Figure 3 is close to the pmf

induced by the idealized system in Figure 4.

C(n)
M

PX|U

un(M)
P⊗n
Y Z|X

or

Q⊗n
Y Z|X

Xn Y n, Zn

Fig. 4: Idealized distribution.

By standard arguments, it can be concluded that on the

idealized system and when un(M) ∈ T (n)(PU ), then the

type-II error probability exponent is equal to θ = I(U ;Y ).
The type-I error probability tends to 0 as n → ∞ simply by

the weak law of large numbers. Equivocation on the idealized

system under H0 is bounded as follows:

1

n
H(Xn|Un(M)Zn) =

1

n

n
∑

i=1

H(Xi|ui(M)Zi) (19)

= HP (X |UZ) + o(1), (20)

where the first equality holds by the memorylesness of the

channels and the second equality because PUi(M) tends to

PU as n → ∞ as mentioned above. Combining all these

observations concludes the proof.

IV. CONVERSE PROOF TO THEOREM 1

Fix an achievable exponent θ < θ∗ǫ (R) and a sequence

of (random) encoding and decision functions so that (5) are

satisfied. Further fix a blocklength n > 0 and let M and Ĥ be

the message and the guess produced by the chosen encoding

and decision functions for this given blocklength.

Define the set

Dn ,

{

(xn, yn) ∈ T
(n)

n−1/3(PXY ) : gn(fn(x
n), yn) = H0

}

.(21)

By the constraint on the type-I error probability and since by

[15, Lemma 2.12]

P⊗n
XY

(

T
(n)

n−1/3(PXY )
)

≥ 1−
|X ||Y|

4n1/3
, (22)

we obtain by the basic laws of probability

Λn := P⊗n
XY (Dn) ≥ 1− ǫ−

|X ||Y|

4n1/3
. (23)

Let (X̃n, Ỹ n) be the restriction of the pair (Xn, Y n) to

Dn, M̃ = fn(X̃
n) the new message, and Z̃n the output

of the discrete memoryless channel (DMC) PZ|XY for input

sequences (X̃n, Ỹ n). Under H0, the probability distribution

of the quadruple (M̃, X̃n, Ỹ n, Z̃n) is

PM̃X̃nỸ nZ̃n (m,xn, yn, zn) ,

P⊗n
XY (xn, yn) ·

1 {(xn, yn) ∈ Dn}

Λn
Pr[fn(x

n) = m]. (24)

Let T be uniform over {1, . . . , n} independent of all other

random variables.

Lemma 1: For the distribution in (24), the following limits

hold as n → ∞:

PX̃T ỸT
→ PXY (25)

∣

∣

∣

∣

1

n
H(X̃nỸ n)−H(X̃T ỸT )

∣

∣

∣

∣

→ 0 (26)

∣

∣

∣

∣

1

n
H(Ỹ n)−H(ỸT )

∣

∣

∣

∣

→ 0 (27)

∣

∣

∣

∣

1

n
H(X̃n|Ỹ n)−H(X̃T |ỸT )

∣

∣

∣

∣

→ 0. (28)

Proof: See Appendix A.

We bound the rate, the type-II error exponent and the equiv-

ocation based on Lemma 1.

Rate: Throughout the following paragraphs, all quantities

are calculated according to the pmf in (24) or the pmf PXY Z ,

and we shall not mention this explicitly. For the rate we have:

R ≥
1

n
H(M̃) =

1

n
I(M̃ ; X̃nỸ n) (29)

=
1

n
H(X̃nỸ n)−

1

n
H(X̃nỸ n|M̃) (30)

= H(X̃T ỸT ) + o(1)−
1

n

n
∑

t=1

H(X̃tỸt|X̃
t−1Ỹ t−1M̃) (31)

= H(X̃T ỸT ) + o(1)−H(X̃T ỸT |X̃
T−1Ỹ T−1M̃T ) (32)
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= I(X̃T ỸT ; X̃
T−1Ỹ T−1M̃T ) + o(1) (33)

≥ I(X̃T ;U) + o(1), (34)

where we defined U , (X̃T−1, Ỹ T−1, M̃ , T ).
To bound the error exponent, define H̃ , gn(M̃, Ỹ n) and

notice inequality

D(PỸ nM̃‖PỸ nPM̃ )
(a)

≥ D(PỸ nM̃ (H̃)‖PỸ nPM̃ (H̃)) (35)

(b)
= 1 · log

1

PỸ nPM̃ (H̃ = 0)
, (36)

where (a) holds by the data-processing inequality and (b)
holds by the definition of divergence and because H̃ = 0 with

probability 1.

Type-II error exponent: We have:

βn = −
1

n
logPY nPM (Ĥ = 0) (37)

(c)

≤ −
1

n
logPỸ nPM̃ (H̃ = 0)−

2

n
log Λn (38)

(d)

≤
1

n
D(PỸ nM̃‖PỸ nPM̃ ) + o(1) (39)

=
1

n
I(M̃ ; Ỹ n) + o(1) (40)

≤
1

n
H(Ỹ n)−

1

n

n
∑

t=1

H(Ỹt|M̃X̃t−1Ỹ t−1) + o(1) (41)

(e)

≤ H(ỸT ) + o(1)−H(ỸT |U) (42)

= I(ỸT ;U) + o(1), (43)

where (c) holds because

PỸ n(y) ≤
PY n(yn)

Λn
and PM̃ (m) ≤

PM (m)

Λn
; (44)

(d) holds by (23) and (36); and (e) holds by (27).

Equivocation under H0: We define E , 1{(Xn, Y n) ∈
Dn} and note:

1

n
H(Xn|MZn)

(f)
=

1

n

n
∑

t=1

H(Xt|X
t−1Y t−1MZn) (45)

=
1

n

n
∑

t=1

H(Xt|X
t−1Y t−1MZnE)

+
1

n

n
∑

t=1

I(E;Xt|X
t−1Y t−1MZn) (46)

≤
1

n

n
∑

t=1

H(Xt|X
t−1Y t−1MZnE)

+
1

n

n
∑

t=1

I(E;Xt, Yt|X
t−1Y t−1MZn) (47)

(g)

≤
1

n

n
∑

t=1

H(X̃t|X̃
t−1Ỹ t−1M̃Z̃n) Pr[E = 1]

+
1

n

n
∑

t=1

H(Xt|Zt, E = 0)Pr[E = 0]

+
1

n
I(E;XnY n|MZn) (48)

≤ H(X̃T |UZ̃T ) Pr[E = 1]

+H(XT |ZT , E = 0)Pr[E = 0] +
1

n
(49)

where (f) holds by the Markov chain Xt →
(M,Xt−1, Zn) → Y t−1; and (g) because event E = 1
corresponds to the change of measure in (28) and because

conditioning can only reduce entropy.

Define F = 1 as the indicator function

F = 1{(Xn, Zn) ∈ T (n)(PXZ)}. (50)

Similarly to the proof of (25), one can show that

PXT ZT |E=0,F=1 → PXZ , (51)

and thus by continuity of the entropy functional

H(X̃T |Z̃T , E = 0, F = 1) → H(X |Z). (52)

Since H(X̃T |Z̃T , E = 0, F = 0) is bounded by log |X | and

Pr[F = 0, E = 0] ≤ Pr[F = 0] = o(1), (53)

we conclude that

H(X̃T |Z̃T , E = 0)Pr[E = 0] ≤ H(X |Z) Pr[E = 0] + o(1),

(54)

which combined with (49) yields

1

n
H(Xn|MZn) ≤ H(X̃T |UZ̃T ) Pr[E = 1]

+H(X |Z) Pr[E = 0] + o(1). (55)

For sufficiently large values of the blocklength n, the condi-

tional entropy H(X̃T |UZ̃T ) is smaller than H(X |Z) because

PX̃T Z̃T
→ PXZ , and thus (23) and (55) yields:

1

n
H(Xn|MZn) ≤ H(X̃T |UZ̃T )

(

1− ǫ−
|X ||Y|

4n1/3

)

+H(X |Z)

(

ǫ+
|X ||Y|

4n1/3

)

+ o(1).(56)

Equivocation under H1: The proof is similar as under H0,

but requires adding new random variables Y ′n = (Y ′
1 , . . . , Y

′
n)

obtained by passing Xn through the DMC PY |X . We restrict

the tuples (Xn, Y ′n, Zn,M) to tuples so that (Xn, Y ′n) ∈ Dn

as introduced in (21). Then the joint pmf under H1 of the

restricted tuple (X̄n, Ȳ ′n, Z̄n, M̄) is

QM̄X̄nȲ ′nZ̄n

(

m,xn, y′
n
, zn

)

, P⊗n
XY

(

xn, y′
n)

·
1

{(

xn, y′
n)

∈ Dn

}

Λn

·Q⊗n
Z|X(zn|xn)PM|Xn(m|xn), (57)

where QZ|X(z|x) =
∑

y PY (y)PZ|XY (z|x, y).
Following the same steps as leading to (56), but wherePXZ

is replaced by QXZ = PXQZ|X , the sequence Y n by Y ′n, and

the restricted tuple (M̃, X̃n, Ỹ ′
n
, Z̃n) by (M̄, X̄n, Ȳ ′n, Z̄n),

we obtain an equivocation bound under H1:

1

n
HQ(X

n|MZn) ≤ H(X̄T |Ū Z̄T )

(

1− ǫ −
|X ||Y|

4n1/3

)

+HQ(X |Z)

(

ǫ+
|X ||Y|

4n1/3
)

)

+ o(1). (58)
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Note that (Ū , X̄) have same pmf as (U, X̃) defined previously,

and Z̄T is obtained by passing X̄ through the DMC QZ|X .

Concluding the proof: Before being able to conclude the

proof, we notice the following set of inequalities (where again

all pmfs are with respect to the pmf in (24)):

0 =
1

n
I(M̃ ; Ỹ n|X̃n) (59)

=
1

n
H(Ỹ n|X̃n)−

1

n
H(Ỹ n|X̃nM̃) (60)

= H(ỸT |X̃T ) + o(1)−
1

n

n
∑

t=1

H(Ỹt|X̃
nỸ t−1M̃) (61)

≥ H(ỸT |X̃T ) + o(1)−H(ỸT |X̃T X̃
T−1Ỹ T−1M̃T ) (62)

= I(ỸT ;U |X̃T ) + o(1). (63)

Thus,

lim
n→∞

I(ỸT ;U |X̃T ) = 0. (64)

The proof is then concluded by combining (34), (43), (56), and

(58) with limit (64) and taking n → ∞. Details are as follows.

By Carathéodory’s theorem, and because PX̃T Ũ = PX̄T Ū , we

can conclude that the existence of a random variable Un over

an alphabet of size |X |+ 3 and so that

R ≥ IP (Un; X̃T ) + o(1) (65)

−
1

n
log βn ≤ IP (Un; ỸT ) + o(1) (66)

lim
n→∞

HP (Xn | M,Zn) ≤ H(X̃T | Un, Z̃T ) (67)

lim
n→∞

HQ (Xn | M,Zn) ≤ H(X̃T | Un, Z̄
′
T ), (68)

where Z̄ ′
T is obtained by passing X̃T through the DMC QZ|X .

Considering a subsequence of blocklengths {ni}
∞
i=1 for

which the joint pmf PX̃T ỸTUn
converges, we conclude the

existence of joint pmfs PXY ZU and QXY UZ with the prop-

erties desired in Theorem 1. This concludes the proof of the

converse.

V. CONCLUSION

We have studied the problem of distributed hypothesis

testing against independence over a rate-limited noiseless

channel with both communication and security constraints. We

have characterized the largest possible type-II error exponent

at the legitimate receiver under constraints on the legitimate

receiver’s type-I error probability and the equivocations mea-

sured at an eavesdropper. In the limit of vanishing type-I error

probability the results recover the previous result in [8]. This

previous result is however disproved when positive type-I error

probabilities are allowed.

An interesting future research direction is to extend our

results to a scenario with variable-length coding, when the

expected rate but not the maximum rate is constrained.

APPENDIX A

PROOF OF LEMMA 1

To prove (25), notice that

PX̃T ỸT
(x, y) =

1

n

n
∑

t=1

PX̃tỸt
(x, y) (69)

= E

[

1

n

n
∑

t=1

1{X̃t = x, Ỹt = y}

]

(70)

= E[πX̃nỸ n(x, y)]. (71)

Since by the definition of the typical set,

|πX̃nỸ n(x, y)− PXY (x, y)| ≤ n−1/3, (72)

we conclude that as n → ∞ the probability PX̃T ỸT
(x, y) tends

to PXY (x, y).
To prove (26), notice first that

1

n
H(X̃nỸ n) +

1

n
D(PX̃nỸ n‖P

⊗n
XY )

= −
1

n

∑

(xn,yn)∈Dn

PX̃nỸ n(x
n, yn) logP⊗n

XY (x
n, yn) (73)

= −
1

n

n
∑

t=1

∑

(xn,yn)∈Dn

PX̃nỸ n(x
n, yn) logPXY (xt, yt) (74)

= −
1

n

n
∑

t=1

∑

(x,y)∈X×Y

PX̃tỸt
(x, y) logPXY (x, y) (75)

= −
∑

(x,y)∈X×Y

PX̃T ỸT
(x, y) logPXY (x, y) (76)

= H(X̃T ỸT ) +D(PX̃T ỸT
‖PXY ). (77)

Combined with the following two limits (78) and (79), this

establishes (26). The first relevant limit is

D(PX̃T ỸT
‖PXY ) → 0, (78)

which holds by (25) and because PX̃T ỸT
(x, y) = 0 whenever

PXY (x, y) = 0. The second limit is:

1

n
D(PX̃nỸ n‖P

⊗n
XY ) → 0, (79)

and holds because 1
n log Λn → 0 and by the following set of

inequalities:

0 ≤
1

n
D(PX̃nỸ n‖P

⊗n
XY )

=
1

n

∑

(xn,yn)∈Dn

PX̃nỸ n(x
n, yn) log

PX̃nỸ n(xn, yn)

P⊗n
XY (x

n, yn)
(80)

= −
1

n

∑

(xn,yn)∈Dn

PX̃nỸ n(x
n, yn) log Λn (81)

= −
1

n
log Λn. (82)

To prove (27), notice that by the same arguments as we

concluded (77), we also have

1

n
H(Ỹ n) +

1

n
D(PỸ n‖P

⊗n
Y ) = H(ỸT ) +D(PỸT

‖PY ). (83)

Moreover, (78) and (79) imply

1

n
D(PỸ n‖P

⊗n
Y ) → 0 (84)

D(PỸT
‖PY ) → 0, (85)

which combined with (83) imply (27).

The last limit (28) follows by the chain rule and limits (26)

and (27). This concludes the proof.
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