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Abstract—This work studies the coded caching problem in a
setting where users can access a private cache of their own along
with a shared cache. The setting consists of a server connected
to a set of users, assisted by a smaller number of helper nodes
that are equipped with their own storage. In addition to the
helper caches, each user possesses a dedicated cache which is
also used to prefetch file contents. Each helper cache can serve
an arbitrary number of users, but each user gets served by only
one helper cache. We consider two scenarios: (a) the server has
no prior information about the user-to-helper cache association,
and (b) the server knows the user-to-helper cache association at
the placement phase itself. We design centralized coded caching
schemes under uncoded placement for the above two settings. For
case (b), we propose four schemes, and establish the optimality of
certain schemes in specific memory regimes by deriving matching
lower bounds. The fourth scheme, called as the composite scheme,
appropriately partitions the file library and the cache memories
between two other schemes in case (b) to minimize the rate by
leveraging the advantages of both.

Index Terms—Coded caching, helper caches, private caches,
rate-memory tradeoff.

I. INTRODUCTION

The proliferation of immersive applications has led to an
exponential growth in multimedia traffic which in turn has
brought the usage of caches distributed in the network to the
fore. Coded caching, introduced by Maddah-Ali and Niesen
[1], is a technique to combat the traffic congestion experienced
during peak times by exploiting the caches in the network.
Coded caching consists of two phases: placement (prefetching)

phase and delivery phase. During the placement phase, the
network is not congested, and the caches are populated with
portions of file contents in coded or uncoded form, satisfy-
ing the memory constraint. The subsequent delivery phase
commences with the users requesting files from the server.
The server exploits the prefetched cache contents to create
coded multicasting opportunities so that the users’ requests
are satisfied with a minimum number of bits sent over the
shared link. By allowing coding in the delivery phase, a global
caching gain proportional to the total memory size available
in the network is achieved in addition to the local caching
gain. The global caching gain is a multicasting gain available
simultaneously for all possible demands. The network model
considered in [1] is that of a dedicated cache network with
a server having access to a library of N equal-length files
connected to K users through an error-free shared link. Each

A part of the content of this manuscript appeared in Proc. IEEE Inf. Theory

Workshop (ITW), 2023 [18].

user possesses a cache of size equal to M files. The coded
caching scheme in [1], which is referred to as MaN scheme
henceforth, was shown to be optimal when N ≥ K under
the constraint of uncoded cache placement [2], [3]. The coded
caching approach has then been studied in different settings
such as decentralized placement [4], caching with shared
caches [5]–[8], caching with users accessing multiple caches
[9]–[11], caching with security [12] and secrecy constraints
[13] for the demanded file contents, and many more.

In this work, we consider a network model as shown in
Fig. 1. There is a server with N equal-length files, connected
to K users and to Λ ≤ K helper caches through a shared
bottleneck link. Each helper cache is capable of storing Ms

files. Unlike the shared cache networks discussed in [5]–
[8], each user is also endowed with a cache of size Mp

files. The conceived model represents scenarios in a wireless
network such as a large number of cache-aided users (for
example, mobile phones, laptops, and other smart devices) are
connected to the main server via a set of access points which
is generally less in number than the number of users. These
access points are provided with storage capacity such that the
users connected to them have access to the cache contents. In
this setting, two scenarios can arise. One scenario is a content
placement agnostic of which user will be connected to which
helper cache, and the other is a situation where the server
is aware of the association of users to helper caches during
the placement. The information about user-to-helper cache
association may not be available in all cases. For instance, the
users can be mobile, hence, the helper node or access point to
which the users are connected also change according to their
location. However, in some cases, it is possible to obtain the
location information of the users a priori (for example, if the
users are static). Therefore, it is important to consider both the
scenarios.

A network model similar to that in Fig. 1 was considered
in [14] and [15] to account for the secrecy constraints in the
conventional shared cache setup. However, in [14] and [15],
the size of user cache was fixed to be unity (Mp = 1) as
the users’ private caches stored only the one-time pads used
for transmissions. Another network model similar to ours is
the hierarchical content delivery network considered in [16].
The hierarchical network in [16] consists of two layers of
caches arranged in a tree-like structure with the server as
root node and the users are connected to the leaf caches.
Each leaf cache serves only a single user. Each parent cache
communicates only with its children caches. Hence, there is
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Fig. 1: Network model.

no direct communication between the server and the users.
Each user is able to retrieve its demanded file using the
contents of the leaf cache it is accessing and the messages
received from the adjacent parent cache. For this hierarchical
network, a coded caching scheme based on decentralized
placement was designed in [16] to minimize the number
of transmissions made in various layers. In our model, the
placement is centralized and the communication between the
server and the users happens over a single-hop.

Our Contributions

We introduce a new network model where the helper caches
and the users’ dedicated caches coexist. The network model
can be viewed as a generalization of the well-studied dedicated
and shared cache networks. We study the network under two
scenarios, one with prior knowledge of user-to-helper cache
association and the other without any prior information about
it. Our contributions are summarized below.

• A centralized coded caching scheme is proposed for the
case when the server has no information about the user-
to-helper cache association during the placement phase
(Theorem 1). The scheme partitions each file into two
parts of size f and (1− f) file units, respectively, where
f ∈ [0, 1]. Then, the optimal schemes, under uncoded
placement, known for the dedicated [1] and shared cache
[5] networks are used to store and deliver each part
of the library independently. In this way, maximum
local caching gain is ensured for each user. Under the
placement followed and for any value of f , the delivery
policy is shown to be optimal using an index coding
based converse. The rate achieved by the scheme is a
function of f , and the parameter f is chosen such that it
minimizes the rate for a uniform user-to cache association
(Section III).

• Four achievable schemes are proposed for the case when
the server is aware of the user-to-helper cache association
during the placement phase.

1) The first scheme is derived from the Maddah-Ali-
Niesen scheme [1]. Even though the applicability of

the scheme is limited to a certain memory regime, the
scheme is optimal (under uncoded placement) in the
regime where it exists (Scheme 1, Section IV-A).

2) The second scheme follows from the scheme in Sec-
tion III, where the file divison is according to f∗ which
is obtained by optimizing the rate with respect to the
actual user-to-cache association (Section IV-B).

3) The third scheme consists of novel placement and
delivery techniques, where each coded message broad-
casted in the delivery phase is composed of the subfiles
stored in both shared and private caches. This joint
delivery scheme is designed without compromising
on the local caching gain. The scheme is referred as
Scheme 2 later in the paper (Section IV-C). The scheme
is also shown to be optimal (under no constraints on
the cache placement) in certain memory regimes. The
optimality is characterized by deriving a cut-set based
information-theoretic lower bound on the optimal rate-
memory tradeoff (Section VI).

4) The fourth scheme is called as composite scheme,
in which the file library is optimally shared between
Maddah-Ali Niesen scheme and our Scheme 2. The
new scheme leverages the advantages provided by both
the previous two schemes (Scheme in Section IV-B
and Scheme 2), and exhibits a better performance in
all memory regimes compared to the scheme (Theo-
rem 1) in the user-to-cache association agnostic case
(Section IV-D).

Notations: For any integer n, [n] denotes the set {1, 2, . . . , n}.
For two positive integers m,n such that m < n, (m,n] denotes
the set {m + 1,m + 2, . . . , n}, and [m,n] denotes the set
{m,m+ 1, . . . , n}. For a set {s1, s2, . . . , sn}, s[1:m] denotes
the set {s1, s2, . . . , sm}, where m < n. The cardinality of a set
S is denoted by |S|. Binomial coefficients are denoted by

(
n
k

)
,

where
(
n
k

)
, n!

k!(n−k)! and
(
n
k

)
= 0 for n < k. For a finite set

I, the lower convex envelope of the points {(i, f(i)) : i ∈ I}
is denoted by Conv(f(i)).

The remainder of the paper is organized as follows: Sec-
tion II presents the network model and the problem setting.
Section III describes the coded caching scheme for the case
when the server is not aware of the user-to-helper cache asso-
ciation prior to the placement. In Section IV, the other setting
is considered, and the corresponding schemes are described.
The numerical comparisons of the proposed schemes are given
in Section V. Section VI presents a cut-set based lower bound
for the network model, and lastly, in Section VII, the results
are summarized.

II. PROBLEM SETTING

We consider a network model as illustrated in Fig. 1. There
is a server with access to a library of N equal-length files W =
{W1,W2, . . . ,WN}, and is connected to K users through an
error-free broadcast link. There are Λ ≤ K helper nodes that
serve as caches, each of size equal to Ms files. Each user
k ∈ [K] gets connected to one of the helper caches, and each
user possesses a dedicated cache of size equal to Mp files. The
user-to-helper cache association can be arbitrary. We assume
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that N ≥ K and M ≤ N , where M , Ms+Mp. We consider
the two scenarios described in the following two subsections.

A. Server has no prior information about the association of

users to helper caches

When the server has no prior knowledge about the user-to-
helper cache association, the system operates in three phases:

1) Placement phase: In the placement phase, the server fills
the helper caches and the user caches with the file contents
adhering to the memory constraint. The contents can be kept
in coded or uncoded form. During the placement, the server is
unaware of the users’ demands and the set of users accessing
each helper cache. The above assumption is based on the fact
that the content placement happens during off-peak times at
which the users need not be necessarily connected to the helper
caches. The contents stored at the helper cache λ are denoted
by Zλ, and the contents stored at the kth user’s private cache
are denoted by Zk.

2) User-to-helper cache association phase: The content
placement is followed by a phase where each user can connect
to one of the Λ helper caches. The set of users connected
to the helper cache λ ∈ [Λ] is denoted by Uλ. The server
gets to know each Uλ from the respective helper caches.
Let U = {U1,U2, . . . ,UΛ} denote the user-to-helper cache
association of the entire system. The set U forms a partition
on the set of users [K]. The users connected to a helper cache
can access the contents of the helper cache at zero cost. The
number of users accessing each helper cache λ is denoted by
Lλ, where Lλ = |Uλ|. Then, L = (L1,L2, . . . ,LΛ) gives
the overall association profile. Without loss of generality, it is
assumed that L is arranged in the non-increasing order.

3) Delivery phase: The delivery phase commences with the
users revealing their demands to the server. Each user k ∈ [K]
demands one of the N files from the server. We assume that
the demands of the users are distinct. The demand of user
k ∈ [K] is denoted by dk, and the demand vector is denoted
as d = (d1, d2, . . . , dK). On receiving the demand vector d,
the server sends coded messages to the users over the shared
link. Each user recovers its requested file using the available
cache contents and the transmissions.

B. Server knows the user-to-helper cache association a priori

When the server knows the user-to-helper cache association
U before, the system operates in two phases: 1) placement

phase and 2) delivery phase. The server fills the helper caches
and the user caches by taking into account the user-to-helper
cache association, U .

Performance measure

In both cases, the overall length of the transmitted messages
normalized with respect to unit file length is called rate and
is denoted by R(Ms,Mp). Our interest is in the worst-case
rate, which corresponds to a case where each user demands
a distinct file. The aim of any coded caching scheme is to
satisfy all the user demands at a minimum rate. The optimal
worst-case rate, denoted by R∗(Ms,Mp), is defined as

R∗(Ms,Mp) , inf{R : R(Ms,Mp) is achievable}.

Let R∗
ded(M) and R∗

shared(M) denote the optimal worst-case
rates for dedicated and shared cache networks, respectively.
The following lemma gives bounds on R∗(Ms,Mp) in terms
of R∗

ded(M) and R∗
shared(M).

Lemma 1. For a network with K users, each having a cache

of size Mp files and has access to one of the Λ helper caches,

each of size Ms files, the optimal worst-case rate R∗(Ms,Mp)
satisfies the inequality

R∗
ded(M) ≤ R∗(Ms,Mp) ≤ R∗

shared(M), (1)

where M , Ms +Mp.

Proof: Consider a coded caching scheme for a shared
cache network with Λ caches, each of size M files, that
achieves the optimal rate-memory tradeoff R∗

shared(M). At
M = Ms +Mp, the above scheme achieves the optimal rate
R∗

shared(M). Consider a cache s ∈ [Λ] in the shared cache
network. The contents stored in the cache s are denoted by Zs,
where |Zs| = M files. Then, Zs can be written as the union
of two disjoint sets as: Zs = Zλ ∪Zp, where |Zλ| = Ms files
and |Zp| = Mp files.

Now, consider the network model in Fig. 1. The placement
followed in this setting is as follows: the content stored in
the helper cache, λ ∈ [Λ], is Zλ, and the content stored in
the private cache of all the users in Uλ is Zp. If we follow
the delivery policy of the optimal shared cache scheme, we
obtain R(Ms,Mp) = R∗

shared(M). Thus, we can conclude that
R∗(Ms,Mp) ≤ R∗

shared(M).
To prove R∗

ded(M) ≤ R∗(Ms,Mp), assume Z∗ and D∗

to be the placement and delivery policies that result in
R∗(Ms,Mp). The contents available to each user k ∈ [K]
from the placement Z∗ is Zλk

∪ Zk, where λk is the helper
cache accessed by the user k, |Zλk

| = Ms files, and |Zk| =
Mp files. In a dedicated cache network with K users, each
having a cache of size M = Ms +Mp files, it is possible to
follow a placement such that the contents available to each user
k is exactly same as Zλk

∪ Zk. Then, following the delivery
scheme D∗ results in Rded(M) = R∗(Ms,Mp). Thus, we
obtain R∗

ded(M) ≤ R∗(Ms,Mp). This completes the proof of
Lemma 1.

Under uncoded placement, the optimal worst-case rate for
the network model in Fig. 1 is denoted by R∗

uncoded(Ms,Mp).
Under the constraint of uncoded placement, the MaN scheme
[1], and the shared cache scheme in [5] achieve the optimal
rate-memory curves for dedicated [2] and shared cache [5]
networks, respectively. We denote the rate-memory tradeoff of
the MaN scheme by R∗

MaN(M), and the rate-memory tradeoff
of the shared cache scheme in [5] by R∗

PUE(M). Then, the
following corollary gives a bound on R∗

uncoded(Ms,Mp) using
R∗

MaN(M) and R∗
PUE(M).

Corollary 1. Under uncoded placement, we have

Conv

(
K − tp
tp + 1

)

≤ R∗
uncoded(Ms,Mp) ≤

Conv

(∑Λ−ts
n=1 Ln

(
Λ−n
ts

)

(
Λ
ts

)

)

,
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where tp , KM
N ∈ [0,K], ts , ΛM

N ∈ [0,Λ], and L denotes

the association profile.

Proof: The proof directly follows from (1),

since R∗
MaN(M) = Conv

(
K−tp
tp+1

)

, and R∗
PUE(M) =

Conv

(∑Λ−ts
n=1 Ln(Λ−n

ts
)

(Λ
ts
)

)

, where tp = KM/N and

ts = ΛM/N .

III. NETWORKS WITH USER-TO-HELPER CACHE

ASSOCIATION UNKNOWN AT THE PLACEMENT PHASE

In this section, we present a coded caching scheme for the
setting discussed in Section II-A.

Theorem 1. For a broadcast channel with K users, each

having a private cache of normalized size Mp/N , assisted by

Λ helper caches, each of normalized size Ms/N , the worst-

case rate

R(Ms,Mp) = fRs(ts) + (1− f)Rp(tp) (2)

is achievable for an association profile L = (L1,L2, . . . ,LΛ)
and for every f such that Ms

N ≤ f ≤ 1−
Mp

N , where ts ,
ΛMs

fN

and tp ,
KMp

(1−f)N . The terms Rs(ts) and Rp(tp) are defined

as follows:

Rs(ts) = (1− (ts − ⌊ts⌋))Rs(⌊ts⌋) + (ts − ⌊ts⌋)Rs(⌈ts⌉),
(3a)

Rp(tp) = (1− (tp − ⌊tp⌋))Rp(⌊tp⌋) + (tp − ⌊tp⌋)Rp(⌈tp⌉),
(3b)

where Rs(u) =
∑Λ−u

n=1 Ln(Λ−n

u )
(Λu)

for u ∈ [0,Λ], and Rp(v) =

K−v
v+1 for v ∈ [0,K].

Proof: Consider a network as shown in Fig. 1. The three
phases involved in the scheme that achieves the performance
in (2) are described below.

1) Placement phase: There are two sets of caches in the
system: helper caches and users’ private caches. Each file
Wn ∈ W is split into two parts: Wn = {W

(s)
n ,W

(p)
n } such that

|W
(s)
n | = f file units and |W

(p)
n | = (1 − f) file units, where

Ms/N ≤ f ≤ 1 −Mp/N . The helper caches are filled with

contents from the set {W (s)
n , ∀n ∈ [N ]}, and the user caches

are filled with contents from the set {W
(p)
n , ∀n ∈ [N ]}. We

define, ts ,
ΛMs

fN and tp ,
KMp

(1−f)N .
We first describe the helper cache placement. If ts ∈ [0,Λ],

each subfile in the set {W (s)
n , ∀n ∈ [N ]} is divided into

(
Λ
ts

)

mini-subfiles, and each mini-subfile is indexed by a set τ ,
where τ ⊆ [Λ] and |τ | = ts. Then, the helper cache placement
is defined as

Zλ = {W (s)
n,τ , ∀n ∈ [N ] : τ ∋ λ}, ∀λ ∈ [Λ]. (4)

Each helper cache λ stores N
(
Λ−1
ts−1

)
number of mini-subfiles,

each of size f/
(
Λ
ts

)
file units. When ts 6∈ [0,Λ], the memory-

sharing technique needs to be employed. Thus, the helper
cache placement satisfies the memory constraint.

To fill the user caches, each subfile in the set {W (p)
n , ∀n ∈

[N ]} is split into
(
K
tp

)
mini-subfiles, if tp ∈ [0,K]. Otherwise,

the memory-sharing technique is employed. The mini-subfiles
are indexed by sets ρ ⊆ [K] such that |ρ| = tp. The file
contents placed in the kth user’s private cache are given by
Zk = {W

(p)
n,ρ , ∀n ∈ [N ] : ρ ∋ k} . The user cache placement

also obeys the memory constraint. Consider a user k ∈ [K],
there are N

(
K−1
tp−1

)
number of mini-subfiles with k ∈ ρ. Each

mini-subfile is of size (1− f)/
(
K
tp

)
file units. Thus, we obtain

N
(
K−1
tp−1

)
(1− f)/

(
K
tp

)
= Mp.

2) User-to-helper cache association phase: The placement
is done without knowing the identity of the users getting
connected to each helper cache. Each user accesses one of
the helper caches. Let the user-to-helper cache association be
U with a profile L = (L1,L2, . . . ,LΛ).

3) Delivery phase: In the delivery phase, each user de-
mands one of the N files. We consider a distinct demand
scenario. Let the demand vector be d = (d1, d2, . . . , dK).
Since each demanded file consists of two parts, W

(s)
n and

W
(p)
n , the delivery also consists of two sets of transmissions.

We first consider the set {W
(s)
n , ∀n ∈ d}. The subfiles

belonging to this set are transmitted using the shared cache
delivery scheme in [5]. For every j ∈ [L1], the server forms
sets S ⊆ [Λ], |S| = ts + 1, and makes the transmission
XS,j =

⊕

λ∈S:Lλ≥j

W
(s)
dUλ(j),S\λ .

Next, consider the set {W
(p)
n , ∀n ∈ d}. The subfiles

belonging to this set are delivered using the transmission
scheme in [1]. For each set P ⊆ [K] such that |P| = tp + 1,

the server transmits the message XP =
⊕

k∈P

W
(p)
dk,P\k .

Decoding: We first look at the decoding of the sub-
files of the set {W

(s)
n , ∀n ∈ d}. Consider a trans-

mission XS,j , and a user Uλ(j) benefiting from XS,j .
Then, the message received at user Uλ(j) is of the form:
W

(s)
dUλ(j),S\λ

⊕

λ′∈S:Lλ′≥j
λ′ 6=λ

W
(s)
dU

λ′ (j)
,S\λ′

︸ ︷︷ ︸

known to user Uλ(j)

. Likewise, user Uλ(j)

can decode the rest of the mini-subfiles of W
(s)
dUλ(j)

. The de-

coding of the subfiles associated with the set {W (p)
n , ∀n ∈ d}

is also done in a similar way. The users’ demands get served
once the subfiles W

(s)
n and W

(p)
n , ∀n ∈ d, are recovered.

Performance measure: The rate calculation can be decom-
posed into two parts as done previously for the placement and
delivery phases. The rate associated with the transmission of
the subfiles of the set {W (s)

n , ∀n ∈ d} is calculated as follows:
the number of transmissions associated with (ts + 1)−sized
sets S containing min{λ : λ ∈ S} = 1 is L1. Similarly,
the number of transmissions associated with sets S containing
min{λ : λ ∈ S} = 2 is L2. By proceeding further in the
same manner up to min{λ : λ ∈ S} = Λ − ts, the total
number of transmissions is obtained as

∑Λ−ts
n=1 Ln

(
Λ−n
ts

)
, and

each transmission is of size f/
(
Λ
ts

)
file units. Thus, the rate

obtained for this case is
∑Λ−ts

n=1 Ln

(
Λ−n
ts

)
f/
(
Λ
ts

)
.

The rate associated with the transmission of the subfiles
{W

(p)
n , ∀n ∈ d} is calculated as follows: there are

(
K

tp+1

)

number of transmissions, each of size (1− f)/
(
K
tp

)
file units.
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Therefore, the rate associated with the transmissions of type
XP , P ⊆ [K], |P| = tp +1, is

(
K

tp+1

)
(1− f)/

(
K
tp

)
. Thus, the

rate R(Ms,Mp) is obtained as

R(Ms,Mp) =

Λ−ts∑

n=1

Ln

(
Λ− n

ts

)

f

(
Λ
ts

) +
(K − tp)(1− f)

tp + 1
, (5)

when ts ∈ [0,Λ] and tp ∈ [0,K]. The expressions in (3) are
obtained by considering the memory-sharing instances. While
performing memory-sharing in shared caches, 1− (ts − ⌊ts⌋)

is the fraction of memory and the fraction of W (s)
n , ∀n ∈ [N ],

that are stored and delivered according to ⌊ts⌋. The remaining
ts − ⌊ts⌋ fractions of the helper cache memory and W

(s)
n are

filled and sent according to ⌈ts⌉. Similarly, 1 − (tp − ⌊tp⌋)
and tp − ⌊tp⌋ are the fractions of dedicated cache memory
allocated corresponding to ⌊tp⌋ and ⌈tp⌉, respectively. Thus,
Rs(ts) and Rp(tp) are obtained as follows:

Rs(ts) = (1− (ts − ⌊ts⌋))Rs(⌊ts⌋) + (ts − ⌊ts⌋)Rs(⌈ts⌉),

Rp(tp) = (1− (tp − ⌊tp⌋))Rp(⌊tp⌋) + (tp − ⌊tp⌋)Rp(⌈tp⌉).

Since the user-to-cache association is not known at the
placement, the parameter f is chosen such that it minimizes
the rate R(Ms,Mp) in (2) for a uniform association profile.
That is,

f∗ = argmin
Ms
N

≤f≤1−
Mp
N

fRs(ts) + (1 − f)Rp(tp), (6)

Thus, we obtain the required value as:

f
∗ =

Ms

N
max

(

1,
(1 +

KMp

N
)
√

Λ(Λ + 1)−
ΛMp

N

√

K(K + 1)
√

K(K + 1)
Mp

N
+
√

Λ(Λ + 1)Ms

N

)

.

(7)

The transition from (6) to (7) is given in Appendix A. In the
case of uniform profiles, for u ∈ [0,Λ], we have Rs(u) =
K(Λ−u)
Λ(u+1) . Note that the value of f that minimizes the rate for a

uniform profile will not result in the least R(Ms,Mp) for an
arbitrary profile. However, the rationale behind considering the
uniform profile is that it results in the least rate among all the
profiles for a given shared cache system. Whereas, the profile
L = (K, 0, . . . , 0) is not considered as it does not support
any multicasting opportunity, and the obvious choice of f∗ is
Ms/N in that case.

Remark 1. By approximating
√

K(K + 1) ≈ K and
√

Λ(Λ + 1) ≈ Λ in (7), we get f∗ = max
(

Ms

N , ΛMs

ΛMs+KMp

)

.

Note that the fraction f∗ = ΛMs

ΛMs+KMp
is the ratio of the total

helper cache memory in the system, ΛMs to the total system

memory ΛMs + KMp. Further, if f∗ = Ms/N , the same

content will be stored across all the helper caches, and there

will be no transmission corresponding to the optimal shared

cache scheme (f∗ = Ms/N =⇒ ts = Λ).

Remark 2. When Ms = 0, we obtain f∗ = 0, and the

proposed scheme reduces to the optimal MaN scheme in [1].

Likewise, when Mp = 0, we get f∗ = 1, and the proposed

scheme recovers the optimal shared cache scheme in [5].

A. Converse

In this subsection, we show that for any Ms

N ≤ f ≤ 1−
Mp

N ,
our delivery scheme is optimal under the placement policy
described in the proof of Theorem 1. The converse is derived
using index coding techniques. Before proving the optimality,
we take a detour into the index coding problem, and see its
relation to the coded caching problem.

1) Preliminaries on index coding: The index coding prob-
lem considered in [17] consists of a sender who wishes to
communicate L messages xj , j ∈ [L], to a set of L receivers
over a shared noiseless link. Each message xj is of size |xj |
bits. Each receiver j ∈ [L] wants xj , and knows a subset of
messages as side-information. Let Kj denote the indices of the
messages known to the jth receiver. Then, Kj ⊆ [1 : L]\{j}.
To satisfy the receivers’ demands, the sender transmits a
message X of length l bits. Based on the side-information Kj

and the received message X , each receiver j ∈ [L] retrieves
the message xj . This index coding problem can be represented
using a directed graph G = (V , E), where V is the set of
vertices and E is the set of directed edges of the graph. Each
vertex in G represents a receiver j and its demanded message
xj . A directed edge from vertex i to vertex j represents that
the receiver j knows the message xi.

The following lemma gives a bound on the transmission
length l using G and is drawn from [Corollary 1, [17]].

Lemma 2 (Cut-set type converse [17]). For an index coding

problem represented by the directed graph G = (V , E), if

each receiver j ∈ [L] retrieves its wanted message from the

transmission X using its side-information, then the following

inequality holds
∑

j∈J

|xj |

l
≤ 1 (8)

for every J ⊆ [1 : L] such that the subgraph of G over J
does not contain a directed cycle.

From (8), we get

l ≥
∑

j∈J

|xj |. (9)

By finding a maximum acylic subgraph of G, we get a tighter
lower bound on the transmission length, l.

2) Relation between index coding and coded caching prob-

lems: For a fixed placement and a demand, the delivery
phase of a coded caching problem can be viewed as an index
coding problem. Let Z denote the placement policy followed
in the scheme. Then, the index coding problem induced by
Z, an association profile L, and a distinct demand vector d is
denoted by I(Z,L,d). The index coding problem I(Z,L,d)
has K

((
Λ−1
ts

)
+
(
K−1
tp

))
messages, where each message cor-

responds to a subfile of the demanded files which is not
available to the users from their caches. Thus, the messages
in I(Z,L,d) are constituted by the subfiles W

(s)
di,τ

and W
(p)
di,ρ

,
where i ∈ [K], ρ 6∋ i, and τ 6∋ c(i) which is the helper cache
accessed by user i. In an index coding problem, if a receiver
demands multiple messages, it can be equivalently seen as that
many receivers with the same side-information as before, and
each demanding a single message. Therefore, the number of
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receivers in I(Z,L,d) is K
((

Λ−1
ts

)
+
(
K−1
tp

))
. Thus, the graph

G representing I(Z,L,d) contains K
((

Λ−1
ts

)
+
(
K−1
tp

))
ver-

tices. Each vertex represents a subfile and the user demanding
it. The edges in G are determined by the cache contents known
to each user. Let W

(s)
di1 ,τ1

and W
(s)
di2 ,τ2

be two vertices in G

such that i1, i2 ∈ [K] and i1 6= i2. Let c(i1) and c(i2) denote
the helper caches to which the users i1 and i2 are connected,
respectively. Then, there exists a directed edge from W

(s)
di1 ,τ1

to W
(s)
di2 ,τ2

if c(i2) ∈ τ1, and vice versa if c(i1) ∈ τ2. There

does not exist a directed edge between W
(s)
di1 ,τ1

and W
(s)
di2 ,τ2

if c(i1) = c(i2). Similarly, assume W
(p)
di1 ,ρ1

and W
(p)
di2 ,ρ2

to be

two vertices in G. There exists a directed edge from W
(p)
di1 ,ρ1

to W
(p)
di2 ,ρ2

if i2 ∈ ρ1, and vice versa if i1 ∈ ρ2. Next, consider

the vertices W
(s)
di1 ,τ1

and W
(p)
di2 ,ρ2

. There exists a directed edge

from W
(s)
di1 ,τ1

to W
(p)
di2 ,ρ2

if c(i2) ∈ τ1, and vice versa if
i1 ∈ ρ2.

According to Lemma 2, a subgraph of G that does not
contain any cycle needs to be constructed to obtain a lower
bound on the achievable rate. For the sake of simplicity,
assume each file to be of unit length. Consider a subgraph
J of G formed by the subfiles

⋃

i∈[K]

{
W

(s)
di,τ

,W
(p)
di,ρ

: τ ⊆ [Λ]\[c(i)], |τ | = ts, (10)

ρ ⊆ [K]\[i], |ρ| = tp
}
. (11)

We need to show that J is an acyclic subgraph of G. Recall
that in the coded caching system, the helper caches are
arranged in the non-increasing order of the number of users
served by them. Without loss of generality, we assume that
the users are also ordered in the caching system. The subfiles
in (11) can be written as H1 ∪H2, where

H1 , ∪i∈[K]

{
W

(s)
di,τ

: τ ⊆ [Λ]\[c(i)], |τ | = ts
}

and

H2 , ∪i∈[K]

{
W

(p)
di,ρ

: ρ ⊆ [K]\[i], |ρ| = tp
}
.

Consider any two subfiles W
(s)
di1 ,τ1

and W
(s)
di2 ,τ2

∈ H1. If there

exists an edge from W
(s)
di1 ,τ1

to W
(s)
di2 ,τ2

, then c(i2) ∈ τ1 which
implies c(i2) > c(i1). Therefore, it is not possible to have an
edge going from W

(s)
di2 ,τ2

to W
(s)
di1 ,τ1

. Next, consider any two

subfiles W
(p)
di1 ,ρ1

and W
(p)
di2 ,ρ2

∈ H2. If there exists an edge

from W
(p)
di1 ,ρ1

to W
(p)
di2 ,ρ2

, then i2 ∈ ρ1 which implies i2 > i1.

Therefore, an edge from W
(p)
di2 ,ρ2

to W
(p)
di1 ,ρ1

does not exist.

Next, consider the subfiles W
(s)
di1 ,τ1

,W
(s)
di2 ,τ2

∈ H1 and

W
(p)
di3 ,ρ3

,W
(p)
di4 ,ρ4

∈ H2. Consider a scenario where there is

an edge e1 emanating from W
(s)
di1 ,τ1

to W
(s)
di2 ,τ2

, another edge

e2 from W
(s)
di2 ,τ2

to W
(p)
di3 ,ρ3

, and there is an edge e3 from

W
(p)
di3 ,ρ3

to W
(p)
di4 ,ρ4

. We need to show that it is not possible

to have another edge e4 from W
(p)
di4 ,ρ4

to W
(s)
di1 ,τ1

. We prove
this by contradiction. Assume that e4 exists. Then, the above
set of four subfiles form a cycle. Edge e1 implies c(i2) ∈ τ1
and c(i2) > c(i1). Since the users are also ordered, we can

say that the user index i is greater than its helper cache index
c(i). Therefore, we obtain i2 > i1. Edge e2 implies c(i3) ∈ τ2
and c(i3) > c(i2) which, in turn, gives i3 > i2. The relation
i3 > i2 ensures that an edge from W

(p)
di3 ,ρ3

to W
(s)
di2 ,τ2

does not
exist in J . Similarly, from edge e3, we conclude that i4 > i3.
Thus, we get i4 > i3 > i2 > i1. Edge e4 gives i1 > i4, which
is not possible. Hence, edge e4 does not exist. Along the same
lines, we can show that edge e2 does not exist in a case where
edges e1, e3, and e4 are present. Hence, we proved that the
subfiles in (11) form an acyclic subgraph J over the graph G.

Using Lemma 2, we can write R(Ms,Mp) ≥ |H1| +
|H2|. The number of subfiles in H1 is obtained as:
∑Λ

n=1 Ln

(
Λ−n
ts

)
, and the number of subfiles in H2 is obtained

as:
∑K

n=1

(
K−n
tp

)
=
(

K
tp+1

)
. Each subfile in H1 is of size

f/
(
Λ
ts

)
file units, and each subfile in H2 is of size (1−f)/

(
K
tp

)

units, where Ms

N ≤ f ≤ 1−
Mp

N . Thus, we get

R(Ms,Mp) ≥
f
∑Λ

n=1 Ln

(
Λ−n
ts

)

(
Λ
ts

) +
(1 − f)(K − tp)

tp + 1
.

From (5), we know that the rate

R(Ms,Mp) =
f
∑Λ

n=1 Ln

(
Λ−n
ts

)

(
Λ
ts

) +
(1− f)(K − tp)

tp + 1

is achievable. This proves the optimality of our delivery
scheme under the placement policy described in the proof
of Theorem 1. The converse is derived assuming ts and tp
are integers, even otherwise, the above converse holds in the
memory-sharing cases.

Now, we describe the reason behind following such a
placement in the scheme. The cache contents known to user
k ∈ [K] are Zk and Zλ, where λ is the helper cache accessed
by user k. If Zk ∩ Zλ = φ, then the amount of file contents
available to each user from the placement phase is maximum.
In addition, during the placement, the server is unaware of
the user-to-helper cache association. The above two reasons
made us divide each file into two parts, and each part being
exclusively used to fill one type of caches. From the previous
results [3], it is known that the placement in [1] is optimal
under uncoded prefetching schemes. Therefore, we followed
the optimal prefetching scheme in [1] for the helper caches and
the private caches using {W

(s)
n , ∀n ∈ [N ]} and {W

(p)
n , ∀n ∈

[N ]}, respectively. Although the placement policies followed
are individually optimal, the overall optimality of the above
placement for this network model is not known.

We now illustrate the scheme and its optimality using an
example.

Example 1. N = 4, K = 4, Λ = 2, Ms = 2, Mp = 0.5, and

L = (3, 1)

Consider a scenario where there is a server with N = 4
files, W = {W1,W2,W3,W4}, each of unit size. The server
is connected to Λ = 2 helper caches and to K = 4 users. Each
helper cache is of size Ms = 2 units, and the private cache’s
size is half a unit.

Each file Wn, n ∈ [4], is split into two subfiles: Wn =

{W
(s)
n ,W

(p)
n }. Since f∗ is obtained as 3/4, the size of each
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subfile is as follows: |W (s)
n | = 3/4 units and |W

(p)
n | = 1/4

units. Therefore, we get ts = 4/3 and tp = 2.
Since ts 6∈ [0, 2], the memory-sharing technique needs to

be employed. Corresponding to ⌊ts⌋ = 1 and ⌈ts⌉ = 2, we
get Ms1 = 3/2 and Ms2 = 3, respectively. Then, Ms =
αMs1 + (1−α)Ms2 , where α = 2/3. Therefore, each subfile
W

(s)
n is first split into two parts: W

(s),(α)
n and W

(s),(1−α)
n ,

each of size 2f∗/3 and f∗/3 file units. The mini-subfiles of
the sets {W

(s),α
n , ∀n ∈ [N ]} and {W

(s),(1−α)
n , ∀n ∈ [N ]}

are placed in the helper caches according to (4), using ⌊ts⌋
and ⌈ts⌉ respectively. Thus, the contents stored in each helper
cache are:

Z1 = {W
(s),(α)
n,1 ,W

(s),(1−α)
n,12 , ∀n ∈ [4]},

Z2 = {W
(s),(α)
n,2 ,W

(s),(1−α)
n,12 , ∀n ∈ [4]}.

(12)

The user caches are filled using the set of subfiles {W (p)
n , ∀n ∈

[4]}. Each subfile in {W
(p)
n , ∀n ∈ [4]} is further divided into

6 mini-subfiles. The users’ cache contents are:

Z1 =
{
W

(p)
n,12,W

(p)
n,13,W

(p)
n,14 , ∀n ∈ [4]

}
,

Z2 =
{
W

(p)
n,12,W

(p)
n,23,W

(p)
n,24 , ∀n ∈ [4]

}
,

Z3 =
{
W

(p)
n,13,W

(p)
n,23,W

(p)
n,34 , ∀n ∈ [4]

}
,

Z4 =
{
W

(p)
n,14,W

(p)
n,24,W

(p)
n,34 , ∀n ∈ [4]

}
.

(13)

Note that the placement in the helper caches and the user
caches satisfies the memory constraint. Assume that the user-
to-helper cache association is U = {{1, 2, 3}, {4}} with
an association profile L = (3, 1). For a demand vector
d = (1, 2, 3, 4), the transmissions are listed below:

X
(α)
{12},1 = W

(s),(α)
1,2 ⊕W

(s),(α)
4,1 , X

(α)
{12},2 = W

(s),(α)
2,2 ,

X
(α)
{12},3 = W

(s),(α)
3,2 , X{123} = W

(p)
1,23 ⊕W

(p)
2,13 ⊕W

(p)
3,12,

X{124} = W
(p)
1,24 ⊕W

(p)
2,14 ⊕W

(p)
4,12,

X{134} = W
(p)
1,34 ⊕W

(p)
3,14 ⊕W

(p)
4,13,

X{234} = W
(p)
2,34 ⊕W

(p)
3,24 ⊕W

(p)
4,23.

The decoding is straightforward. Each user can recover its
desired subfiles from the above transmissions using its side-
information. Thus, the rate achieved is R(2, 1/2) = 3/4 +
1/6 = 11/12.

Optimality: Under the placement in (12) and (13), we
show that the obtained rate is optimal. Let the placement
performed in (12) and (13) be jointly represented as Z.
Then, the index coding problem I(Z,L,d) induced by
Z,L = (3, 1), and d = (1, 2, 3, 4) consists of 16 messages
and 16 receivers (in the coded caching problem, each
of the 4 user wants 4 more subfiles of its demanded
file). This index coding problem can be represented
using a directed graph G containing 16 vertices, each
simultaneously representing a user and a mini-subfile. The
mini-subfiles in G are: W (s),(α)

1,2 ,W
(s),(α)
2,2 ,W

(s),(α)
3,2 ,W

(s),(α)
4,1 ,

W
(p)
1,23,W

(p)
1,24,W

(p)
1,34,W

(p)
2,13,W

(p)
2,14,W

(p)
2,34,W

(p)
3,12,W

(p)
3,14,

W
(p)
3,24,W

(p)
4,12,W

(p)
4,13,W

(p)
4,23. Then, the following set

of mini-subfiles {W
(s),(α)
1,2 ,W

(s),(α)
2,2 ,W

(s),(α)
3,2 ,W

(p)
1,23,

W
(p)
1,24,W

(p)
1,34,W

(p)
2,34} form an acyclic subgraph J over

G. The acyclic subgraph J is shown in Fig. 2. Then, we get
R(1, 1) ≥ 3/4 + 1/6 = 11/12. Thus, the optimality of the
delivery scheme is proved under the placement followed.

W
(s),(α)
2,2

W
(p)
2,34

W
(p)
1,24 W

(p)
1,23

W
(s),(α)
3,2

W
(p)
1,34W

(s),(α)
1,2

Fig. 2: An acyclic subgraph J .

IV. NETWORKS WITH USER-TO-HELPER CACHE

ASSOCIATION KNOWN

We now consider the network model in Fig. 1 with the
user-to-helper cache association, U , known during the cache
placement itself. The prior knowledge of U helps to design
schemes with better performance than the scheme described
in Section III. For the setting discussed in Section II-B, we
propose four coded caching schemes, and some of which
exhibit optimal performance in certain memory regimes.

A. Scheme 1

The following theorem presents a coded caching scheme
that is optimal under uncoded placement. The scheme is based
on the MaN scheme in [1], and exists only for certain values
of Ms and Mp.

Theorem 2. Consider a broadcast channel with K users,

each having a cache of size Mp files, assisted by Λ helper

caches, each of normalized size Ms/N . For a user-to-helper

cache association U = {U1,U2, . . . ,UΛ} with a profile L =
(L1,L2, . . . ,LΛ), the worst-case rate

R(Ms,Mp)
∣
∣
∣
Scheme1

=
K − t

t+ 1
(14)

is achievable if t ≥ L1 and Ms ≤
(K−L1

t−L1
)N

(Kt )
files, where

t , K(Ms+Mp)/N and t ∈ [0,K]. When t is not an integer,

the lower convex envelope of the above points is achievable.

Proof: The scheme that achieves the rate in (14) is
described in the sequel.

1) Placement phase: The total cache size available to each
user is M = Ms + Mp. Let t be an integer such that
t = KM/N and t ∈ [0,K]. The scheme works only if
the following conditions are satisfied: t ≥ L1 and Ms ≤
N
(
K−L1

t−L1

)
/
(
K
t

)
files. If the above conditions hold, each file

Wn is divided into
(
K
t

)
subfiles. Each subfile is indexed by a

t−sized subset τ ⊆ [K]. The helper cache placement is done
as follows:

Zλ = {Wn,τ , ∀n ∈ [N ] : τ ∋ Uλ(j), ∀j ∈ [Lλ]}, ∀λ ∈ [Λ].
(15)
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Similarly, the users’ private caches are filled as:

Zk = {Wn,τ , ∀n ∈ [N ] : τ ∋ k}\Zλ, ∀k ∈ [K] (16)

where λ is the helper cache to which the kth user is connected.
If Ms ≤ N

(
K−L1

t−L1

)
/
(
K
t

)
file units, all the subfiles satisfying

the condition in (15) cannot be stored fully in the helper caches
due to the memory constraint. Hence, the remaining such sub-
files are stored in the corresponding user caches according to
(16). Thus, |Zk| =

(
N
(
K−1
t−1

)
/
(
K
t

))
−|Zλ| = M −Ms = Mp.

2) Delivery phase: On receiving a demand vector d =
(d1, d2, . . . , dK), the server generates

(
K
t+1

)
sets T ⊆ [K],

each of size |T | = t + 1. For each T , the server sends a
message of the form: XT =

⊕

k∈T

Wdk,T \k.

The above placement and delivery are identical to the MaN
scheme in [1] for a dedicated cache network with parameters
K , N , and M = Ms + Mp. Hence, the decoding directly
follows from it.

Performance of the scheme: There are, in total,
(

K
t+1

)

transmissions, each of size 1/
(
K
t

)
file units. Thus, the rate

achieved by this scheme is

R(Ms,Mp)
∣
∣
Scheme1

=
K − t

t+ 1
.

This completes the proof of Theorem 2.
Optimality: The above scheme is optimal under uncoded

placement. The optimality follows directly from the fact that
the rate achieved in (14) matches exactly with the performance
of the optimal scheme for a dedicated cache network [1]
having a cache size of M . Notice that the performance of
Scheme 1 depends only on M = Ms + Mp. Hence, for a
fixed M , all those (Ms,Mp) pairs satisfying the conditions
Ms +Mp = M and Ms ≤ N

(
K−L1

t−L1

)
/
(
K
t

)
file units achieve

the same rate. In Theorem 2, our main objective is to identify
the values of Ms for which the optimal MaN scheme can be
employed directly for the network model in Fig. 1.

Now, we consider the case where t 6∈ [0,K]. When
t = KM/N is not an integer, find M1 = N⌊t⌋/K and
M2 = N⌈t⌉/K . When the conditions Ms ≤ N

(
K−L1

⌊t⌋−L1

)
/
(
K
⌊t⌋

)

and Ms ≤ N
(
K−L1

⌈t⌉−L1

)
/
(
K
⌈t⌉

)
hold, the following memory-

sharing technique is used. Let Mp1 and Mp2 be such that
M1 = Ms+Mp1 and M2 = Ms+Mp2 . The memory M can be
expressed as M = αM1+(1−α)M2, where 0 ≤ α ≤ 1. Each
file Wn is split into 2 parts, each of size α and (1−α) file units,
where α = 1−(t−⌊t⌋). Thus, Wn = {W

(α)
n ,W

(1−α)
n } , ∀n ∈

[N ]. The placement corresponding to ⌊t⌋ occupies a total
memory of size αM1 = α(Ms + Mp1) file units. The file

segments {W
(α)
n , ∀n ∈ [N ]} are cached according to ⌊t⌋, and

αR1 file units is the transmission length corresponding to it.
The remaining memory (1−α)M2 file units is filled according
to ⌈t⌉, and the file segments {W

(1−α)
n , n ∈ [N ]} are used for

it. Corresponding to ⌈t⌉, the transmission length required is
(1−α)R2 file units. Then, the rate R(Ms,Mp) is obtained as

R(Ms,Mp) = αR1 + (1− α)R2

= α

(
K − ⌊t⌋

⌊t⌋+ 1

)

+ (1 − α)

(
K − ⌈t⌉

⌈t⌉+ 1

)

.

Next, we illustrate the scheme using an example.

Example 2. Λ = 3, K = 6, N = 6, Ms = 6/5, Mp = 14/5,

U = {{1, 2, 3}, {4, 5}, {6}} with L = (3, 2, 1)

Consider a case with a server having N = 6 equal-length
files W = {W1,W2, . . . ,W6}, connected to Λ = 3 helper
caches and to K = 6 users through an error-free shared link.
The helper caches and the user caches are of size Ms = 6/5
and Mp = 14/5 file units, respectively. The user-to-helper
cache association is U = {{1, 2, 3}, {4, 5}, {6}}.

In the given example, we get t = 4. Thus, the con-
ditions t ≥ L1 and Ms ≤ N

(
K−L1

t−L1

)
/
(
K
t

)
= 6/5 are

satisfied. Each file, Wn, is divided into 15 equally-sized
subfiles, and each subfile is indexed using a 4−sized set
τ ⊆ [6]. The contents filled in each helper cache are
as follows: Z1 = {Wn,1234,Wn,1235,Wn,1236, ∀n ∈ [6]},
Z2 = {Wn,1245,Wn,1345,Wn,1456, ∀n ∈ [6]}, Z3 =
{Wn,1236,Wn,1246,Wn,1256, ∀n ∈ [6]}. Note that the subfiles
Wn,2345,Wn,2456,Wn,3456, ∀n ∈ [6], also satisfy the condition
in (16) for λ = 2. But, due to the memory constraint
those subfiles cannot be stored in the second helper cache.
A similar scenario exists with the third helper cache as well.
The contents stored in the users’ private cache are as follows:

λ = 1







Z1 = {Wn,1245,Wn,1246,Wn,1256,Wn,1345,

Wn,1346,Wn,1356,Wn,1456, ∀n ∈ [6]},

Z2 = {Wn,1245,Wn,1246,Wn,1256,Wn,2345,

Wn,2346,Wn,2356,Wn,2456, ∀n ∈ [6]},

Z3 = {Wn,1345,Wn,1346,Wn,1356,Wn,2345,

Wn,2346,Wn,2356,Wn,3456, ∀n ∈ [6]},

λ = 2







Z4 = {Wn,1234,Wn,1246,Wn,1346,Wn,2345,

Wn,2346,Wn,2456,Wn,3456, ∀n ∈ [6]},

Z5 = {Wn,1235,Wn,1256,Wn,1356,Wn,2345,

Wn,2356,Wn,2456,Wn,3456, ∀n ∈ [6]},

λ = 3

{

Z6 = {Wn,1346,Wn,1356,Wn,1456,Wn,2346,

Wn,2356,Wn,2456,Wn,3456, ∀n ∈ [6]}.

Let d = (1, 2, 3, 4, 5, 6) be the demand vector. There is a
transmission corresponding to every 5−sized subset of [6].
The transmissions are as follows:

X{12345} = W1,2345 ⊕W2,1345 ⊕W3,1245 ⊕W4,1235 ⊕W5,1234,

X{12346} = W1,2346 ⊕W2,1346 ⊕W3,1246 ⊕W4,1236 ⊕W6,1234,

X{12356} = W1,2356 ⊕W2,1356 ⊕W3,1256 ⊕W5,1236 ⊕W6,1235,

X{12456} = W1,2456 ⊕W2,1456 ⊕W4,1256 ⊕W5,1246 ⊕W6,1245,

X{13456} = W1,3456 ⊕W3,1456 ⊕W4,1356 ⊕W5,1346 ⊕W6,1345,

X{23456} = W2,3456 ⊕W3,2456 ⊕W4,2356 ⊕W5,2346 ⊕W6,2345.

The decoding is straightforward from the transmissions.
Each user is able to recover the desired subfiles from the
transmissions using the available cache contents. The rate
obtained is R(6/5, 14/5)|Scheme1 = 6/15 = 2/5, which is
exactly same as the rate achieved by the Maddah-Ali Niesen
scheme for a dedicated cache network with M = 4 files.

Even though Scheme 1 achieves the optimal performance
under uncoded placement, it is limited only to a specific
memory regime. Hence, we need to look for schemes that
exists for any (Ms,Mp) pair. In the following subsections,
we present such schemes.
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B. A Scheme from Theorem 1: Optimizing the rate using L

When U is known at the placement, the user-to-cache asso-
ciation agnostic coded caching scheme proposed in Section III
can be used with a change in the value that f∗ assumes.
Since U is known a priori, the optimum f∗ can be found
by minimizing R(Ms,Mp) in (2) using the actual profile L
instead of the uniform one. Thus, (6) can be rewritten as

f∗ = argmin
Ms
N

≤f≤1−
Mp
N

fRs(ts) + (1− f)Rp(tp), (17)

where Rs(u) =
∑Λ−u

n=1 Ln

(
Λ−n
u

)
/
(
Λ
u

)
, u ∈ [0,Λ], and

Rp(v) = (K − v)/(v + 1), v ∈ [0,K]. Since f∗ is obtained
by optimizing (17) with the exact profile of the network, the
rate R(Ms,Mp)

∣
∣
U known

achieved in this case is always at
most the rate in (2). The optimality under this placement
follows from the converse in the U known case.

Consider example 1 again: N = 4, K = 4, Λ = 2, Ms = 2,
Mp = 0.5, and L = (3, 1). If the actual profile L is used
to minimize the rate, the value of f∗ obtained is 1/2. That
is, |W

(s)
n | = 1/2 and |W

(p)
n | = 1/2, ∀n ∈ [6], and we get

ts = 2 and tp = 1. Therefore, the rate R(Ms,Mp)
∣
∣
L=(3,1)

is

obtained as R(Ms,Mp)
∣
∣
L=(3,1)

= f∗Rs(2)+(1−f∗)Rp(1) =

3/4, which is less than the rate R(Ms,Mp)
∣
∣
Theorem1

= 11/12
obtained in the U agnostic scheme.

Remark 3. The knowledge of the association profile L is

enough to find the value of f∗ that minimizes R(Ms,Mp)
in the U unknown case. That is, the user-to-cache association

U is not required to be known to optimize the rate, instead,

the association profile L is sufficient to find f∗.

C. Scheme 2

Next, we present a scheme that also exists for all (Ms,Mp)
pairs, and is optimal in certain memory regimes.

Theorem 3. Consider a broadcast channel with K users,
each having a cache of size Mp files, assisted by Λ helper
caches, each of normalized size Ms/N . For a user-to-helper
cache association U = {U1,U2, . . . ,UΛ} with a profile L =
(L1,L2, . . . ,LΛ), the following worst-case rate

R(Ms,Mp)
∣

∣

∣

Scheme2
=

Λ−ts
∑

n=1

(

Λ− n

ts

)[(

L1

tp + 1

)

−

(

L1 −Ln

tp + 1

)]

(

Λ

ts

)(

L1
tp

)

(18)

is achievable, where ts , ΛMs

N ∈ (0,Λ] and tp ,
L1Mp

N−Ms
∈

[0,L1]. Otherwise, the lower convex envelope of the above

points is achievable.

Proof: The achievability of the rate expression in (18) is
described below.

1) Placement phase: Let the total memory available to each
user be denoted as M , where M = Ms+Mp. We first look at
the placement in the helper caches. It is same as the placement
in [5]. Let ts , ΛMs/N such that ts ∈ [Λ]. Each file Wn ∈ W
is split into

(
Λ
ts

)
number of subfiles, and each subfile is indexed

using a ts−sized set τ ⊆ [Λ]. The contents stored in the λth

helper cache are given as Zλ = {Wn,τ , ∀n ∈ [N ] : τ ∋ λ}.

The users’ caches are filled according to the user-to-helper
cache association, U . To populate the user caches, each subfile
is further split into

(
L1

tp

)
mini-subfiles, where tp ,

L1Mp

N−Ms
and

tp ∈ [0,L1]. Thus, each mini-subfile is represented as Wn,τ,ρ,
where n ∈ [N ], τ ⊆ [Λ] such that |τ | = ts, and ρ ⊆ [L1]
such that |ρ| = tp. We assume that the caches and the users
associated with them are ordered. Consider a cache λ and a
user Uλ(j), j ∈ [Lλ], connected to it. Then, the contents stored
in the private cache of user Uλ(j) are given as:

ZUλ(j) = {Wn,τ,ρ, ∀n ∈ [N ] : τ 6∋ λ, ρ ∋ j}. (19)

Each user’s private cache stores N
(
Λ−1
ts

)(
L1−1
tp−1

)
number of

mini-subfiles, each of size 1

(Λ
ts
)(L1

tp
)

file units, thus complying

the memory constraint. According to the designed placement
policy, for a user Uλ(j), we have Zλ ∩ ZUλ(j) = φ.

2) Delivery phase: Let d = (d1, d2, . . . , dK) be the demand
vector. We define a set Q as follows: Q , {S × P : ∀ S ⊆
[Λ] and P ⊆ [L1] such that |S| = ts + 1, |P| = tp + 1}.
Corresponding to every S × P ∈ Q, we find a set of users
US×P as:

US×P =
⋃

λ∈S

{
Uλ(j) : j ∈ P and j ≤ Lλ

}
. (20)

If US×P 6= φ, the server transmits a message corresponding
to S × P as follows:

XS×P =
⊕

λ∈S

(

⊕
j∈P:j≤Lλ

WdUλ(j),S\λ,P\j

)

. (21)

If US×P = φ, there is no transmission corresponding to S×P .
Decoding: Consider a transmission XS×P and a user Uλ(j),

where λ ∈ S and j ∈ P . At user Uλ(j), the received message
is of the following form

WdUλ(j),S\λ,P\j

⊕

j′∈P:j′≤Lλ

j′ 6=j

WdUλ(j′),S\λ,P\j′

︸ ︷︷ ︸

term 1: known from ZUλ(j)

⊕

λ′∈S,λ6=λ′

(

⊕
j̃∈P:j̃≤Lλ′

Wd
U
λ′ (j̃)

,S\λ′,P\j̃

)

︸ ︷︷ ︸

term 2: known from Zλ

. (22)

The user Uλ(j) can cancel term 1 and term 2 from (22) as
the subfiles composing term 1 and term 2 are available in its
private and shared caches, respectively.

Performance of the scheme: In the delivery scheme, the
server first generates a set Q which is formed by the cartesian
product of all possible (ts + 1)−sized subsets of [Λ] and
(tp + 1)−sized subsets of [L1]. Corresponding to every set
S × P ∈ Q, a set of receiving users US×P is found. The
number of transmissions is determined by the number of non-
empty sets, US×P . Since the caches are labelled in the non-
increasing order of the number of users connected to it, the
number of non-empty US×P is calculated as follows: each set
S×P with S ∋ λ = 1 results in

(
L1

tp+1

)
number of non-empty

sets, US×P . For sets S × P with S 6∋ λ = 1, define λS ,

min{λ : λ ∈ S}. For each such S × P , there are
(L1−LλS

tp+1

)

number of empty sets, US×P . Thus, the total number of non-
empty US×P is given as

∑Λ
n=1

(
Λ−n
ts

)[(
L1

tp+1

)
−
(
L1−Ln

tp+1

)]
.
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Since each transmission is of size 1/[
(
Λ
ts

)(
L1

tp

)
] file units, we

obtain R(Ms,Mp)|Scheme2 as

Λ−ts∑

n=1

(
Λ− n

ts

)[(
L1

tp + 1

)

−

(
L1 − Ln

tp + 1

)]

(
Λ
ts

)(
L1

tp

) .

This completes the proof of Theorem 3.
When ts = 0, the setting is equivalent to a dedicated cache

network model. Therefore, we can follow the MaN scheme in
[1] for such cases.

Corollary 2. When the association of users to helper caches

is uniform, the rate achieved is

R(Ms,Mp)
∣
∣
Scheme2

=
K
(
1−M/N

)

(ts + 1)(tp + 1)
, (23)

where M = Ms +Mp.

Proof: For a uniform user-to-helper cache association, the
profile is L = (KΛ , . . . , K

Λ ). Then, the rate expression in (18)
becomes

R(Ms,Mp)
∣
∣
Scheme2

=

∑Λ−ts
n=1

(
Λ−n
ts

)(
L1

tp+1

)

(
Λ
ts

)(
L1

tp

)

=

(
Λ

ts+1

)(
L1

tp+1

)

(
Λ
ts

)(
L1

tp+1

) =
(Λ− ts)(L1 − tp)

(ts + 1)(tp + 1)
.

(24)

Substituting for L1 and further simplifying (24), we get

R(Ms,Mp)
∣
∣
∣
Scheme2

=
K
(
1−M/N

)

(ts + 1)(tp + 1)
.

This completes the proof of Corollary 2.

Remark 4. For a uniform user-to-helper cache association,

the coding gain, which is defined as the number of users

benefiting from a transmission, is (ts + 1)(tp + 1) for all

transmissions.

When ts 6∈ (0,Λ] or tp 6∈ [0,L1], we need to employ the
memory-sharing technique described below.

1) First, consider a case when ts = ΛMs/N ∈ (0,Λ]
and tp = L1Mp/(N −Ms) 6∈ [0,L1]. The helper cache
placement is same as described in the scheme. Obtain Mp1 =
(N − Ms)⌊tp⌋/L1 and Mp2 = (N − Ms)⌈tp⌉/L1. Then,
Mp = αMp1 + (1 − α)Mp2 , where 0 ≤ α ≤ 1. Each subfile
in the set {Wn,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | = ts} is segmented

into two parts: W (α)
n,τ and W

(1−α)
n,τ , each of size α/

(
Λ
ts

)
and

(1 − α)/
(
Λ
ts

)
file units, respectively. The mini-subfiles of

{W
(α)
n,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | = ts} are cached according to

(19) with |ρ| = ⌊tp⌋, occupying αMp1 portion of each user’s
private cache. The transmission length required with ts and
⌊tp⌋ is αR1 file units. Likewise, the placement of the mini-

subfiles of {W
(1−α)
n,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | = ts} is done

with |ρ| = ⌈tp⌉, and (1 − α)R2 file units is the transmission
length with ts and ⌈tp⌉. Then, the rate R(Ms,Mp) is obtained
as R(Ms,Mp) = αR1(Ms,Mp1) + (1 − α)R2(Ms,Mp2).

2) Next, assume ts = ΛMs/N 6∈ (0,Λ]. In this case,
it is not required to check whether tp is an integer or
not. Find Ms1 = N⌊ts⌋/Λ and Ms2 = N⌈ts⌉/Λ. Then,
Ms = αMs1 + (1 − α)Ms2 , where 0 ≤ α ≤ 1. Divide
the entire file library into two parts: {W

(α)
n , ∀n ∈ [N ]}

and {W
(1−α)
n , ∀n ∈ [N ]} such that |W

(α)
n | = α file units

and |W
(1−α)
n | = (1 − α) file units. Using Ms1 , obtain

tp1 = L1Mp/(N −Ms1). If tp1 is an integer, the placement
and delivery are done according to Scheme 2 with ⌊ts⌋ and
tp1 . The helper cache placement with ⌊ts⌋ is performed using

the set {W
(α)
n , ∀n ∈ [N ]}, and it occupies only αMs1 portion

of the helper caches. If tp1 6∈ [0,L1], we need to follow the
procedure mentioned in the first case by finding Mp1,1 =
(N −Ms1)⌊tp1⌋/L1 and Mp1,2 = (N −Ms1)⌈tp1⌉/L1. Then,
Mp = βMp1,1 + (1 − β)Mp1,2 , where 0 ≤ β ≤ 1. Each

subfile in the set {W (α)
n,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | = ⌊ts⌋} is

divided into two parts: W (αβ)
n,τ and W

(α−αβ)
n,τ , each with size

αβ/
(

Λ
⌊ts⌋

)
file units and α(1−β)/

(
Λ

⌊ts⌋

)
file units, respectively.

The portion of each user’s private cache occupied by the mini-
subfiles of {W

(αβ)
n,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | = ⌊ts⌋} having

|ρ| = ⌊tp1⌋ is αβMp1,1 . The transmission length obtained in
this case is αβR1,1 file units. Similarly, α(1− β)Mp1,2 is the
portion of the memory occupied by the mini-subfiles of the set
{W

(α−αβ)
n,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | = ⌊ts⌋} with |ρ| = ⌈tp1⌉,

and α(1− β)R1,2 file units is the corresponding transmission
length required.

The remaining (1 − α)Ms2 portion of each helper cache
is filled with the subfiles of the set {W

(1−α)
n , ∀n ∈ [N ]}

using the value ⌈ts⌉. Then, find tp2 = L1Mp/(N − Ms2).
If tp2 is an integer, the placement and delivery are done
using Scheme 2 with ⌈ts⌉ and tp2 . If tp2 is not an integer,
find Mp2,1 = (N − Ms2)⌊tp2⌋/L1 and Mp2,2 = (N −
Ms2)⌈tp2⌉/L1. Then, Mp = γMp2,1 + (1 − γ)Mp2,2 such

that 0 ≤ γ ≤ 1. Each subfile in the set {W
(1−α)
n,τ , ∀n ∈

[N ] : τ ⊆ [Λ], |τ | = ⌈ts⌉} is partitioned into W
(γ−γα)
n,τ and

W
((1−α)(1−γ))
n,τ , where |W

(γ−γα)
n,τ | = (1−α)γ/

(
Λ

⌈ts⌉

)
file units

and |W
((1−α)(1−γ))
n,τ | = (1 − α)(1 − γ)/

(
Λ

⌈ts⌉

)
file units. The

remaining (1−α)Mp portion of each user’s private caches is
filled according to (19) with the mini-subfiles of the following
sets: {W

(γ−γα)
n,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | = ⌈ts⌉} with

|ρ| = ⌊tp2⌋ and {W
((1−α)(1−γ))
n,τ , ∀n ∈ [N ] : τ ⊆ [Λ], |τ | =

⌈ts⌉} with |ρ| = ⌈tp2⌉. The mini-subfiles having |ρ| = ⌊tp2⌋
occupies a memory of (1 − α)γMp2,1 , and the remaining
(1 − α)(1 − γ)Mp2,2 portion is occupied by the mini-subfies
having |ρ| = ⌈tp2⌉. The transmission length required obtained
in the case of ⌈ts⌉ and ⌊tp2⌋ is (1 − α)γR2,1 file units, and
(1−α)(1−γ)R2,2 file units is the transmission length required
for ⌈ts⌉ and ⌈tp2⌉.

Thus, the given memory pair (Ms,Mp) is obtained as the
convex linear combination of four other points (Ms1 ,Mp1,1),
(Ms1 ,Mp1,2), (Ms2 ,Mp2,1), and (Ms2 ,Mp2,2) as:

(Ms,Mp) = αβ(Ms1 ,Mp1,1) + α(1 − β)(Ms1 ,Mp1,2)+

(1− α)γ(Ms2 ,Mp2,1) + (1 − α)(1 − γ)(Ms2 ,Mp2,2).

Therefore, the rate R(Ms,Mp) is obtained as:

R(Ms,Mp) = αβR1,1(Ms1 ,Mp1,1) + α(1− β)R1,2(Ms1 ,Mp1,2)+
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(1− α)γR2,1(Ms2 ,Mp2,1) + (1− α)(1− γ)R2,2(Ms2 ,Mp2,2).

Next, we present an example to illustrate the scheme.

Example 3. Λ = 3, K = 6, N = 6, Ms = 2, Mp = 4/3,

U = {{1, 2, 3}, {4, 5}, {6}} with L = (3, 2, 1)

Consider a scenario where there is a server with N = 6
files, W = {W1,W2, . . . ,W6}, connected to Λ = 3 helper
caches and to K = 6 users through a wireless broadcast link.
Each helper cache and user cache are of size Ms = 2 files
and Mp = 4/3 files, respectively.

In this example, ts = 1 and tp = 1. To fill the helper
caches, each file Wn, n ∈ [6], is divided into 3 subfiles
{Wn,1,Wn,2,Wn,3}. The contents cached at each helper cache
are as follows:

Z1 = {Wn,1, ∀n ∈ [6]},Z2 = {Wn,2, ∀n ∈ [6]},

and Z3 ={Wn,3, ∀n ∈ [6]}.

To fill the user caches, each subfile is further divided into
3 mini-subfiles {Wn,τ,1,Wn,τ,2,Wn,τ,3}, where n ∈ [6] and
τ ∈ [3]. The contents stored in each user cache are given
below.

λ = 1







Z1 = {Wn,2,1,Wn,3,1, ∀n ∈ [6]},

Z2 = {Wn,2,2,Wn,3,2, ∀n ∈ [6]},

Z3 = {Wn,2,3,Wn,3,3, ∀n ∈ [6]},

λ = 2

{

Z4 = {Wn,1,1,,Wn,3,1, ∀n ∈ [6]},

Z5 = {Wn,1,2,Wn,3,2, ∀n ∈ [6]},

λ = 3
{

Z6 = {Wn,1,1,Wn,2,1, ∀n ∈ [6]}.

Let d = (1, 2, 3, 4, 5, 6) be the demand vector. The set Q
is obtained as follows: Q =

{
{12, 12}, {12, 13}, {12, 23},

{13, 12}, {13, 13}, {13, 23}, {23, 12}, {23, 13}, {23, 23}
}

.
Then, the set of users US×P , ∀S × P ∈ Q, is
obtained as follows: U{12,12} = {1, 2, 4, 5}, U{12,13} =
{1, 3, 4}, U{12,23} = {2, 3, 5}, U{13,12} =
{1, 2, 6}, U{13,13} = {1, 3, 6}, U{13,23} = {2, 3},
U{23,12} = {4, 5, 6}, U{23,13} = {4, 6}, U{23,23} = {5}.
Since US×P 6= φ, ∀S × P ∈ Q, the server sends a message
corresponding to every S ×P . Note that the number of users
benefiting from each transmitted message is not the same.
The transmissions are as follows:

X{12,12} = W1,2,2 ⊕W2,2,1 ⊕W4,1,2 ⊕W5,1,1,

X{12,13} = W1,2,3 ⊕W3,2,1 ⊕W4,1,3,

X{12,23} = W2,2,3 ⊕W3,2,2 ⊕W5,1,3,

X{13,12} = W1,3,2 ⊕W2,3,1 ⊕W6,1,2,

X{13,13} = W1,3,3 ⊕W3,3,1 ⊕W6,1,3,

X{13,23} = W2,3,3 ⊕W3,3,2,

X{23,12} = W4,3,2 ⊕W5,3,1 ⊕W6,2,2,

X{23,13} = W4,3,3 ⊕W6,2,3, X{23,23} = W5,3,3.

To explain the decoding, consider user 1. The transmissions
beneficial to user 1 are X{12,12}, X{12,13}, X{13,12}, and
X{13,13}. Consider transmission X{12,12}. The subfile W2,2,1

is cached in user 1’s private cache, and the other two subfiles,

W{4,1,2} and W{5,1,1}, are available from the helper cache to
which it is connected. Thus, user 1 can decode the desired
subfile W1,2,2. Similarly, it can decode the remaining subfiles.
The procedure is same for all other users as well. Thus, the
rate achieved is R(2, 4/3)|Scheme2 = 9/9 = 1.

Now, let us look at the rate achieved by the scheme
in Section IV-B in this case. With U known, we get
R(2, 4/3)

∣
∣
L=(3,1)

= 0.89 which is less than the rate achieved
by Scheme 2. However, there are instances where Scheme 2
exhibits a better performance than the scheme in Section IV-B.
One such instance is described below.

Example 4. N = 4, K = 4, Λ = 2, Ms = 2, Mp = 0.5,

U = {{1, 2}, {3, 4}} with L = (2, 2)

Consider a network with a server having N = 4 unit-sized
files, W = {W1,W2,W3,W4}. The server is connected to
Λ = 2 helper caches, each of size Ms = 2 units, and to
K = 4 users, each having a dedicated cache of size Mp = 0.5
units. The users are associated with the caches in a uniform
manner as given: U = {{1, 2}, {3, 4}}.

In Scheme 2, we get ts = 1 and tp = 1/2. To fill the helper
caches, each file Wn, n ∈ [4],l is divided into equally-sized
subfiles: Wn = {Wn,1,Wn,2}. The helper cache placement is
as follows: Z1 = {Wn,1, ∀n ∈ [4]} and Z2 = {Wn,2, ∀n ∈
[4]}. Since tp 6∈ [2], the memory sharing technique needs to
be employed between ⌊tp⌋ and ⌈tp⌉ instances. Corresponding
to ⌊tp⌋ and ⌈tp⌉, we obtain Mp1 = 0 and Mp2 = 1. Thus,
Mp = αMp1 + (1 − α)Mp2 , where α = 1/2. Each subfile
Wn,τ , n ∈ [4], τ ∈ [2], is further divided into two parts as

Wn,τ = {W
(α)
n,τ ,W

(1−α)
n,τ }, where |W

(α)
n,τ | = 1/4 units and

|W
(1−α)
n,τ | = 1/4 units.
The case ⌊tp⌋ = 0 corresponds to a fully shared cache

system, and hence, Scheme 2 reduces to the optimal shared
cache scheme in [5]. Corresponding to ⌈tp⌉ = 1, each subfile

in the set {W (1−α)
n,τ , ∀τ ∈ [2], n ∈ [4]} is further divided into

two mini-subfiles W (1−α)
n,τ,1 and W

(1−α)
n,τ,2 , each of size 1/8 units.

Thus, the contents stored at the users’ caches are as follows:

Z1 = {W
(1−α)
n,2,1 ∀n ∈ [4]}, Z2 = {W

(1−α)
n,2,2 ∀n ∈ [4]},

Z3 = {W
(1−α)
n,1,1 ∀n ∈ [4]}, Z4 = {W

(1−α)
n,1,2 ∀n ∈ [4]}.

Let d = (1, 2, 3, 4) be the demand vector. Then, the
transmissions are as follows:

X
(α)
{12},1 = W

(α)
1,2 ⊕W

(α)
3,1 , X

(α)
{12},2 = W

(α)
2,2 ⊕W

(α)
4,1 ,

X
(1−α)
{12,12} = W

(1−α)
1,2,2 ⊕W

(1−α)
2,2,1 ⊕W

(1−α)
3,1,2 ⊕W

(1−α)
4,1,1 .

Each user is able to retrieve its demanded file using the above
transmissions and the available cache contents. Thus, the rate
obtained in this case is R(2, 0.5)

∣
∣
Scheme2

= 1/2 + 1/8 = 5/8.
Whereas, the rate achieved by the scheme in Section IV-B in
this case is R(2, 0.5)

∣
∣
L=(2,2)

= 2/3 (the value of f∗ obtained

is 3/4) which is greater than the rate achieved by Scheme 2.
Later in Section VI, we show that Scheme 2 is optimal in
certain memory regimes.

From the previous two examples (Examples 3 and 4),
we have seen that neither Scheme 2 nor the scheme in
Section IV-B performs well in all memory regimes. Hence,



12

we propose another scheme in the following subsection that
leverages the advantages provided by both the schemes and
result in a better performance when U is known beforehand.

D. Composite scheme: Combination of MaN scheme and

Scheme 2

We have seen, so far, three different schemes for the case
when U is known at the placement phase itself. Except Scheme
1, the other two schemes exist in all memory regimes and each
of them offers advantage in different memory regions. Hence,
we design a new scheme that encompasses the advantages
offered by the previous two schemes (Scheme in Section IV-B
and Scheme 2) into a single one. We refer this scheme as
composite scheme as it combines MaN scheme and Scheme
2. The composite scheme is based on partitioning the files and
the users’ private memory appropriately to share them between
MaN scheme and Scheme 2.

The scheme is as follows: divide each file Wn, n ∈ [N ],
into two non-overlapping parts: Wn = {W

(M)
n ,W

(S2)
n } such

that |W
(M)
n | = z file units and |W

(S2)
n | = 1 − z file units,

where 0 ≤ z ≤ 1. The set {W (M)
n , ∀n ∈ [N ]} is used to fill

vMp portion of the user’s private cache using MaN scheme
placement, where 0 ≤ v ≤ 1. The helper caches and the
remaining (1− v)Mp portion of each user’s private cache are

filled according to Scheme 2 using the set {W (S2)
n , ∀n ∈ [N ]}.

On receiving a demand vector d, the server independently runs
the two delivery policies corresponding to MaN scheme and
Scheme 2 on {W

(M)
n , ∀n ∈ [N ]} and {W

(S2)
n , ∀n ∈ [N ]},

respectively. We define, t
(M)
p ,

KvMp

zN ∈ [0,K], t
(S2)
s ,

ΛMs

(1−z)N ∈ (0,Λ], and t
(S2)
p ,

L1(1−v)Mp

(1−z)N−Ms
∈ [0,L1]. When

t
(M)
p , t

(S2)
s and t

(S2)
p are integers, the rate achieved by the

composite scheme is:

R(Ms,Mp)
∣
∣
Composite

scheme
= z

(

K − t
(M)
p

t
(M)
p + 1

)

+

(1− z)









Λ−ts∑

n=1

(
Λ− n

t
(S2)
s

)[(
L1

t
(S2)
p + 1

)

−

(
L1 − Ln

t
(S2)
p + 1

)]

( Λ
t
(S2)
s

)( L1

t
(S2)
p

)









.

If any of the parameters t(M)
p , t(S2)

s , and t
(S2)
p are not integers,

we need to employ the memory-sharing technique. The param-
eters z and v are obtained by optimizing R(Ms,Mp)

∣
∣
Composite

scheme

over 0 ≤ v ≤ 1 and vMp

N ≤ z ≤ 1 − Ms

N . The optimal z∗

and v∗ obtained through the optimization is then used in the
scheme.

Remark 5. When v = 1, the composite scheme subsumes the

scheme in Section IV-B as a special case.

Note that the rate achieved by the composite scheme will
always be at most the rate achieved either by Scheme 2 or
by scheme in Section IV-B. That is, R(Ms,Mp)

∣
∣
Composite

scheme
≤

min{R(Ms,Mp)
∣
∣
L
, R(Ms,Mp)

∣
∣
Scheme2

}, where
R(Ms,Mp)

∣
∣
L

denotes the rate-memory tradeoff of the

scheme in Section IV-B. Hence, it is enough to consider only
the composite scheme while doing a performance comparison.

V. NUMERICAL COMPARISONS

In this section, we compare and characterize the perfor-
mances of the proposed schemes in Theorem 1 (U unknown
case), Theorem 2 (Scheme 1), and in Section IV-D (com-
posite scheme). We consider a scenario with N = 30 files,
K = 30 users, and Λ = 5 helper caches. In Fig. 3, the
plots are drawn with a U = {{1, 2, . . . , 20}, {21, . . . , 24},
{25, 26, 27}, {28, 29}, {30}} having the profile L =
(20, 4, 3, 2, 1). The plots in Fig. 3 are drawn by fixing Ms,
and varying Mp such that Ms +Mp ≤ N . The rate-memory
curves R∗

PUE(M) and R∗
MaN(M), where M = Ms+Mp, serve

as an upper bound and a lower bound, respectively, for the
proposed schemes.

In Fig. 3a and Fig. 3b, all the plots are drawn by varying Mp

and fixing Ms = 5 and Ms = 20, respectively. When Mp = 0,
the schemes for both the U unknown and known cases achieve
the optimal rate R∗

PUE(Ms). For smaller values of Mp, there
is a gain obtained by knowing U a priori in both the plots.
However, due to the asymmetry in U , we cannot exactly
attribute that gain to any of the individual schemes (MaN
scheme or Scheme 2) in the composite scheme. At higher
values of Mp, the improvement obtained by the composite
scheme over the U unknown scheme is marginal. However,
both the proposed schemes’ performances approach R∗

MaN(M)
in the higher memory regime of Mp. In Fig. 3a, Scheme 1 for
U known case exists only when 24 ≤ Mp ≤ 25. For all other
values of Mp, the constraints t = K(Ms +Mp)/N ≥ L1 and
(K−L1

t−L1
)N

(Kt )
≥ Ms are not satisfied jointly. Whereas, in the case

of Ms = 20, this condition is satisfied only at the trivial point
Mp = N −Ms = 10. Hence, it is not shown in Fig. 3b.

For Ms = 5 and Ms = 20, the plots
corresponding to the uniform user-to-cache
association U = {{1, . . . , 6}, {7, . . . , 12},
{13, . . . , 18}, {19, . . . , 24}, {25, . . . , 30}} are given in
Fig. 4a and Fig. 4b, respectively. When Ms = 5, the
composite scheme offers only a minuscule gain over the
U agnostic scheme. This is because the profile is uniform,
hence the scheme in the U unknown case performs as good
as the scheme in the known case presented in Section IV-B.
Whereas, in the case of Ms = 20, a significant gain is
obtained by the composite scheme at the smaller values of
Mp. In fact, the gain obtained from the composite scheme is
attributed to the coding gain provided by Scheme 2, which is
(t

(S2)
s + 1)(t

(S2)
p + 1). When Ms = 5, Scheme 1 exists for

19 ≤ Mp ≤ 25, and when Ms = 20, Scheme 1 exists only
for 9 ≤ Mp ≤ 10.

In Fig. 5a and Fig. 5b, the rate-memory tradeoff of the
proposed schemes are characterized by varying Ms and fixing
Mp = 4 for a non-uniform U and a uniform U , respectively.
For non-uniform U , a small gain is obtained by the composite
scheme in the smaller values of Ms region. Whereas, in the
case of uniform profile, the improvement provided by the
composite scheme is significant when Ms is slightly large.
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Fig. 3: For a network with K = 30, N = 30, Λ = 5, U = {{1, 2, . . . , 20},{21, . . . , 24},{25, 26, 27},{28, 29}, {30}}.
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Fig. 4: For a network with K = 30, N = 30, Λ = 5, U = {{1, . . . , 6},{7, . . . , 12},{13, . . . , 18},{19, . . . , 24},
{25, . . . , 30}}.
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Fig. 5: For a network with K = 30, N = 30, Λ = 5
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This gain is explicitly due to the (t
(S2)
s +1)(t

(S2)
p +1) coding

gain provided by Scheme 2 in the composite scheme.
Next, we compare the performance of our schemes with that

of MaN scheme and the optimal shared cache scheme in [5]
by keeping the system memory same in all the three network
models. In the network model shown in Fig. 1, the total system
memory is ΛMs+KMp. The rate versus system memory plots
are given in Fig. 6 for a uniform and a non-uniform profile.
Note that different (Ms,Mp) pairs can lead to the same total
system memory, but, the rates achieved by our schemes vary
for each (Ms,Mp) pair. The plots of our proposed schemes
in Fig. 6a and Fig. 6b are drawn by varying Mp and fixing
Ms = 20 (same as in Fig.3b and Fig. 4b). Corresponding
to each Mp ∈ [0, N − 20], the rate R∗

PUE(M) is calculated
for M = (ΛMs + KMp)/Λ = Ms +

K
ΛMp, and R∗

MaN(M)
corresponds to M = (ΛMs+KMp)/K = Mp+

Λ
KMs as the

total system memory needs to be constant in all the considered
network models. The rate R∗

PUE(M) becomes zero at smaller
values of Mp itself, and R∗

MaN(M) never goes to zero in Fig. 6a
and Fig. 6b, as Mp +

Λ
KMs is always less than N for every

0 ≤ Mp ≤ N − Ms. When U is uniform, R∗
PUE(M/Λ) and

R∗
MaN(M/K) will always serve as a lower bound and an upper

bound on the performance of our schemes (see Fig. 6b). It
is expected due to the fact that the total memory accessed
by an individual user in different network models is in the
order: Λ

KMs + Mp ≤ Ms + Mp ≤ Ms + K
ΛMp . When

U is non-uniform, the rate-memory curves of the proposed
schemes are not always bounded between R∗

PUE(M/Λ) and
R∗

MaN(M/K) (see Fig. 6a). This is because, in a shared cache
network, the multicasting opportunities are severely affected
by the skewness in U .

VI. LOWER BOUND AND OPTIMALITY OF SCHEME 2 IN

CERTAIN MEMORY REGIMES

In this section, we derive a cut-set based lower bound on
R∗(Ms,Mp), and show that Scheme 2 is optimal in certain
memory regimes.

Theorem 4. For N files, K users, each with a cache of size

Mp ≥ 0, assisted by Λ helper caches, each of size Ms ≥ 0,

the following lower bound holds when Ms +Mp ≤ N ,

R∗(Ms,Mp) ≥ max
u∈{1,2,...,min(N,K)}

(

u−
uMp + λuMs

⌊N/u⌋

)

,

(25)
where λu represents the index of the helper cache to which

the uth user is connected, assuming users and helper caches

are ordered.

Proof: Let u ∈ [min{N,K}], and consider the first u
users. Assuming that the caches and the users are ordered,
let λu denote the helper cache to which the uth user is
connected. For a demand vector d1 = (1, 2, . . . , u, φ, . . . , φ),
where the first u users request the files W1,W2, . . . ,Wu,
respectively, and the remaining K − u users’ requests can
be arbitrary, the sever makes a transmission X1. The trans-
mission X1, the cache contents Z[1:λu] and Z[1:u] enable the
decoding of the files W[1:u]. Similarly, for a demand vector
d2 = (u + 1, u + 2, . . . , 2u, φ, . . . , φ), the transmission X2

and the cache contents Z[1:λu], Z[1:u] help to recover the files
W[u+1:2u]. Therefore, if we consider ⌊N/u⌋ such demand
vectors and its corresponding transmissions X[1:⌊N/u⌋], the
files W[1:u⌊N/u⌋] can be decoded by the first u users using
their available cache contents. Thus, we obtain

u⌊N/u⌋ ≤ uMp + λuMs + ⌊N/u⌋R∗(Ms,Mp). (26)

On rearranging (26), we get R∗(Ms,Mp) ≥ u−
uMp+λuMs

⌊N/u⌋ .
Optimizing over all possible choices of u, we obtain

R∗(Ms,Mp) ≥ max
u∈{1,2,...,min(N,K)}

(

u−
uMp + λuMs

⌊N/u⌋

)

.

This completes the proof of Theorem 4.
The lower bound in (25) holds irrespective of the type of

placement employed. Using the above lower bound, we now
show that Scheme 2 is optimal when Ms ≥ N(1 − 1

Λ) and
N ≥ Ms +Mp ≥ N(1− 1

ΛL1
).

Lemma 3. For Ms ≥ N(1 − 1
Λ ) and N ≥ Ms + Mp ≥

N(1− 1
ΛL1

), the optimal rate is

R∗(Ms,Mp) = 1−
Ms +Mp

N
. (27)

Proof: Consider Scheme 2 discussed in Section IV-C. To
satisfy the condition Ms ≥ N(1 − 1

Λ), ts needs to be either
Λ− 1 or Λ. When ts = Λ− 1, Ms = N(1− 1

Λ), and ts = Λ
corresponds to Ms = N .

Consider the case ts = Λ−1. In order to hold the condition
Ms + Mp ≥ N(1 − 1

ΛL1
), Mp needs to be greater than

N
Λ (1 − 1

L1
). The condition Mp ≥ N

Λ (1 − 1
L1

) implies tp =
L1 − 1 or tp = L1. Then, corresponding to the (ts, tp) pairs
(Λ−1,L1−1) and (Λ−1,L1), using Scheme 2, the memory-
rate triplets (Ms,Mp, R):

(
N(1 − 1

Λ ),
N
Λ (1 − 1

L1
), 1

ΛL1

)
and

(
N
(
1− 1

Λ

)
, N
Λ , 0

)
are achievable, respectively. When ts = Λ,

we get Ms = N and Mp = 0, which means all the
files are entirely cached in each helper cache, and the rate
is R(N, 0) = 0. Thus, the memory-rate triplet (N, 0, 0)
is also achievable. By memory-sharing among the triplets
(
N(1− 1

Λ),
N
Λ (1− 1

L1
), 1

ΛL1

)
,
(
N
(
1− 1

Λ

)
, N
Λ , 0

)
, and (N, 0, 0),

the rate R(Ms,Mp) = 1 −
Ms+Mp

N is achievable by Scheme
2 when Ms ≥ N(1− 1

Λ) and N ≥ Ms +Mp ≥ N(1− 1
ΛL1

).
Next, consider the cut-set bound obtained in (25). Substitute

u = 1, then we get: R∗(Ms,Mp) ≥ 1 −
Ms+Mp

N . Thus, we

obtain R∗(Ms,Mp) = 1 −
Ms+Mp

N for Ms ≥ N(1 − 1
Λ ) and

N ≥ Ms +Mp ≥ N(1 − 1
ΛL1

). This completes the proof of
Lemma 3.

VII. CONCLUSION

In this work, we studied a network model where the users
have access to two types of caches: a private cache and a cache
shared with some of the users. For this network model, we
proposed centralized coded caching schemes under uncoded
placement for two different scenarios: with and without the
prior knowledge of user-to-helper cache association. With
user-to-helper cache association known at the server during the
placement, we designed four schemes: one inspired from the
optimal dedicated cache scheme and has limited operational
regime, the two other proposed schemes exhibited improved
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(a) U = {{1, 2 . . . , 20}, {21, . . . , 24}, {25.26, 27}, {28, 29}, {30}}

100 150 200 250 300 350 400

0

1

2

3

4

5

6

7

(b) U = {{1, 2 . . . , 6}, {7, . . . , 12}, {13, . . . , 18}
{19, . . . , 24}, {25, . . . , 30}}

Fig. 6: For a network with K = 30, N = 30, Λ = 5

performances in different memory regions, hence both are
combined to form a fourth scheme that always result in a
better performance than the scheme in the unknown case.
The optimality of some of the schemes in the known case
are also shown, either by matching the rate with the known
optimality results or by matching it with the derived cut-set
bound. Deriving stronger converse bounds and characterizing
the achievability results in all memory regimes is a direction
to work on further.
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APPENDIX A

In this section, we find the value of f that minimizes the

function
f(K−KMs

fN
)

1+ΛMs
fN

+
(1−f)(K−

KMp

(1−f)N
)

1+
KMp

(1−f)N

, where Ms/N ≤ f ≤

1−Mp/N . We have

f∗ = argmin
f

f(K − KMs

fN )

1 + ΛMs

fN

+
(1− f)(K −

KMp

(1−f)N )

1 +
KMp

(1−f)N

.

To find f∗, we equate the first derivative of the function to
zero, and we obtain the following:

d

df

(
f(1− Ms

fN )

1 + ΛMs

fN

+
(1− f)(1−

Mp

(1−f)N )

1 +
KMp

(1−f)N

)

= 0,

=⇒
d

df

(

f − Ms

N

1 + ΛMs

fN

)

= −
d

df

(

1− f −
Mp

N )

1 +
KMp

(1−f)N

)

. (28)

For ease of representation, we denote mp = Mp/N and ms =
Ms/N . Then, (28) becomes

1 + Λms

f + (f −ms)
Λms

f2

(1 + Λms

f )2
=

1 +
Kmp

1−f + (1− f −mp)
Kmp

(1−f)2

(1 +
Kmp

1−f )2
.

(29)

Rearranging the terms and completing squares on both sides
in (29) give

(1 + Λms

f )2 −
Λ(Λ+1)m2

s

f2

(1 + Λms

f )2
=

(1 +
Kmp

1−f )2 −
K(K+1)m2

p

(1−f)2

(1 +
Kmp

1−f )2
.

Therefore, we have

1−
Λ(Λ + 1)m2

s

(f + Λms)2
= 1−

K(K + 1)m2
p

(1− f +Kmp)2
.

By further rearranging, we get

(f + Λms)
2

(1− f +Kmp)2
=

Λ(Λ + 1)m2
s

K(K + 1)m2
p

.

Upon further reduction, we obtain

(f + Λms)
√

K(K + 1)mp = (1− f +Kmp)
√

Λ(Λ + 1)ms,

=⇒ f(
√

K(K + 1)mp +
√

Λ(Λ + 1)ms) =

(1 +Kmp)
√

Λ(Λ + 1)ms − Λms

√

K(K + 1)mp.

Thus, we obtain

f =
Ms

N

(1 +
KMp

N )
√

Λ(Λ + 1)−
ΛMp

N

√

K(K + 1)
√

K(K + 1)
Mp

N +
√

Λ(Λ + 1)Ms

N

. (30)

Since f ≥ Ms/N , (30) can be rewritten as

f
∗ =

Ms

N
max

(

1,
(1 +

KMp

N
)
√

Λ(Λ + 1) −
ΛMp

N

√

K(K + 1)
√

K(K + 1)
Mp

N
+
√

Λ(Λ + 1)Ms

N

)

.

(31)
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