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Abstract—The recent success in constructing asymptotically
good quantum low-density parity-check (QLDPC) codes makes
this family of codes a promising candidate for error-correcting
schemes in quantum computing. However, conventional belief
propagation (BP) decoding of QLDPC codes does not yield satis-
fying performance due to the presence of unavoidable short cycles
in their Tanner graph and the special degeneracy phenomenon. In
this work, we propose to decode QLDPC codes based on a check
matrix with redundant rows, generated from linear combinations
of the rows in the original check matrix. This approach yields
a significant improvement in decoding performance with the
additional advantage of very low decoding latency. Furthermore,
we propose a novel neural belief propagation decoder based on
the quaternary BP decoder of QLDPC codes which leads to
further decoding performance improvements.

I. INTRODUCTION

Quantum error correction (QEC) is an essential part of

fault-tolerant quantum computing. Recent breakthroughs in

designing asymptotically good quantum low-density parity-

check (QLDPC) codes with non-vanishing rate and minimal

distance growing linearly with the code length [1]–[4] make

QLDPC codes a promising candidate for future QEC schemes.

In classical coding, low-density parity-check (LDPC) codes

are typically decoded with a message-passing decoder such

as the belief propagation (BP) decoder, which usually works

well when the Tanner graph has a girth of at least 6. However,

this condition cannot be fulfilled in the case of QLDPC codes,

where 4-cycles cannot be avoided by construction. Therefore,

to achieve good decoding performance for QLDPC codes

similar to their classical counterparts, it is crucial to modify

the BP decoder such that short cycles can be tolerated.

A variety of methods have been proposed to solve this issue.

These can be grouped into two categories. The first category

contains approaches that modify the BP decoder itself, for

example, message normalization and offsets [5], [6], layered

scheduling [7], [8], and matrix augmentation [9]. The second

category contains methods that apply post-processing to the

BP decoder output, e.g., ordered statistics decoding (OSD) [7],

[10], random perturbation [11], enhanced feedback [12], and

stabilizer inactivation [13]. However, most of these methods

introduce additional decoding latency, which makes them less
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appealing in QEC where decoding has to be performed with

ultra low latency.

Neural belief propagation (NBP) has been shown to be

effective in improving the decoding performance of clas-

sical linear codes without increasing the decoding latency,

see, e.g., [14]–[16]. Using NBP to enhance the decoding

of quantum stabilizer codes has been investigated in [19],

[20] for the binary BP decoder (referred to as BP2 decoder),

which decodes X and Z errors separately. Binary decoding

is sub-optimal and has a higher error floor compared with

a quaternary BP decoder (referred to as BP4 decoder), which

takes the correlation between X and Z errors into account [6],

[7]. The disadvantage of the conventional BP4 decoder is

the high complexity due to the passing of vector messages

instead of scalar messages as in BP2. The problem is solved

by the recently proposed refined BP4 decoder with scalar

messages [5], [6].

In this paper, we enhance the refined BP4 decoder with

NBP for QLDPC codes. To avoid typical problems such

as vanishing gradients in the training of very deep neural

networks (NNs), our proposed NBP model is based on an

overcomplete check matrix with redundant rows. It is inspired

by the observation in classical coding theory that using an

overcomplete parity check matrix (PCM) enables more node

updates in parallel, which reduces the required number of

decoding iterations and combats the effects of short cycles.

Consequently, the trained NBP network effectively improves

the decoding performance by orders of magnitude compared

to conventional BP decoding for the considered codes. More-

over, the required number of decoding iterations is reduced

significantly, yielding a low-latency decoder.

II. PRELIMINARIES

A. Stabilizer Formalism

Quantum stabilizer codes (QSCs) [17], [18] are the quantum

analogs of classical linear codes. To define a QSC, we first

need to define the Pauli operators. For simplicity, we ignore

the global phase and consider the n-qubit Pauli group Gn con-

sisting of Pauli operators on n qubits P = P1⊗P2⊗· · ·⊗Pn

where Pi ∈ {I,X,Y ,Z} are Pauli operators on the i-th
qubit. Without the risk of confusion, the tensor product ⊗ and

the identity operator I can be omitted. The weight w of a Pauli

operator P is the number of non-identity components in the

tensor product. For the depolarizing channel with depolarizing
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probability ǫ considered in this work, the errors X,Z and Y

occur equally likely with probability ǫ
3 . To find a valid stabi-

lizer code, it is crucial to find the stabilizer group S, which

is an Abelian subgroup of Gn. This can be transferred into a

classical coding problem using the mapping of Pauli errors to

binary strings P 7→
(

x1 · · · xn | z1 · · · zn
)

=:
(

pX | pZ

)

with Pi = XxiZzi . We can check that Pauli errors A and

B commute if the symplectic product of their corresponding

binary strings (aX | aZ) and (bX | bZ) is 0, i.e.

n
∑

i=1

aX,i · bZ,i +

n
∑

i=1

aZ,i · bX,i = 0. (1)

Therefore, a stabilizer code can be constructed from a

[2n, k] classical binary code given by its full rank PCM

H =
(

HX | HZ

)

of size m = 2n − k by 2n which fulfills

the symplectic criterion:

HXHT
Z +HZH

T
X = 0. (2)

Calderbank–Shor–Steane (CSS) codes are a special kind of

stabilizer codes where

H =

(

H ′X
0

∣

∣

∣

∣

0

H ′Z

)

.

In this case, (2) holds if H ′XH
′
T
Z = 0 and the code construc-

tion can be simplified. QLDPC codes are defined as a family

of stabilizer codes whose row and column weights are upper

bounded by a relatively small constant independent of the

block length, i.e., H is sparse. Most of the successful QLDPC

codes constructed so far are CSS codes and the QLDPC codes

considered in this paper are also CSS codes.

To decode the four types of Pauli errors jointly, it is

convenient to consider the quaternary form of H , de-

noted as S ∈ GF(4)m×n, where GF(4) consist of the

elements {0, 1, ω, ω̄}. H can be converted to S us-

ing the mapping of binary strings to strings over GF(4)
(

x1 · · · xn | z1 · · · zn
)

7→
(

p1 · · · pn
)

=: p with

pi = xiω + ziω̄. Then we can check that for A and B,

mapped to vectors a and b over GF(4), (1) is equivalent to

〈a, b〉 =
∑n

i=1〈ai, bi〉 = 0, where 〈·, ·〉 denotes the trace inner

product over GF(4).

The matrix S is called the check matrix and every row of S

is called a check. The checks correspond to the m stabilizers

which generate the stabilizer group S. An [[n, k, d]] stabilizer

code is a 2k-dimensional subspace of the n-qubit Hilbert

space (C2)⊗n defined as the common +1 eigenspace of S.

Additionally, we define N (S) to be the normalizer of S and

S⊥ to be the matrix containing the vectors corresponding to

the 2n − m generators of N (S). The minimum distance d
is defined as the lowest error weight in N (S)\S. A code is

called degenerate if S contains errors of weight less than d.

B. Syndrome Decoding of Stabilizer codes

Let E ∈ Gn be an occurred error and e be the correspond-

ing error vector over GF(4). To obtain an error syndrome,

measurements are performed on the m stabilizer generators.

The results are mapped to 0 or 1 indicating whether the error

commutes with the corresponding stabilizer generator or not,

i.e, the error syndrome is z = (z1, z2, . . . , zm) ∈ {0, 1}m,

where zi = 〈e,Si〉 and Si is the i-th row of S.

Let ê be the estimate of e by the decoder and Ê be its

corresponding Pauli error. The decoder aims to find an ê which

yields the same syndrome z and such that ÊE ∈ S. The latter

can be checked by

〈(e+ ê),S⊥i 〉 = 0 (3)

for every row i ∈ {1, 2, . . . , 2n − m} of S⊥. Two types of

decoding failures may happen: One is when the decoder fails

to find any ê which matches the syndrome z. Another is when

an inferred error ê is found which matches the syndrome z

but (3) does not hold. This is called an “unflagged-error” [19]

and it leads to an undetectable erroneous state.

C. Belief Propagation Decoder

The task of inferring an error from a given syndrome for a

QLDPC code can be carried out with a BP4 decoder. We use

the log-domain refined BP4 decoder proposed in [6]. It exploits

the fact that the syndrome of a stabilizer code is binary,

indicating whether the error commutes with the stabilizer or

not, which enables scalar message passing. We briefly review

the algorithm here.

For every variable node (VN) vi, where i ∈ {1, 2, . . . , n},

we initialize the log-likelihood ratio (LLR) vector Γi→j as

Λi =
(

Λ
(1)
i Λ

(ω)
i Λ

(ω̄)
i

)

∈ R3 with

Λ
(ζ)
i = ln

(

P (ei = 0)

P (ei = ζ)

)

= ln

(

1− ǫ0
ǫ0
3

)

where ζ ∈ GF(4)\{0} and ǫ0 is the estimated physical error

probability of the channel. To exchange scalar messages, a

belief-quantization operator λη : R3 → R is defined as

λη(Λi) = ln

(

P (〈ei, η〉 = 0)

P (〈ei, η〉 = 1)

)

= ln

(

1 + e−Λ
(η)
i

∑

ζ 6=0,ζ 6=η e
−Λ

(ζ)
i

)

.

The operator λη turns the LLR vector into a scalar LLR of the

binary random variable 〈ei, η〉 where η runs over the nonzero

entries of S. The initial scalar VN messages are calculated as

λi→j := λSji
(Γi→j) (4)

and are passed to the neighboring check nodes (CNs).

The outgoing messages of CN cj , j ∈ {1, 2, . . . ,m}, are

calculated using

∆i←j = (−1)zj · 2 tanh−1





∏

i′∈N (j)\i

tanh
λi′→j

2



 (5)

where N (j) denotes the neighboring VNs of cj .

At the VN update, we first calculate the LLR vector

Γi→j =
(

Γ
(1)
i→j Γ

(ω)
i→j Γ

(ω̄)
i→j

)

with

Γ
(ζ)
i→j = Λ

(ζ)
i +

∑

j′∈M(i)\j,
〈ζ,Sj′i〉=1

∆i←j′ , (6)



for all ζ ∈ GF(4)\{0} with M(i) denoting the neighboring

CNs of vi. Then the outgoing messages λi→j = λSji
(Γi→j)

are calculated and passed to the neighboring CNs.

To estimate the error, a hard decision is performed at the

VNs by calculating Γi for i ∈ {1, 2, . . . , n} with

Γ
(ζ)
i = Λ

(ζ)
i +

∑

j∈M(i)
〈ζ,Sji〉=1

∆i←j , (7)

for all ζ ∈ GF(4)\{0}. If all Γ
(ζ)
i > 0, then êi = 0, otherwise

êi = argminζΓ
(ζ)
i .

The iterative process is performed until the maximum

number of iterations L is reached or the syndrome is matched.

III. CHECK MATRIX WITH REDUNDANT ROWS

To construct an overcomplete check matrix Soc with re-

dundant rows, we treat the two binary matrices HX and

HZ separately and consider them as classical binary PCMs.

For both, HX and HZ , redundant rows are generated by

linear combinations of the rows of the original matrix. We

try to keep the sparsity of the PCM by only generating low-

weight rows. The task is equivalent to generating low-weight

dual codewords in classical coding theory and we use Leon’s

probabilistic algorithm [26]. BP decoding is performed on the

Tanner graph associated with the overcomplete Soc.

It is important to note that using this method does not

require additional syndrome measurements which would be

costly. Let H be either HX or HZ . The PCM Hoc with

redundant rows is obtained by Hoc = MH with M being

a binary matrix of size moc × m. The original syndrome is

calculated as HeT = z. The new syndrome associated with

Hoc is given by

zoc = Hoce
T = MHeT = Mz,

being a linear mapping of z using M .

The idea of performing BP decoding over an overcomplete

parity-check matrix has been investigated in [16], [21]–[25]

for classical linear codes. One of the initial motivations is to

perform more node updates in parallel to reduce the effect

of short cycles. For QLDPC codes, this approach resembles

matrix augmentation [9], where a fraction of the rows of

the check matrix are duplicated. The advantage is that the

messages associated with the duplicated check node are mag-

nified which helps in breaking the symmetry during decoding

and leading to a (hopefully) correct error estimation [9].

We demonstrate the extra benefit of the proposed method

with a toy example. Consider the [[7, 1, 3]] quantum Bose–

Chaudhuri–Hocquenghem (BCH) code with both its H ′X and

H ′Z being the PCM of a [7, 4, 3] BCH code:

HBCH =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



 .

Consider the error E = Y7. The syndrome z of e is

z =
(

1 1 1 1 1 1
)

.

10−2 10−1
10−3

10−2

10−1

Physical error rate ǫ

F
E

R

m = 6, ǫ0 = 0.001

m = 6, ǫ0 = 0.1

moc = 14, ǫ0 = 0.1

Fig. 1. BP decoding results for the [[7,1,3]] CSS code with original and
overcomplete check matrix (L = 32).

Assume that we initialize the decoder with ǫ0 = 0.1. Accord-

ing to (4), all the initial VN messages are 2.64. Then, in the

first CN update, all CN messages are −1.55 according to (5).

Based on these messages, in the next hard decision step, the

decoder estimates the error as Ê = Y3Y5Y6Y7 which produces

the same syndrome as z. However, (3) does not hold and we

end up with an unflagged-error.

In this example, the decoder wrongly estimates the error

because all CNs have a syndrome of 1. Therefore, there is a

strong indication that the error has a high weight. Except for

VNs v1, v2, and v4 with degree 2, all VNs that are connected

to more than 2 CNs are erroneously estimated in the first hard-

decision step. Duplicating some rows of the check matrix does

not help in this case1.

Now let us use the overcomplete HX and HZ with 7 rows,

i.e., we take all the linear combinations of the 3 rows of the

original HBCH except the trivial case. The new syndrome is

zoc =
(

1 1 0 1 0 0 1 1 1 0 1 0 0 1
)

.

Although zoc contains the same amount of information as z

with respect to the coset where the error E is located, the

former is easier for the decoder to interpret. In the first hard-

decision step, the error is correctly estimated. Fig. 1 depicts

the frame error rate (FER) curves corresponding to decoding

using the overcomplete check matrix and the original check

matrix for different ǫ0.

IV. NEURAL BELIEF PROPAGATION

In our NBP decoder, additional weights are introduced for

each Λi and each CN. The update rules (5) and (6) are

modified to

∆i←j = (−1)zj · 2w
(ℓ)
c,j tanh

−1





∏

i′∈N (j)\i

tanh
λi′→j

2



 (8)

and

Γ
(ζ)
i→j = w

(ℓ)
v,iΛ

(ζ)
i +

∑

j′∈M(i)\j,
〈ζ,Sj′i〉=1

∆i←j′ , (9)

1However, note that this problem could be solved by initializing the decoder
with a very small ǫ0 such as 0.001 at the cost of degrading the overall
decoding performance (depicted in Fig. 1), as in most cases, the decoder has
a tendency towards trivial errors.



where ℓ is the index of the decoding iteration and w
(ℓ)
c,j and w

(ℓ)
v,i

denote the trainable weights. The model is relatively simple

compared to conventional NBP, where weights are applied on

each edge of the Tanner graph. For the codes considered in

this work, using more model parameters did not improve the

performance.

In [19], a loss function for BP2 decoding has been proposed

which takes degeneracy into account. We extend this loss

function to the BP4 case. Using Γi calculated by (7) in the

hard-decision step, we now calculate

P (〈êi, η〉 = 1|z) =
(

1 + e−λη(Γi)
)−1

(10)

for η ∈ GF(4)\{0}, indicating the estimated probability of the

i-th error commuting with X , Z, and Y , respectively. Then

proposed loss function can be written as

L(Γ; e) =
2n−m
∑

j=1

f

(

n
∑

i=1

P
(

〈ei + êi, S
⊥
ji〉 = 1|z

)

)

(11)

where f(x) = | sin(πx/2)|, as in [19]. The loss is summed up

over all rows S⊥j of S⊥. For each row j, we sum up the values

P
(

〈ei + êi, S
⊥
ji〉 = 1|z

)

for all the elements S⊥ji in S⊥j , repre-

senting the probability of S⊥ji being unsatisfied after estimating

ei as êi. It can be calculated as P
(

〈êi, S⊥ji〉 = 1 + 〈ei, S⊥ji〉|z
)

.

When 〈ei, S⊥ji〉 = 0, we directly calculate P
(

〈êi, S⊥ji〉 = 1|z
)

using (10), with η being S⊥ji . When 〈ei, S⊥ji〉 = 1, we

calculate P
(

〈êi, S
⊥
ji〉 = 0|z

)

= 1 − P
(

〈êi, S
⊥
ji〉 = 1|z

)

. As

f(x) approaches 0 with x approaching any even number, the

loss function (11) is minimized when (3) holds.

During training, we use multi-loss [14], [15] calculated as

the average value of the loss function after every iteration until

the loss is minimized. This helps to increase the magnitude of

gradients corresponding to earlier decoding iterations.

V. NUMERICAL RESULTS

We assess the performance of the proposed decoder us-

ing Monte Carlo simulations. To ensure sufficiently accurate

results, 300 frame errors are collected for each data point.

We always use the refined BP4 decoder with a flooding

schedule. The initial ǫ0 is always set to 0.1, which yields

a good decoding performance for the codes considered in

this work. This improves the decoding performance when the

actual physical error probability ǫ is too small [6]. Using a

fixed initialization also avoids estimating the channel statistics,

which is not always feasible.

We consider generalized bicycle (GB) codes proposed

in [7]. They are constructed by H ′X =
(

A B
)

and

H ′Z =
(

BT AT
)

where A and B are n
2 ×

n
2 square circulant

matrices. For constructing the check matrix, m/2 rows are

chosen from both A or B. However, all the rows of A or

B are linearly dependent. Therefore, the GB codes naturally

have an overcomplete set of checks. Further redundant rows

are generated following the method described in Sec. III.
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BP, moc = 2000, 3 it.

NBP, moc = 2000, 3 it.

reference [7]

Fig. 2. FER vs. depolarizing probability curves for the [[48,6,8]] code
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Fig. 3. FER vs. depolarizing probability curves for the [[46,2,9]] code

A. NBP Results

Figure 2 and Fig. 3 show the simulation results for the

[[48,6,8]] and [[46,2,9]] GB codes (codes A3 and A4 in [7]).

We compare the decoding performance for the two codes using

refined BP decoding with different settings. For BP4 decoding

over the original Tanner graph, 32 iterations are performed.

For the [[48,6,8]] code, we construct the overcomplete check

matrix using 48 rows of weight 8 and 1952 rows of weight 12
(no checks of weight 10 were found). For the [[46,2,9]] code,

we use 46 rows of weight 8 and 754 rows of weight 10. We

observe that in this case, the number of required decoding iter-

ations can be greatly reduced. Only 3 iterations are necessary

for the [[48,6,8]] code and 6 iterations for the [[46,2,9]] code.

Further increasing the number of iterations does not improve

the performance noticeably. We compare the FER results with

the reference results taken from [7] where normalized min-

sum decoding with layered scheduling is followed by an OSD

post-processing step. The reference outperforms the original

BP decoding which suffers from a higher error floor. However,

BP decoding using the overcomplete check matrix performs

comparably to the reference.

The FERs can be further reduced by NBP. Using the loss

function described in Sec. IV, the weights w
(ℓ)
c,j and w

(ℓ)
v,i are



2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error weight

F
E

R

BP, m = 42, 32 it.

BP, moc = 2000, 3 it.

NBP, moc = 2000, 3 it.

Fig. 4. FER vs. error weight curves for the [[48,6,8]] code
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Fig. 5. FER vs. error weight curves for the [[46,2,9]] code

optimized using gradient descent. During training, the learning

rate is 0.001 and the Adam optimizer [27] is used. We first pre-

train the model on 1500 batches of batch size 100 consisting

of random weight 2 and weight 3 errors. Then we train the

model on 600 batches of batch size 100 consisting of random

weight 3 to 9 errors. Weight 1 errors are omitted for both

codes, as the loss value of weight 1 errors is always almost

zero. This training approach is based on our observation that

directly training the NN using random errors causes the loss to

diverge. The conjectured reason is that too many uncorrectable

errors increase the gradient noise which makes the model

prone to be stuck in a local minimum. We observe that

on average, pre-training yields higher weights on low-degree

CNs, which is consistent with our experience that low-degree

checks are more helpful in decoding. Subsequent training on

high-weight errors further improves the decoding performance.

After training, our NBP decoder outperforms the reference

results, with the additional advantage of a very small number

of required decoding iterations.

To show that the performance gain is not simply due

to overfitting, i.e., the decoder simply remembering how to

decode all errors of weight 2 and weight 3, we plot the FER

results when decoding errors of different weights in Fig. 4

and Fig. 5. The figures show that the trained NBP decoder

also outperforms conventional BP on high-weight errors.

B. Effect of Check Matrix with Redundant Rows

We show that adding redundant rows is often beneficial

for improving the decoding performance. However, the added

10−2 10−1
10−5

10−4

10−3

10−2

10−1

100

Physical error rate ǫ

F
E

R

A2, m = 98 (S)

A2, moc = 126 (Soc,1)

A2, moc = 252 (Soc,2)

A1, m = 226

A1, moc = 254

A1, moc = 2000

Fig. 6. FER vs. depolarizing probability ǫ curves for the [[126, 28, 8]] (A2)
and [[254, 28, d]] (A1) GB code with original and overcomplete check matrix
(L = 32).

rows need to be chosen carefully. We observe that the per-

formance improves with a large number of redundant rows if

the maximum CN degree stays unchanged. We compare the

FERs of two GB codes with parameters [[126, 28, 8]] (code A2

in [7]) and [[254, 28, d]] (code A1 in [7]) when decoding with

different check matrices. Checks of low weight are always

added first when constructing the overcomplete check matrix.

For the [[126, 28, 8]] code, we consider three check matrices:

The original check matrix S with 98 rows of weight 10, an

overcomplete check matrix Soc,1 with 126 rows of weight

10, and another overcomplete check matrix Soc,2 consisting

of Soc,1 and 126 rows of weight 16. Decoding with Soc,1

outperforms the decoder based on S by nearly an order of

magnitude at ǫ = 0.02. However, decoding with Soc,2 shows

a performance degradation. For the [[254, 28]] code, similar

results can be observed. Compared with the results of decoding

with the original check matrix with 226 rows, adding rows of

weight 10 (moc = 254) improves the decoding performance.

However, further adding rows of weight 18 (moc = 2000)

degrades the decoding performance.

VI. CONCLUSION

In this paper, BP4 decoding for QLDPC codes based on

a check matrix with redundant rows is proposed and in-

vestigated. The method is shown to be effective for several

QLDPC codes in improving the decoding results. Moreover,

combined with NBP, the performance can be further improved.

As a large number of node updates are performed in parallel,

which reduces the number of required decoding iterations, the

decoder has a very small decoding latency. Moreover, it is

well-accepted that the BP decoding performance is impacted

by the structure of the underlying Tanner graph. Due to the

symplectic criterion, optimizing the structure of the Tanner

graph for QLDPC codes is more difficult than for classical

LDPC codes. Using a check matrix with redundant rows gives

us some degree of freedom in optimizing the graph structure.
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