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Abstract—This work considers the combinatorial multi-access
coded caching problem introduced in the recent work by Mu-
ralidhar et al. [P. N. Muralidhar, D. Katyal, and B. S. Rajan,
“Maddah-Ali-Niesen scheme for multi-access coded caching,” in
IEEE Inf. Theory Workshop (ITW), 2021] The problem setting
consists of a central server having a library of N files and
C caches each with capacity M . Each user in the system can
access a unique set of r < C caches, and there exist users
corresponding to every distinct set of r caches. Therefore, the
number of users in the system is

(

C

r

)

. For the aforementioned
combinatorial multi-access setting, we propose a coded caching
scheme with an MDS code-based coded placement. This novel
placement technique helps to achieve a better rate in the delivery
phase compared to the optimal scheme under uncoded placement
when M > N/C. For a lower memory regime, we present
another scheme with coded placement, which outperforms the
optimal scheme under uncoded placement if the number of files
is no more than the number of users. Further, we derive an
information-theoretic lower bound on the optimal rate-memory
trade-off of the combinatorial multi-access coded caching scheme.
In addition, using the derived lower bound, we show that the
first scheme is optimal in the higher memory regime, and the
second scheme is optimal if N ≤

(

C

r

)

. Finally, we show that the
performance of the first scheme is within a constant factor of the
optimal performance, when r = 2.

Index Terms—Coded caching, coded placement, combinatorial
multi-access network, lower bound, rate-memory trade-off

I. INTRODUCTION

With smartphones, mobile applications and expanded con-
nectivity, people are consuming more video content than ever.
This increase in mobile video consumption is taking a toll
on the internet, which has seen data traffic increase many-
fold in a few years. However, the high temporal variability
of on-demand video services leaves the network underutilized
during off-peak hours. Utilizing the channel resources by
employing low-cost cache memory to store contents at the
user end during off-peak times is an effective way to ease the
network traffic congestion in peak hours. In the conventional
caching scheme, the users’ demands are met by filling the
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caches during the placement phase (in off-peak hours without
knowing the user demands) and by transmitting the remaining
requested file contents in the uncoded form during the delivery
phase (in the peak hours after knowing the user demands).
In coded caching, introduced in [1], it was shown that by
employing coding in the delivery phase among the requested
contents, it is possible to bring down the network load further
compared to the conventional caching scheme. In [1], Maddah-
Ali and Niesen considered a single server broadcast network,
where the server is connected to K users through an error-
free shared link. The server has a library of N files, and
the user caches have a capacity of M files, where M ≤ N
(since each user is equipped with a dedicated cache memory,
we refer to this network as the dedicated cache network).
During the placement phase, the server stores file contents
(equivalent to M files) in the caches without knowing the
user demands. In the delivery phase, each user requests a
single file from the server. In the delivery phase, the server
makes coded transmissions so that the users can decode
their demanded files by making use of the cache contents
and the coded transmissions. The goal of the coded caching
problem is to jointly design the placement and the delivery
phases such that the rate (the size of transmission) in the
delivery phase is minimized. The scheme in [1] achieved a rate
K(1−M/N)/(1 +KM/N), which is later shown to be the
optimal rate under uncoded placement if N ≥ K [2], [3]. In
[4], it was shown that by employing coding among the contents
stored in the placement phase in addition to the coding in
the delivery phase, a better rate-memory trade-off could be
achieved. By using coded placement, further improvement in
the rate was obtained by the schemes in [5]–[9]. The works
in [10]–[14], came up with different converse bounds for the
optimal rate-memory trade-off of the coded caching scheme
for the dedicated cache network.

Motivated by different practical scenarios, coded caching
was extended to various network models, including multi-
access networks [15], shared cache networks [16] etc. In the
multi-access coded caching (MACC) scheme proposed in [15],
the number of users, K was kept to be the same as the number
of caches. Further, each user was allowed to access r < K
neighbouring caches in a cyclic wrap-around fashion. The
coded caching scheme under the cyclic-wrap model was stud-
ied in [17]–[22]. Those works proposed different achievable
schemes, all restricted to uncoded cache placement. In [23],
the authors proposed a coded caching scheme with an MDS
code-based coded placement technique and achieved a better
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rate-memory trade-off in the low memory regime compared to
the schemes with uncoded placement. Further, by deriving an
information-theoretic converse, the scheme in [23] was shown
to be optimal in [24]. The MACC problem (in the cyclic wrap-
around network) was studied by incorporating security and
privacy constraints in [25], [26]. The first work that considered
a multi-access network with more users than the caches is
[27]. The authors established a connection between the MACC
problem and design theory, and obtained classes of MACC
schemes from resolvable designs. The works in [28], [29] also
relied on design theory to obtain MACC schemes.

In this paper, we consider the combinatorial multi-access
network model introduced in [30], which consists of C caches
and K =

(
C
r

)
users, where r is the number of caches accessed

by a user. The combinatorial MACC scheme presented in [30]
achieves the rate R =

(
C
t+r

)
/
(
C
t

)
at cache memory M =

Nt/C, where t ∈ {1, 2, . . . , C − r + 1}. Here onwards, we
refer to the scheme in [30] as the MKR scheme. The optimality
of the MKR scheme under uncoded placement was shown in
[31]. In addition to that, in [31], the system model in [30]
was generalized to a setting where more than one user can
access the same set of r caches. In [32], the authors addressed
the combinatorial MACC problem with privacy and security
constraints.

Similar network topologies were considered in various
cache aided settings, including two-hop networks [33], [34]
and multi-server networks [35]. The two-hop network con-
sidered in [33] and [34] consists of a server and K users
connected via a set of h cache-aided relay nodes. Each user is
connected to a distinct set of ρ relay nodes, where ρ < h, and
thus the number of user is K =

(
h
ρ

)
. Those users also have

dedicated caches. The scheme in [33] followed an uncoded
random placement strategy, whereas the scheme in [34] relied
on MDS-coded placement. The main difference between the
combinatorial MACC scheme and the coded caching scheme
for the two-hop network is in the delivery phase. In the com-
binatorial MACC setting, the server communicates directly to
the users over an error-free broadcast link. However, in two-
hop networks, the server responds to the users’ requests by
transmitting signals to each of the relay nodes. Then, each
relay node utilizes its received signal and its cached contents
to transmit unicast signals to each of its connected end users.
In [35], a network model with P servers and K cache-aided
users is considered. Each user can get connected to a random
set of ρ servers, where ρ ≤ P . In order to ensure that any ρ
servers collectively store the entire file library, the file contents
are stored in the servers after an MDS encoding.

A. Contributions

In this paper, we study the combinatorial multi-access
setting introduced in [30] and make the following technical
contributions:

• In [30], the authors proposed a combinatorial MACC
scheme (MKR scheme) that achieves the optimal rate
under uncoded placement. However, in the MKR scheme,
a user gets multiple copies of the same subfile from dif-
ferent caches that it accesses. In order to remove that re-
dundancy, we introduce a novel, MDS code-based coded

Cache 1 Cache 2 Cache C

Users

Server N filesW[1:N ]

Shared Link

(

C

r

)

K =

Access: r

Caches M

Fig. 1: (C, r,M,N) Combinatorial multi-access Network.

placement technique. By employing coded placement, we
ensure that using the accessible cache contents, a user
can decode all the subfiles that the corresponding user
in the MKR scheme (by corresponding user, we mean
that the user accessing the same set of caches) accesses
in the uncoded form. The coded subfiles transmitted in
the delivery phase of our proposed scheme (Scheme 1)
remain the same as the transmissions in the MKR scheme.
Thereby, our proposed scheme in Theorem 1 achieves the
same rate as the MKR scheme at a lesser cache memory
value. For M > N/C, Scheme 1 outperforms the MKR
scheme in terms of the rate achieved.

• For 0 ≤ M ≤ N/C, Scheme 1 has the same rate as
the MKR scheme. Thus we present another achievability
result for the combinatorial MACC scheme in Theorem 2.
The new coding scheme (Scheme 2) achieves the rate N−

CM for 0 ≤ M ≤
N−(C−1

r )
C , which is strictly less than

the rate achieved by the optimal scheme with uncoded
placement when the number of files with the server is no
more than the number of users in the system. In effect,
by employing coding in the placement phase, we brought
down the rate (except at M = N/C) further compared
to the optimal scheme under uncoded placement.

• We derive an information-theoretic lower bound on
the optimal rate-memory trade-off of the combinatorial
MACC scheme (Theorem 3). To obtain this lower bound,
we consider a scenario of decoding the entire server
library at the user-end using multiple transmissions. In
order to bound the uncertainty in those transmissions, we
make use of an information-theoretic inequality (Han’s

inequality) given in [37]. Han’s inequality was originally
used in the context of coded caching in [10], [11]. Our
bounding technique is similar to the approach used in
[10] and [24], where lower bounds were derived for
the dedicated cache scheme and the MACC scheme
with cyclic wrap-around, respectively. While deriving the
lower bound, we do not impose any restriction on the
placement phase. Thus, the lower bound is applicable
even if the scheme employs coding in the placement
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phase.
• By using the derived lower bound, we show that Scheme

1 is optimal for higher values of M , specifically when
M
N ≥

(Cr)−1

(Cr)
(Theorem 4). Further, we show that Scheme

2 is optimal when N ≤
(
C
r

)
(Theorem 5). In addition,

we show that when r = 2 and N ≥ K , the rate-memory
trade-off given by Scheme 1 is within a constant multi-
plicative factor, 21, of the information-theoretic optimal
rate-memory trade-off (Theorem 6).

B. Notations

For a positive integer n, [n] denotes the set {1, 2, . . . , n}.
For two positive integers a, b such that a ≤ b, [a : b] =
{a, a+1, . . . , b}. For two non-negative integers n,m, we have
(
n
m

)
= n!

m!(n−m)! , if n ≥ m, and
(
n
m

)
= 0 if n < m. Uppercase

letters (excluding the letters C,K,M,N and R) are used to
denote random variables (the letters C,K,M,N and R are
reserved for denoting system parameters). The set of random
variables {Va, Va+1, . . . , Vb} is denoted as V[a:b]. Calligraphic
letters are used to denote sets. Further, for a set of positive
integers I, VI represents a set of random variables indexed
by the elements in I (for instance, V{2,4,5} = {V2, V4, V5}).
Bold lowercase letters represent vectors, and bold uppercase
letters represent matrices. The identity matrix of size n×n is
denoted as In. Further, Fq represents the finite field of size q.
Finally, for a real number z, (z)+ = max(0, z).

The rest of the paper is organized as follows. Section
II describes the system model, and Section III describes
useful preliminaries. The main results on the achievability and
converse are presented in Section IV. The proofs of the main
results are given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model as shown in Fig. 1 consists of a central
server with a library of N independent files, W[1:N ] ,

{W1,W2, . . . ,WN}, each of size 1 unit (we assume that 1
unit of a file is constituted by f symbols from the finite field
of size q)1. There are C caches, each with capacity M units
(0 ≤ M ≤ N ). i.e., each cache can store contents equivalent
to M files. There are K users in the system, and each of
them can access r out of the C caches, where r < C. We
assume that there exists a user corresponding to any choice
of r caches from the total C caches. Thus the number of
users in the system is K =

(
C
r

)
. Further, each user is denoted

with a set U , where U ⊂ [C] such that |U| = r. That is,
a user is indexed with the set of caches that it accesses. In
other words, user U has access to all the caches in the set
U . A system under the aforementioned setting is called the
(C, r,M,N) combinatorial multi-access network. The coded
caching scheme under this model was introduced in [30].

The (C, r,M,N) combinatorial MACC scheme works in
two phases, the placement phase and the delivery phase. In
the placement phase, the server populates the caches with the
file contents. The cache placement is done without knowing

1We assume that q is such that all MDS codes considered in this work exist
over Fq .

the demands of the users. The placement can be either coded
or uncoded. By uncoded placement, we mean that files are
split into subfiles and kept in the caches as such, while coded
placement means that coded combinations of the subfiles are
allowed to be kept in the caches. The number of subfiles into
which a file is split is termed the subpacketization number.
The contents stored in cache c, c ∈ [C], is denoted as Zc. In
the delivery phase, user U requests file WdU from the server,
where dU ∈ [N ], and the demand vector d = (dU : U ⊂
[C], |U| = r). In the demand vector, we arrange the users
(subsets of size r) in the lexicographic order. Corresponding to
the demand vector, the server makes a transmission X of size
R units. We assume that the broadcast channel from the server
to the users is error-free. The non-negative real number R is
said to be the rate of transmission. Finally, user U should be
able to decode WdU using transmission X and the accessible
cache contents Zc, c ∈ U . That is, for U ⊂ [C] such that
|U| = r, we have

H(WdU |ZU , X) = 0 (1)

where ZU = {Zc : c ∈ U}.

Definition 1. For the (C, r,M,N) combinatorial MACC

scheme, a rate R is said to be achievable if the scheme satisfies

(1) with a rate less than or equal to R for every possible

demand vector. Further, the optimal rate-memory trade-off is

R∗(M) = inf{R : R is achievable}. (2)

The coded caching problem aims to design the placement
and the delivery phases jointly so that the rate is minimized.
In this work, we present two achievability results and a lower
bound on R∗(M).

III. PRELIMINARIES

In this section, we discuss the preliminaries required for
describing the coding scheme as well as the converse bound.

A. Review of the combinatorial MACC scheme in [30] (MKR

scheme)

In the sequel, we describe the combinatorial MACC scheme
presented in [30].

In the placement phase, the server divides each file into
(
C
t

)

non-overlapping subfiles of equal size, where t , CM/N ∈
[C]. The subfiles are indexed with t-sized subsets of [C].
Therefore, we have, Wn = {Wn,T : T ⊆ [C], |T | = t} for all
n ∈ [N ]. The server fills cache c as follows:

Zc = {Wn,T : T ∋ c, T ⊆ [C], |T | = t, n ∈ [N ]} (3)

for every c ∈ [C]. According to the above placement, the
server stores

(
C−1
t−1

)
subfiles of all the files in a cache. Thus,

we have, M/N =
(
C−1
t−1

)
/
(
C
t

)
= t/C. Now, assume that user

U demands file WdU from the server. In the delivery phase,
the server makes coded transmissions corresponding to every
S ⊆ [C] such that |S| = t+ r. The server transmission is as
follows: ⊕

U⊆S
|U|=r

WdU ,S\U . (4)
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Therefore, the number of coded subfiles transmitted is
(
C
t+r

)
,

where each coded subfile is 1/
(
C
t

)
of a file size. Thus the rate

of transmission is
(
C
t+r

)
/
(
C
t

)
.

Notice that user U gets subfile Wn,T for all n ∈ [N ] from
the cache placement if U ∩ T 6= φ. Now, let us see how
does the user get subfile WdU ,T if U ∩ T = φ. Consider the
transmission corresponding to the (t+r)-sized set S = U ∪T .
In the coded message

⊕

U⊆S
|U|=r

WdU ,S\U =WdU ,T ⊕
⊕

U ′⊆S
|U ′|=r
U ′ 6=U

WdU′ ,S\U ′

user U has access to WdU′ ,S\U ′ for every U ′ 6= U , since |U ∩
S\U ′| 6= 0. Therefore, user U can decode the demanded file
WdU .

B. Maximum distance separable (MDS) codes [36]

An [n, k] maximum distance separable (MDS) code is an
erasure code that allows recovering the k message/information
symbols from any k out of the n coded symbols. Consider a
systematic [n, k] MDS code (over the finite field Fq) generator
matrix Gk×n = [Ik|Pk×n−k]. Then, we have

[m1,m2, . . . ,mk, c1, c2, . . . , cn−k] = [m1,m2, . . . ,mk]G

where the message vector [m1,m2, . . . ,mk] ∈ F
k
q .

C. Han’s Inequality [37]

To derive a lower bound on R∗(M), we use the following
lemma which gives an inequality on subset of random vari-
ables.

Lemma 1 (Han’s Inequality [37]). Let V[1:m] =
{V1, V2, . . . , Vm} be a set of m random variables. Further,

let A and B denote subsets of [1 : m] such that |A| = a and

|B| = b with a ≥ b. Then, we have

1
(
m
a

)

∑

A⊆[1:m]
|A|=a

H(VA)

a
≤

1
(
m
b

)

∑

B⊆[1:m]
|B|=b

H(VB)

b
(5)

where VA and VB denote the set of random variables indexed

by the elements in A and B, respectively.

D. Motivating Example

Even though the MKR scheme is optimal under uncoded
placement, with an example, we show that further reduction
in rate is possible with the help of coded placement.

Consider the (C = 4, r = 2,M = 3, N = 6) combinatorial
multi-access network in Fig. 2. There are

(
4
2

)
= 6 users

in the system, each denoted with a set U , where U ⊂ [C]
such that |U| = 2. Let us first see the MKR scheme,
where the placement is uncoded. In the placement phase,
the server divides each file into 6 non-overlapping subfiles
of equal size. Further, each subfile is denoted with a set
T , where T ⊂ [C] such that |T | = 2. Thus, we have
Wn = {Wn,12,Wn,13,Wn,14,Wn,23,Wn,24,Wn,34} for all
n ∈ [6]. Note that, even though the subfile indices are sets, we

Cache 1 Cache 2 Cache 4

Users

Server N filesW[1:N ]

Shared Link

r = 2

Caches M

Cache 3

{12} {13} {14} {23} {24} {34}

Z1 Z2 Z3 Z4

Fig. 2: (4, 2,M,N) Combinatorial multi-access Network.

omitted the curly braces for simplicity. The server populates
the kth cache as follows:

Zk = {Wn,T : k ∈ T , T ⊂ [C], |T | = 2}.

The contents stored in the caches are given in Table I. From
the cache placement, user U has access to all the subfiles (of
every file) except those indexed with 2-sized subsets of [C]\U .
For example, user {1, 2} has access to all the subfiles except
subfile Wn,34.

In the delivery phase, the users reveal their demands. Let
WdU be the file demanded by user U . Then the server transmits
Wd12,34+Wd13,24+Wd14,23+Wd23,14+Wd24,13+Wd34,12. The
claim is that all the users will get their demanded file from the
above placement and delivery phases. For example, user {1, 2}
has access to all the subfiles except subfile Wn,34. However,
user {1, 2} can get Wd12,34 by subtracting the remaining
subfiles from the transmitted message. Similarly, it can be
verified that all the users will get their demanded files. Thus
the rate achieved is 1/6. This achieved rate is, in fact, optimal
under uncoded placement [31]. Notice that every subfile is
cached in two caches. For instance, subfile Wn,12 is cached
in cache 1 and cache 2. Thus user {1, 2} who accesses those
two caches get multiple copies of the same subfile. This leads
to the question of whether we can do better than the MKR
scheme.

Now, we employ a coded placement technique and achieve
the same rate 1/6 at M = 2.5. The coding scheme is
described hereinafter. The server divides each file into 6
subfiles of equal size, and each subfile is indexed with a set
T , where T ⊂ [C] such that |T | = 2. Thus, we have Wn =
{Wn,12,Wn,13,Wn,14,Wn,23,Wn,24,Wn,34} for all n ∈ [6].
Further, each subfile is divided into 2 mini-subfiles both having
half of a subfile size, we have Wn,T = {W

(1)
n,T ,W

(2)
n,T } for all

subfiles. The cache placement is summarized in Table II. Each
cache contains 5 mini-subfiles (3 uncoded and 2 coded mini-
subfiles), each of size 1/12 of a file size. Thus, the size of the
caches is 2.5.

Let WdU be the file demanded by user U in the delivery
phase. Then the server transmits Wd12,34+Wd13,24+Wd14,23+
Wd23,14+Wd24,13+Wd34,12. Notice that, this coded message
is the same as the transmitted message in the MKR scheme.
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Cache 1 Cache 2 Cache 3 Cache 4

Wn,12 Wn,12 Wn,13 Wn,14

Wn,13 Wn,23 Wn,23 Wn,24

Wn,14 Wn,24 Wn,34 Wn,34

TABLE I: (C = 4, r = 2,M = 3, N = 6): MKR scheme placement (subfiles are stored ∀n ∈ [6])

Cache 1 Cache 2 Cache 3 Cache 4

W
(1)
n,12 W

(2)
n,12 W

(2)
n,13 W

(2)
n,14

W
(1)
n,13 W

(1)
n,23 W

(2)
n,23 W

(2)
n,24

W
(1)
n,14 W

(1)
n,24 W

(1)
n,34 W

(2)
n,34

W
(2)
n,12 +W

(2)
n,13 W

(1)
n,12 +W

(2)
n,23 W

(1)
n,13 +W

(1)
n,23 W

(1)
n,14 +W

(1)
n,24

W
(2)
n,13 +W

(2)
n,14 W

(2)
n,23 +W

(2)
n,24 W

(1)
n,23 +W

(2)
n,34 W

(1)
n,24 +W

(1)
n,34

TABLE II: (C = 4, r = 2,M = 2.5, N = 6): Cache contents (subfiles are stored ∀n ∈ [6])

Thus the rate achieved is also the same as the MKR scheme,
which is 1/6. Now, it remains to show that the users can
decode their demanded files. Since our scheme follows the
same delivery policy as the MKR scheme, it is enough to
show that a user in our scheme can decode the subfiles, which
are accessible for the corresponding user (user accessing the
same set of caches) in the MKR scheme. Consider user U
who accesses the cache k for all k ∈ U . Consider user {1, 2}
accessing cache 1 and cache 2. The user gets W (1)

n,12 from cache

1 and W
(2)
n,12 from cache 2, and thus it obtains the subfile

Wn,12 = {W
(1)
n,12,W

(2)
n,12} for all n ∈ [6]. Using W

(2)
n,12, the

user can decode W (2)
n,13 and W

(2)
n,14 from cache 1. Similarly,

from cache 2, the subfiles W (2)
n,23 and W (2)

n,24 can be decoded

using W
(1)
n,12. That means, user {1, 2} obtains the subfiles

Wn,12,Wn,13,Wn,14,Wn,23 and Wn,24 for every n ∈ [6].
From Table II, it can be verified that a user U gets all the
subfile Wn,T such that T ∩ U 6= φ. Thus a user can decode
the subfiles, which are accessible for the corresponding user
in the MKR scheme in the placement phase. In essence, by
employing a coded placement technique, we could achieve the
same rate, but for a smaller cache memory value.

Next, we show that for the (C = 4, r = 2,M = 3, N =
6) coded caching scheme, it is possible to meet all the user
demands without the server transmission. In other words, for
the (C = 4, r = 2,M = 3, N = 6) coded caching scheme,
rate R = 0 is achievable. In the placement phase, each file is
divided into 2 subfiles of equal size, Wn = {Wn,1,Wn,2} for
all n ∈ [6]. Then encode (Wn,1,Wn,2) with a [4, 2] MDS code
generator matrix G2×4. Thus, we have the coded subfiles

(Cn,1, Cn,2, Cn,3, Cn,4) = (Wn,1,Wn,2)G2×4.

Then the server fills the caches as follows: Z1 = {Cn,1;n ∈
[6]}, Z2 = {Cn,2;n ∈ [6]}, Z3 = {Cn,3;n ∈ [6]}, and Z4 =
{Cn,4;n ∈ [6]}. From this placement, one user gets two coded
subfiles from the caches (one from each cache). Since, any two

columns of matrix G are independent, users can decode all the
files, without further transmissions.

IV. MAIN RESULTS

In this section, we present two achievability results for
the (C, r,M,N) combinatorial MACC scheme. Further, we
derive an information-theoretic lower bound on the optimal
rate-memory trade-off, R∗(M).

Theorem 1. Let t ∈ [C − r + 1]. Then, for the (C, r,M,N)
combinatorial MACC scheme, the rate

(
C
t+r

)
/
(
C
t

)
is achiev-

able at cache memory

M = N

(

t

C
−

1
(
C
t

)

r̃−1∑

i=1

r̃ − i

r

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

))

(6)
where r̃ = min(r, t).

Proof of Theorem 1 is given in Section V-A. �

In Section V-A, for the (C, r,M,N) combinatorial MACC
problem, we explicitly present a coding scheme making use
of coded placement. As we have seen in the example in
Section III-D, coding in the placement phase helps to avoid
redundancy in the cached contents (accessed by a user) in
the MKR scheme. The example shows that by storing fewer
coded subfiles in the placement phase, a user can decode the
same subfiles as the corresponding user in the MKR scheme
(by corresponding user, we mean that the user accessing the
same set of caches) gets in the uncoded form. In other words,
it is possible to achieve the same rate as the MKR scheme by
using a lesser value of cache memory by employing coding
in the placement. For a cache memory value M as defined
in (6) corresponds to a t ∈ [C − r], we can modify the rate
expression as (proof is given in Appendix B)

R(M) =

(
C
t+r

)

(
C
t

) =

(
C
r

)
(1− rM

N )
(
t+r
r

) . (7)
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Also, the parameter t = C − r + 1 corresponds to M = N/r
(proof is provided in Appendix C) and rate, R(M = N/r) =
0. Therefore, the rate expression (7) is valid for every t ∈ [C−
r+1]. For a general 0 ≤M ≤ N/r, a lower convex envelope
of these points is achievable via memory sharing technique.
In the rate expression, the term (1 − rM/N) shows that a
user can access or decode rM/N fraction of every file from
the caches that it accesses and requires only the remaining
portion of the required file from the delivery phase. Further,
the denominator

(
t+r
r

)
is the number of users simultaneously

served by a coded transmission in the delivery phase.
The parameter t in the MKR scheme represents the number

of times the entire server library is duplicated among the
caches. In the MKR scheme, user U gets |T ∩ U| copies of
a subfile Wn,T . Therefore, a user gets a different number of
copies of different subfiles depending upon the cardinality of
the intersection between the user index set and the subfile
index set. Our objective is to design a coded placement phase
such that from the accessible cache contents, a user should be
able to decode the subfiles that the corresponding user in the
MKR scheme gets in the uncoded form. The main challenge of
designing such a placement phase is that a user should be able
to decode all the subfiles with a non-zero intersection between
the user index set and the subfile index set. To tackle this
challenge, we employ a two-level MDS encoding. First, we
encode the subfiles with an MDS code generator matrix. Then,
in each round of the placement phase, a few selected coded
subfiles are encoded again with another MDS code generator
matrix. This two-level encoding technique is different from
the MDS code-based coded placement strategies followed in
the schemes in [34], [35] for two-hop networks and multi-
server networks, respectively. In both cases, the entire file
library was encoded with an MDS code. In our case, user
U , U ⊆ [C], |U| = r should be able to decode all the
subfiles Wn,T such that T ∩U 6= φ, from the accessible cache
contents. To ensure that, in general, a single-level encoding
is not sufficient. Our first-level MDS encoding duplicates the
file library, whereas our second-level MDS encoding ensures
that the users can decode the required subfiles from the cache
contents.

Further, note that the parameter r̃ = min(r, t) is the
maximum value of |T ∩ U| for any T and U . In other words,
r̃ is the maximum number of copies of a single subfile that
is accessed by a user in the MKR scheme. Therefore, our
placement phase depends upon r̃. In fact, the placement phase
consists of r̃ rounds. i.e, Round 0, Round 1, . . . , Round
r̃ − 1. The transmissions in our delivery phase is the same
as that of the MKR scheme. Thus the coded placement phase
should enable user U to decode all the subfiles Wn,T with
T ∩ U 6= φ from the content stored in the accessible caches.
Let us denote the content stored in cache c in Round b as Zbc ,
where c ∈ [C] and b ∈ {0} ∪ [r̃ − 1]. Then, we design our
placement phase such that user U be able to decode a subfile
Wn,T with |T ∩ U| = r̃ − β using Z0

c , Z
1
c , . . . , Z

β
c for every

c ∈ U . For instance, using Z0
c alone (for every c ∈ U), the

user can decode Wn,T if |T ∩U| = r̃. In further decoding, the
user also uses the already decoded subfiles. Thus the cache
content decoding happens sequentially. First, the user decodes

the subfiles Wn,T with |T ∩ U| = r̃, then the subfiles Wn,T

with |T ∩ U| = r̃− 1 and so on. Finally, the user can decode
the subfiles Wn,T with |T ∩ U| = 1.

When t = 1, there is no duplication in cached contents,
and thus the contents accessed by a user from different caches
are distinct. Therefore, performance improvement by coding
is available when t > 1. Further, the placement phase of the
MKR scheme is independent of r, whereas our scheme takes
r into consideration during the cache placement. Also, our
scheme needs to divide each file into r̃!

(
C
t

)
, whereas the MKR

scheme needs a lesser subpacketization of
(
C
t

)
.

The MKR scheme achieves the rate
(
C
t+r

)
/
(
C
t

)
at M =

Nt/C, which is optimal under uncoded placement. Since
r̃−1∑

i=1

r̃−i
r

(
r

r̃−i+1

)(
C−r

t−r̃+i−1

)
is always positive for t > 1, we

achieve the same rate
(
C
t+r

)
/
(
C
t

)
at M < Nt/C. This

advantage is enabled with the help of coding in the placement
phase. If t = 1, we have cache memory M = N/C. For
0 ≤M ≤ N/C, the scheme in Theorem 1 has the same rate-
memory trade-off as the MKR scheme. For every M > N/C,
our proposed scheme performs strictly better than the MKR
scheme in terms of the rate achieved.

Remark 1. To quantify the improvement brought in by Theo-

rem 1 compared to the MKR scheme, we consider two memory

points: a) corresponding to t = 2 (a lower cache memory

value), and b) corresponding to t = C − r (a higher cache

memory value).

a) The parameter t = 2 corresponds to M = N
C (2 − r−1

C−1).

The corresponding rate from Theorem 1 is R(M) =
( C
r+2)
(C2)

.

But, the MKR scheme achieves the rate R∗
uncoded(M) = (1 +

r(C+1)(r−1)
2(C−r−1)(C−1))

( C
r+2)
(C2)

. Therefore, at M = N
C (2 − r−1

C−1), we

achieve a rate reduction by a multiplicative factor

R∗
uncoded(M)

R(M)
= 1 +

r(C + 1)(r − 1)

2(C − r − 1)(C − 1)
.

For a fixed C, this multiplicative factor increases as the access

degree r increases.

b) The parameter t = C − r corresponds to M
N = 1

r −
1

r(Cr)
.

We compare the rate in Theorem 1 with a benchmark scheme

obtained by combining the rate-memory trade-off of the MKR

scheme and the memory-rate pair (Cr , 0) (for the cyclic wrap-

around MACC scheme, the achievability of (Cr , 0) is shown

in [15]). Note that, for the combinatorial MACC scheme,

the memory-rate pair (Cr , 0) is achievable only with coded

placement. For the ease of comparison, we assume that C/r
is an integer. Then, we have the rate achieved by the scheme

in Theorem 1, R(MN ) = 1

(Cr)
at M

N = 1
r − 1

r(Cr)
. At the same

M/N , the benchmark scheme achieves a rate Rbenchmark(
M
N ) =

C

r(Cr)

( C
C
r

+r−1)

( C
C
r

−1)
. Therefore, we have the following multiplicative

reduction factor at M
N = 1

r −
1

r(Cr)
,

Rbenchmark(
M
N )

R(MN )
=
C

r

(
C

C
r +r−1

)

(
C

C
r −1

)
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where
Rbenchmark(

M
N )

R(M
N )

> 1 since C
r −1 < C

r +r−1 ≤ C−(Cr −1).

That is, in general
Rbenchmark(

M
N )

R(M
N )

≈ Cr−1 at the considered

normalized cache memory value.

Next, we present a combinatorial MACC scheme that per-
forms better than the MKR scheme in the lower memory
regime. In the following theorem, we present an achievability
result for M ≤ (N −

(
C−1
r

)
)/C.

Theorem 2. For the (C, r,M,N) combinatorial MACC

scheme with N >
(
C−1
r

)
, the rate R(M) = N − CM is

achievable for 0 ≤M ≤ (N −
(
C−1
r

)
)/C.

Proof of Theorem 2 is given in Section V-B. �

When the number of files N is such that
(
C−1
r

)
< N ≤

(
C
r

)
,

the rate R(M) = N −CM is strictly less than the rate of the
MKR scheme for 0 ≤M ≤ (N −

(
C−1
r

)
)/C.

Remark 2. The scheme in Theorem 2 achieves the rate

R(M) =
(
C−1
r

)
at M = (

(
C
r

)
−
(
C−1
r

)
)/C, if N =

(
C
r

)
.

At the same time the optimal rate under uncoded placement is

R∗
uncoded(M) =

(
C−1
r

)
(1+ r

C(r+1)). Therefore, when N =
(
C
r

)
,

we have
R∗

uncoded

R(M)
= 1 +

r

C(r + 1)

at (N −
(
C−1
r

)
)/C. That is, the rate reduction obtained from

coded placement diminishes as the number of caches in the

system increases.

Now, we present a lower bound on the optimal rate-memory
trade-off for the (C, r,M,N) combinatorial MACC scheme.

Theorem 3. For the (C, r,M,N) combinatorial MACC

scheme

R∗(M) ≥ max
s∈{r,r+1,r+2,...,C}

ℓ∈{1,2,...,⌈N/(sr)⌉}

1

ℓ

{

N −
ωs,ℓ

s+ ωs,ℓ

(

N − ℓ

(
s

r

))+

−
(

N − ℓ

(
C

r

))+

− sM
}

(8)

where ωs,ℓ = min(C − s,min
i

(
s+i
r

)
≥ ⌈Nℓ ⌉).

Proof of Theorem 3 is given in Section V-C. �

The lower bound in Theorem 3 has two parameters: s,
which is related to the number of caches, and ℓ, which is
associated with the number of transmissions. To obtain this
lower bound, we consider s ∈ [r : C] caches and

(
s
r

)
users

who access caches only from those s caches. From ⌈N/
(
s
r

)
⌉

number of transmissions, all the N files can be decoded at
the

(
s
r

)
users’ end by appropriately choosing the demand

vectors. Further, we split the total ⌈N/
(
s
r

)
⌉ transmissions into

ℓ transmissions and the remaining ⌈N/
(
s
r

)
⌉− ℓ transmissions.

Then, we bound the uncertainty in those two cases separately.
This bounding technique is similar to the approach used in [10]
and [24], where lower bounds were derived for the dedicated
cache scheme and the MACC scheme with cyclic wrap-around,
respectively.

In Fig. 3, we plot the rate-memory trade-off in Theorem 1
along with that of the MKR scheme. For 0 ≤ M ≤ 7 (t = 1

10 15 20 25 30 35 40 45
0
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7

8

9

10

R
a
te

MKR Scheme

Scheme 1 (Theorem 1)

Lower bound

Fig. 3: (8, 3,M, 56) Combinatorial MACC scheme. A comparison
between the MKR scheme and Scheme 1 (M ≥ 6)
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R
a
te

MKR Scheme (R
*

uncoded
(M))

R
coded

(M)

Lower bound

Fig. 4: (5, 3,M, 10) Combinatorial MACC scheme: A comparison
between uncoded placement and coded placement

gives M = 7), both the schemes have the same rate-memory
trade-off. However, for M > 7, our scheme has a strictly
lower rate compared to the MKR scheme. It is worth noting
that, in order to achieve R(M) = 0, it is sufficient to have
M = N/r, whereas, in the optimal scheme with uncoded
placement, M = N(C − r + 1)/C is required to achieve
R(M) = 0. In Fig. 4, we compare the performance of the
(5, 3,M, 10) combinatorial MACC scheme under uncoded and
coded placements. The rate-memory trade-off of the optimal
scheme under uncoded placement (MKR scheme) is denoted
as R∗

uncoded(M), whereas Rcoded(M) is obtained from Theo-
rem 1 and Theorem 2, where the placement is coded. For the
(4, 2,M, 6) combinatorial MACC scheme, the improvement in
rate using coded placement can be observed from Fig. 5. Also,
notice that the rate-memory trade-off in Theorem 1, Theorem
2 are optimal when M ≥ 2.5, and M ≤ 0.75, respectively.

Using the lower bound in Theorem 3, we show the following
optimality results. First, we prove that the rate-memory trade-
off in Theorem 1 is optimal at a higher memory regime.

Theorem 4. For the (C, r,M,N) combinatorial MACC
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Fig. 5: (4, 2,M, 6) Combinatorial MACC scheme: The MKR
scheme, Scheme 1, Scheme 2 and the lower bound

scheme

R∗(M) = 1−
rM

N
(9)

for
(Cr)−1

r(Cr)
≤ M

N ≤ 1
r .

Proof of Theorem 4 is given in Section V-D. �

The optimality is shown towards the higher memory regime.

When
(Cr)−1

r(Cr)
≤ M

N ≤ 1
r , the users would be requiring only a

single subfile from the delivery phase and the server can meet
that by a single coded transmission. Also, it is worth noting
that in our proposed scheme (Scheme 1), the delivery phase
is optimal under the placement that we followed. Because
the users in our proposed scheme and the users in the MKR
scheme obtain the same subfiles from the respective placement
phases. Thus, if we could design a better delivery phase, the
same would apply to the MKR scheme. However, that is
impossible since the MKR scheme is optimal for the placement
employed. As the dedicated coded caching scheme (introduced
in [1]), the optimal rate-memory trade-off of the (C, r,M,N)
combinatorial MACC scheme is also open.

In the lower memory regime, when M < N/C, the rate-
memory trade-off in Theorem 1 is clearly not optimal, since
the scheme in Theorem 2 achieves a better rate. Now, we show
that the rate-memory trade-off in Theorem 2 is optimal if the
number of users is not more than the number of files.

Theorem 5. For the (C, r,M,N) combinatorial MACC

scheme with
(
C−1
r

)
< N ≤

(
C
r

)
, we have

R∗(M) = N − CM (10)

for 0 ≤M ≤
N−(C−1

r )
C .

Proof of Theorem 5 is given in Section V-E. �

In the proposed scheme, N−
(
C−1
r

)
coded subfiles are kept

in each cache (for M = (N −
(
C−1
r

)
)/C) in the placement

phase. However, the delivery phase is uncoded. That is, the
server transmits uncoded subfiles in the delivery phase. A user
receives C−r subfiles (of the demanded file) directly, and the

remaining r subfiles need to be decoded from the r accessible
caches. A user requires

(
C−1
r

)
subfiles from the delivery phase

to decode a subfile of the demanded file from an accessible
cache. That is, using N−

(
C−1
r

)
coded subfiles in a cache and

(
C−1
r

)
uncoded subfiles from the delivery phase, a user can

decode N subfiles, out of which only one is required for the
user. Therefore, the ratio between the number of coded subfiles
stored in a cache and the number of subfiles required to decode
a subfile from a cache increases with N . Thus the optimality
of the scheme is limited to the case where N ≤

(
C
r

)
.

Next, we show that the rate-memory trade-off of Scheme
1 is within a constant multiplicative factor from the optimal
rate-memory trade-off, when r = 2 and the number of files
with the server is not less than the number of users in the
system.

Theorem 6. For the (C, r = 2,M,N) combinatorial MACC

scheme with N ≥
(
C
2

)
, we have

R(M)

R∗(M)
≤ 21 (11)

where R(M) is the achievable rate as defined in (7).

Proof of Theorem 6 is given in Section V-F. �

In order to prove the optimality gap result, we divide
the entire memory regime into three regions. For a lower
memory regime (for 0 ≤ M ≤ 2N/C), we approximate
the rate to R(M = 0) =

(
C
2

)
. In the second regime, where

2N/C ≤ M ≤ 0.1N , we approximate the rate to (N/M)2

(note that, R(M) ≤ (N/M)2). Finally, for M ≥ 0.1N ,
we approximate the rate R(M) ≈ (N/M)2(1 − 2M/N).
To obtain the optimality gap result, we compute the ratio of
these approximate rate-memory trade-off to the lower bound
on R∗(M) in Theorem 3. Due to these approximations and
the analytical bounding techniques used, the optimality gap of
21 in Theorem 6 is loose. From numerical simulations, for the
(C, r = 2,M,N) combinatorial MACC scheme, we have

R(M)

R∗(M)
≤ 11.

Also, the numerical simulations suggested that the multiplica-
tive gap between the rate-memory trade-off given by Scheme 1
and the lower bound on R∗(M) given in Theorem 3 increases
as r increases. However, providing an analytical result on
the optimality gap becomes increasingly hard with increasing
r because of the optimization problem in the lower bound
expression (8).

Remark 3. To prove the optimality gap result for the com-

binatorial MACC scheme with r = 2, we divide the entire

parameter regime into 3 cases and further into several sub-

cases. For a general r, due to the optimization problem in

the lower bound (8) and the presence of two variables in

the rate expression, namely C and r, other than M and N
make an analytical derivation of gap result increasingly hard.

Also, numerical simulations suggest that the multiplicative

factor (gap) between R(M) given by Scheme 1 and the

lower bound on R∗(M) given in Theorem 3 increases as r
increases. Additionally, for the (C, r ≤ C/2,M,N ≥

(
C
r

)
)



IEEE TRANSACTIONS ON INFORMATION THEORY: IT-22-0939.R2 9

combinatorial MACC scheme with uN/C ≤ M ≤ vN/r, for

some u ≥ 1 and v < 1, we have

R(M)

R∗(M)
≤ czrr!

where c, z > 1 are constants (proof is given in Appendix D).

Similarly, for M ≥ vN/r, we have shown in Appendix D that

R(M)

R∗(M)
≤
( r

v

)r

.

Numerical simulations suggested that the multiplicative gap

of 11 for r = 2 increases to 15 and 55 as r increases to

3 and 5, respectively. This indicates that the order provided

by the analysis in Appendix D is loose. This is because of

the fact that for a general r, we are unable to optimize the

lower bound over the two variables, s and ℓ. However, the

gap results indicate a possibility of the existence of either an

achievable scheme with an additional gain that scales with r
or a better lower bound, which is higher than the lower bound

in Theorem 3, approximately by a factor r!. In addition to that,

if a better scheme exists, then that implies that a coded caching

scheme with coded placement can perform better than the

optimal scheme with uncoded placement by a multiplicative

factor, which is not a constant and scales with r.

V. PROOFS

A. Proof of Theorem 1

In this section, we present a coding scheme (we refer to
this scheme as Scheme 1) that achieves the rate

(
C
t+r

)
/
(
C
t

)
at

cache memory M (corresponding to every t ∈ [C − r + 1])
as given in (6). First, let us consider the case t ∈ [C − r] (for
t = C − r + 1, we present a separate coding scheme at the
end of this proof).
a) Placement phase: The server divides each file into

(
C
t

)
non-

overlapping subfiles of equal size. Each subfile is indexed with
a t-sized set T ⊆ [C]. We assume T to be an ordered set. i.e.,
T = {τ1, τ2, . . . , τi, . . . , τt} with τ1 < τ2 < · · · < τt. Also,
whenever an ordering among the subfiles -indexed with t sized
subsets of [C]- is required, lexicographic ordering is followed.
We have the file Wn = {Wn,T : T ⊆ [C], |T | = t} for every
n ∈ [N ]. Let us define r̃ , min(r, t). Each subfile is further
divided into r̃! mini-subfiles. The subfile Wn,T is divided as
follows:

Wn,T = {W j
n,T : j ∈ [r̃!]}.

Let G be a generator matrix of an [r̃!t, r̃!] MDS code. For
every n ∈ [N ] and for every T ⊆ [C] such that |T | = t, the
server encodes the mini-subfiles (W j

n,T : j ∈ [r̃!]) with G and
obtains the coded mini-subfiles

(Y 1
n,T , Y

2
n,T , . . . , Y

r̃!t
n,T ) = (W j

n,T : j ∈ [r̃!])G. (12)

Now, for an integer c ∈ [C], and a set T ⊆ [C], |T | = t such
that T ∋ c, we define a function φtc : {T ⊆ [C] : T ∋ c, |T | =
t} → [t]. The function φtc(T ) gives the position of c in the
ordered set T of size t. If T = {τ1, τ2, . . . , τi = c, . . . , τt},
then φtc(T ) = i.

The placement phase consists of r̃ rounds- Round 0, Round
1, . . . , Round r̃ − 1. The content stored in cache c in Round

b is denoted as Zbc , where b ∈ {0} ∪ [r̃ − 1]. In Round 0, the
server fills cache c as

Z0
c =

{

Y
q0T +ℓ0
n,T : ℓ0 ∈ [(r̃ − 1)!],

T ⊆ [C] : T ∋ c, |T | = t, n ∈ [N ]
}

where q0T = (φtc(T ) − 1)(r̃ − 1)!. Notice that (r̃ − 1)!
(
C−1
t−1

)

coded mini-subfiles (of all the files) are placed in all the caches
in Round 0.

Now let us focus on the cache placement in Round b,
where b ∈ [r̃ − 1]. In this round, the server further en-
codes certain coded mini-subfiles using an MDS code gen-
erator matrix. Let G

(b) be a systematic generator matrix of
a [2

(
C−1
t−1

)
−
∑b

i=1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

)
,
(
C−1
t−1

)
] MDS code, and

let G
(b) = [I(C−1

t−1 )
|P

(b)

(C−1

t−1 )×(
C−1

t−1 )−
∑

b
i=1 (

r−1

r̃−i)(
C−r

t−r̃+i−1)
]. In

Round b, the server picks the coded mini-subfiles Y
qbT +ℓb
n,T for

every set T ⊆ [C], |T | = t such that T ∋ c, where qbT =
r̃!
r̃−b t + (φtc(T )− 1) r̃!

(r̃−b)(r̃−b+1) and ℓb ∈
[

r̃!
(r̃−b)(r̃−b+1)

]

.

Those subfiles are encoded with P
(b) as follows:

(Qℓb,1n,c , Q
ℓb,2
n,c , . . . , Q

ℓb,(C−1

t−1 )−
∑b

i=1 (
r−1

r̃−i)(
C−r

t−r̃+i−1)
n,c ) =

(

Y
qbT +ℓb
n,T : T ⊆ [C], |T | = t, T ∋ c

)

P
(b),

∀ℓb ∈

[
r̃!

(r̃ − b)(r̃ − b+ 1)

]

, n ∈ [N ]. (13)

We refer to the newly obtained coded mini-subfiles Qℓb,jn,c as
doubly-encoded mini-subfiles. In Round b, the server places
the following doubly-encoded mini-subfiles in cache c,

Zbc =
{

Qℓb,1n,c , Q
ℓb,2
n,c , . . . , Q

ℓb,(C−1

t−1 )−
∑b

i=1 (
r−1

r̃−i)(
C−r

t−r̃+i−1)
n,c :

ℓb ∈

[
r̃!

(r̃ − b)(r̃ − b+ 1)

]

, n ∈ [N ]
}

.

Note that, in Round b, a total of
r̃!

(r̃−b)(r̃−b+1)

((
C−1
t−1

)
−
∑b

i=1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

))

doubly-

encoded mini-subfiles of all the files are kept in each
cache.

The overall contents stored in cache c in the placement
phase is

Zc =

r̃−1⋃

b=0

Zbc , ∀c ∈ [C].

Each coded mini-subfile has 1

r̃!(Ct )
of a file-size. Therefore,

the normalized cache memory is

M

N
=

(r̃ − 1)!
(
C−1
t−1

)
)

r̃!
(
C
t

)

+

r̃−1∑

b=1

r̃!
(r̃−b)(r̃−b+1)

(
(
C−1
t−1

)
−

b∑

i=1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

)
)

r̃!
(
C
t

)

=
t

C
−

1
(
C
t

)

r̃−1∑

i=1

r̃ − i

r

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

)

.

(14)

The calculation of M/N value is elaborated in Appendix A.
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b) Delivery phase: Let WdU be the file demanded by user U ,
where U ⊆ [C] and |U| = r. During the delivery phase, the
server makes a transmission corresponding to every (t + r)-
sized subsets of [C]. The transmission corresponding to a set
S ⊆ [C] such that |S| = t+ r is

⊕

U⊆S
|U|=r

WdU ,S\U .

Note that, for a given t ∈ [C], this delivery phase is the same
as the delivery phase in the MKR scheme. There are

(
C
t+r

)

number of (t + r)-sized subsets for [C]. The server makes
transmission corresponding to each of those subsets. Therefore
the number of coded subfiles transmitted in the delivery phase
is
(
C
t+r

)
. Each subfile has 1

(Ct )
of a file-size. Therefore the rate

of transmission is
(
C
t+r

)
/
(
C
t

)
.

Next, we show that by employing the above placement
and delivery phases, all the users can decode their demanded
files. Note that, all the MDS code generator matrices used for
encoding the subfiles are known to the users as well. From
the coded subfiles placed in the caches, if a user can decode
all the subfiles that can be accessed by a corresponding user
in the MKR scheme, then the decodability of the demanded
files is guaranteed. This is because the delivery phase of our
proposed scheme is the same as the delivery phase in the MKR
scheme. Thus, we show that user U can decode the subfiles
Wn,T such that U ∩ T 6= φ from the coded subfiles stored in
the accessible caches. That will ensure the decodability of the
demanded files. First, we show that an arbitrary user U can
decode Wn,T if |T ∩ U| = r̃. Then we show that if the user
decodes all the subfiles Wn,T ′ such that |T ′∩U| > r̃−β, then
the user can decode the subfiles Wn,T with |T ∩ U| = r̃− β,
where β ∈ [r̃−1]. By sequentially applying β = 1 to β = r̃−1,
we have the required result that the user can decode all the
subfiles Wn,T with |T ∩ U| ≥ 1.
c) Decodability: Consider user U accessing cache c for every
c ∈ U . Let us define r̃ , min(r, t). Further, consider a t-sized
set T ⊆ [C] such that |T ∩U| = r̃. The user has access to the
following coded mini-subfiles of the subfile Wn,T from the
caches:

⋃

c∈T ∩U







Y
q0T +ℓ0
n,T
︸ ︷︷ ︸

available from Z0
c

: ℓ0 ∈ [(r̃ − 1)!]







.

Note that the number of coded mini-subfiles of Wn,T acces-
sible for the user is
∣
∣
∣
∣

⋃

c∈T ∩U

{

Y
q0T +ℓ0
n,T : ℓ0 ∈ [(r̃ − 1)!]

}
∣
∣
∣
∣
= (r̃ − 1)!r̃ = r̃!.

Thus user U can decode r̃! mini-subfiles of Wn,T from the r̃!
coded mini-subfiles (from (12)), and completely retrieve the
subfile Wn,T . That is, user U can decode every subfile Wn,T

with |T ∩ U| = r̃, using Z0
c , c ∈ U alone. Also, note that the

user gets all the coded mini-subfiles {Y 1
n,T , Y

2
n,T , . . . , Y

r̃!t
n,T }

from Wn,T (from (12)), since G is known to all the users.
Now, we assume that user U has decoded all the subfiles

Wn,T ′ with |T ′∩U| > r̃−β, where β ∈ [r̃−1]. Then, we show

that the user can decode the subfiles Wn,T with |T ∩ U| =
r̃−β. From Zβc , user U has the doubly encoded mini-subfiles

{Q
ℓβ,1
n,c , Q

ℓβ ,2
n,c , . . . , Q

ℓβ ,(C−1

t−1 )−
∑β

i=1 (
r−1

r̃−i)(
C−r

t−r̃+i−1)
n,c } for every

ℓβ ∈ [ r̃!
(r̃−β)(r̃−β+1) ]. Since, the user decoded all the subfiles

Wn,T ′ with |T ′ ∩ U| > r̃ − β, the user knows all the coded

mini-subfiles in {Y
qβ
T ′+ℓβ

n,T ′ : |T ′ ∩ U| > r̃ − β}. Note that, for
a given c ∈ U , we have

|{T ′ : T ′ ∩ U ∋ c, |T ′ ∩ U| > r̃ − β}| =

β
∑

i=1

(
r − 1

r̃ − i

)(
C − r

t− r̃ + i− 1

)

.

Therefore, using {Y
qβ
T ′+ℓβ

n,T ′ : |T ′ ∩ U| > r̃ − β} and

{Q
ℓβ,1
n,c , Q

ℓβ ,2
n,c , . . . , Q

ℓβ ,(C−1

t−1 )−
∑β

i=1 (
r−1

r̃−i)(
C−r

t−r̃+i−1)
n,c }, the user

can decode the coded mini-subfiles {Y
qβT +ℓβ
n,T : |T ∩ U| ∋ c}

(from (13)). Now, user U has the following coded mini-subfiles
of the subfile Wn,T :
⋃

c∈T ∩U

{

Y
q0T +ℓ0
n,T , Y

q1T +ℓ1
n,T , . . . , Y

qβT +ℓβ
n,T : ℓ0 ∈ [(r̃ − 1)!],

ℓ1 ∈ [(r̃ − 2)!], . . . , ℓβ ∈ [
r̃!

(r̃ − β)(r̃ − β + 1)
]
}

where |T ∩U| = r̃−β. Therefore, the number of coded mini-
subfiles of Wn,T with the user is
∣
∣
∣
∣

⋃

c∈T ∩U

{

Y
q0T +ℓ0
n,T , Y

q1T +ℓ1
n,T , . . . , Y

qβT +ℓβ
n,T : ℓ0 ∈ [(r̃ − 1)!],

ℓ1 ∈ [(r̃ − 2)!], . . . , ℓβ ∈ [
r̃!

(r̃ − β)(r̃ − β + 1)
]

}∣
∣
∣
∣

=

(

(r̃ − 1)! +

β
∑

b=1

r̃!

(r̃ − b)(r̃ − b+ 1)

)

(r̃ − β).

The appropriate choice of qiT , i ∈ [β] makes sure that all the
coded mini-subfiles are distinct. Now, we have

β
∑

b=1

r̃!

(r̃ − b)(r̃ − b+ 1)
= r̃!

(
β
∑

b=1

1

r̃ − b
−

1

r̃ − b+ 1

)

= r̃!

(
1

r̃ − β
−

1

r̃

)

= (r̃ − 1)!
β

r̃ − β
.

Therefore, the user has
∣
∣
∣
∣

⋃

c∈T ∩U

{

Y
q0T +ℓ0
n,T , Y

q1T +ℓ1
n,T , . . . , Y

qβT +ℓβ
n,T : ℓ0 ∈ [(r̃ − 1)!],

ℓ1 ∈ [(r̃ − 2)!], . . . , ℓβ ∈ [
r̃!

(r̃ − β)(r̃ − β + 1)
]

}∣
∣
∣
∣

=

(

(r̃ − 1)! + (r̃ − 1)!
β

r̃ − β

)

(r̃ − β) = r̃!

coded mini-subfiles of Wn,T . Thus, the user can retrieve the
subfile Wn,T . In other words, user U can decode all the
subfiles Wn,T such that |T ∩U| = r̃−β. Since, this is true for
every β ∈ [r̃−1], the user gets all the subfiles Wn,T such that
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|T ∩U| 6= φ from the placement phase. That means, from the
coded subfiles placed in the caches, a user can decode all the
subfiles that can be accessed by a corresponding user in the
MKR scheme. Thus, the decodability of the demanded files is
guaranteed.

Finally, we consider the case t = C− r+1. The parameter
t = C − r+1 corresponds to M = N/r (shown in Appendix
C). In that case, it is possible to achieve rate R(N/r) = 0
by placing the contents by properly employing coding. That
is, from the accessible cache contents itself, all the users can
decode the entire library of files. The cache placement is as fol-
lows. The server divides each file into r non-overlapping sub-
files of equal size. We have, Wn = {Wn,1,Wn,2, . . . ,Wn,r}
for all n ∈ [N ]. Let Gr×C be a generator matrix of a [C, r]
MDS code. For every n ∈ [N ], the server does the following
encoding procedure:

(W̃n,1, W̃n,2, . . . , W̃n,C) = (Wn,1,Wn,2, . . . ,Wn,r)G.

Then the server fills the caches as

Zc = {W̃n,c, ∀n ∈ [N ]}.

Therefore, user U gets access to Zc for every c ∈ U . This
means, the user has r distinct coded subfiles W̃n,c for every
c ∈ U and for all n ∈ [N ]. From these coded subfiles, the
user can decode all the files (from any r coded subfiles, r
subfiles of a file can be decoded). This completes the proof
of Theorem 1. �

Remark 4. The proposed coding scheme depends upon

min(r, t). The parameter r̃ = min(r, t) is the maximum

number of copies of a single subfile available -from the

placement phase- for a user in the MKR scheme. When t > r,
even though a subfile is stored in t different caches, a user

gets only a maximum of r copies. In our scheme, we ensured

that user U should be able to decode a subfile Wn,T using

the accessible cache contents, if 1 ≤ |T ∩ U| ≤ r̃. The

number of rounds and the parameters of the encoding matrices

depend upon this r̃. However, the general idea behind the

coded placement remains the same irrespective of the value of

r̃.

B. Proof of Theorem 2

In this section, we present a coding scheme (we refer to this
scheme as Scheme 2).

First, we show the achievability of the rate R(M) =
(
C−1
r

)

at M = (N −
(
C−1
r

)
)/C by presenting a coding scheme.

a) Placement phase: The server divides each file into C non-
overlapping subfiles of equal size. Thus, we have Wn =
{Wn,1,Wn,2, . . . ,Wn,C} for all n ∈ [N ]. Let G be a sys-
tematic generator matrix of a [2N −

(
C−1
r

)
, N ] MDS code.

Thus we can write G = [IN |PN×N−(C−1

r )], where IN is the

identity matrix of size N . Then the server encodes the subfiles
(W1,i,W2,i, . . . ,WN,i) using PN×N−(C−1

r ), which results in

N −
(
C−1
r

)
coded subfiles. That is

(Q1,i, Q2,i, . . . , QN−(C−1

r ),i) =

(W1,i,W2,i, . . . ,WN,i)PN×N−(C−1

r ), ∀i ∈ [C].

Then the server fills the caches as follows:

Zi = {Q1,i, Q2,i, . . . , QN−(C−1

r ),i}, ∀i ∈ [C].

The ith cache contains N −
(
C−1
r

)
linearly independent coded

combinations of the subfiles (W1,i,W2,i, . . . ,WN,i). The size
of a coded subfile is the same as the size of a subfile. Thus,
we have the total size of a cache, M = (N −

(
C−1
r

)
)/C.

b) Delivery phase: Let WdU be the file demanded by user U in
the delivery phase. Let n(d) denote the number of distinct files
demanded by the users, i.e., n(d) = |{WdU : U ⊆ [C], |U| =
r}| If n(d) ≤

(
c−1
r

)
, then the server simply broadcasts those

n(d) files. Now, consider the case where n(d) >
(
C−1
r

)
. Let

ni(d) denote the number of distinct files demanded by the
users who do not access the ith cache, i.e., ni(d) = |{WdU :
U ⊆ [C]\{i}, |U| = r}|. Note that, ni(d) ≤

(
C−1
r

)
for all

i ∈ [C]. If ni(d) =
(
C−1
r

)
, then the server transmits WdU ,i

for all U ⊆ [C]\{i}, such that |U| = r. That is, the server
transmits the ith subfile of the files demanded by the users
who are not accessing cache i. If ni(d) <

(
C−1
r

)
, then the

server transmits the ith subfile of those distinct ni(d) files
(files demanded by the users who do not access cache i) and
the ith subfile of some other

(
C−1
r

)
− ni(d) files. The same

procedure is done for all i ∈ [C].
Corresponding to every i ∈ [C], the server transmits

(
C−1
r

)

subfiles. Each subfile has 1/C of a file size. Thus the rate
achieved is

(
C−1
r

)
. Now, the claim is that all the users can

decode their demanded files completely. When n(d) ≤
(
C−1
r

)
,

the decodability is trivial, as the demanded files are sent as
such by the server. Let us consider the case where n(d) >
(
C−1
r

)
. Consider user U who accesses cache i for all i ∈ U .

The user directly receives WdU ,j for all j ∈ [C]\U . Further,
user U receives the ith subfile of some

(
C−1
r

)
files, for every

i ∈ U . Also, for all i ∈ U , the user has access to N −
(
C−1
r

)

coded subfiles of the subfiles {W1,i,W2,i, . . . ,WN,i} from
cache i. Thus the user can decode Wn,i for all n ∈ [N ] and
i ∈ U , since any N columns of G are linearly independent.
Therefore, user U gets WdU ,k for every k ∈ [C]. Hence, all
the users can decode their demanded files.

Further, if M = 0, the rate R = N is trivially achievable
by simply broadcasting all the files. Thus, by memory sharing,
the rate R(M) = N − CM is achievable for 0 ≤ M ≤
(N −

(
C−1
r

)
)/C. This completes the proof of Theorem 2. �

C. Proof of Theorem 3

The server has N files W[1:N ]. Assume that the users are
arranged in the lexicographic order of the subsets (of [C]
of size r) by which they are indexed. That is, {1, 2, . . . , r}
will be the first in the order, {1, 2, . . . , r − 1, r + 1} will
be the second and so on. Consider the set of first s caches,
where s ∈ [r : C]. The number of users who access caches
only from this set is

(
s
r

)
. Let us focus on those

(
s
r

)
users.

Consider a demand vector d1 in which those
(
s
r

)
users request

for files W1,W2, . . . ,W(sr)
. That is, the first user (the user

comes first in the lexicographic ordering among those
(
s
r

)

users) demands W1, the second user demands W2, and so
on. The remaining users request arbitrary files from W[1:N ],
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which we are not interested in. Corresponding to d1, the
server makes transmission X1. From contents in the first s
caches Z[1:s] and transmission X1, the considered

(
s
r

)
users

can collectively decode the first
(
s
r

)
files (one file at each

user). Now, consider a demand vector d2 in which those
(
s
r

)
users request for files W(sr)+1,W(sr)+2, . . . ,W2(sr)

, and

transmission X2 corresponding to d2. From cache contents
Z[1:s] and transmission X2, those users can collectively decode

the files W[(sr)+1:2(sr)]
. If we consider δ =

⌈
N

(sr)

⌉

such demand

vectors and the corresponding transmissions, all the N files
can be decoded at those

(
s
r

)
user end. Thus, we have

N = H(W[1:N ]) ≤ H(Z[1:s], X[1:δ]) (15a)

= H(Z[1:s]) +H(X[1:δ]|Z[1:s]). (15b)

Consider an integer ℓ ∈ [1 : δ]. We can expand (15b) as,

N ≤ sM +H(X[1:ℓ]|Z[1:s]) +H(X[ℓ+1:δ]|Z[1:s], X[1:ℓ])

(16a)

≤ sM +H(X[1:ℓ]) +H(X[ℓ+1:δ]|Z[1:s], X[1:ℓ],W[1:Ñ ])

(16b)

where Ñ = min(N, ℓ
(
s
r

)
). Using the cache contents Z[1:s] and

transmissions X[1:ℓ], the files W[1:Ñ ] can be decoded, hence

(16b) follows. Let us define, ωs,ℓ , min(C − s,min
i

(
s+i
r

)
≥

⌈Nℓ ⌉). We can bound the entropy of ℓ transmissions by
ℓR∗(M), where each transmission rate is R∗(M). Thus, we
have

N ≤ sM + ℓR∗(M)+

H(X[ℓ+1:δ], Z[s+1:s+ωs,ℓ]|Z[1:s], X[1:ℓ],W[1:Ñ ]) (17a)

≤ sM + ℓR∗(M) +H(Z[s+1:s+ωs,ℓ]|Z[1:s], X[1:ℓ],W[1:Ñ ])
︸ ︷︷ ︸

,µ

+

H(X[ℓ+1:δ]|Z[1:s+ωs,ℓ], X[1:ℓ],W[1:Ñ])
︸ ︷︷ ︸

,ψ

. (17b)

Now, we find an upper bound on µ as follows:

µ = H(Z[s+1:s+ωs,ℓ]|Z[1:s], X[1:ℓ],W[1:Ñ ]) (18a)

≤ H(Z[s+1:s+ωs,ℓ]|Z[1:s],W[1:Ñ ]) (18b)

= H(Z[1:s+ωs,ℓ]|W[1:Ñ ])−H(Z[1:s]|W[1:Ñ ]). (18c)

By considering any s caches from [1 : s+ωs,ℓ], we can write
an inequality similar to the one in (18c).That is,

µ ≤ H(Z[1:s+ωs,ℓ]|W[1:Ñ ])−H(ZA|W[1:Ñ ]) (19)

where A ⊆ [s+ ωs,ℓ], |A| = s, and ZA is the contents stored
in the caches indexed by the elements in the set A. That means
we can find

(
s+ωs,ℓ

s

)
such inequalities. Averaging over all those

inequalities, we get

µ ≤ H(Z[1:s+ωs,ℓ]|W[1:Ñ ])−

1
(
s+ωs,ℓ

s

)

∑

A⊆[s+ωs,ℓ]
|A|=s

H(ZA|W[1:Ñ ]). (20)

By applying Lemma 1 for the random variables Z[1:s+ωs,ℓ],
we get

1

s+ ωs,ℓ
H(Z[1:s+ωs,ℓ]|W[1:Ñ ]) ≤

1
(
s+ωs,ℓ

s

)

∑

A⊆[s+ωs,ℓ]
|A|=s

H(ZA|W[1:Ñ ])

s
.

Upon rearranging, we have

1
(
s+ωs,ℓ

s

)

∑

A⊆[s+ωs,ℓ]
|A|=s

H(ZA|W[1:Ñ ]) ≥

s

s+ ωs,ℓ
H(Z[1:s+ωs,ℓ]|W[1:Ñ ]). (21)

Substituting (21) in (20), we get

µ ≤ H(Z[1:s+ωs,ℓ]|W[1:Ñ ])−
s

s+ ωs,ℓ
H(Z[1:s+ωs,ℓ]|W[1:Ñ ])

=
ωs,ℓ

s+ ωs,ℓ
H(Z[1:s+ωs,ℓ]|W[1:Ñ ]).

Now, consider two cases a) if Ñ = min(N, ℓ
(
s
r

)
) = N , then

H(Z[1:s+ωs,ℓ]|W[1:Ñ ]) = H(Z[1:s+ωs,ℓ]|W[1:N ]) = 0 (23)

and b) if Ñ = min(N, ℓ
(
s
r

)
) = ℓ

(
s
r

)
, then

H(Z[1:s+ωs,ℓ]|W[1:Ñ ]) = H(Z[1:s+ωs,ℓ]|W[1:ℓ(sr)]
) (24a)

≤ H(Z[1:s+ωs,ℓ],W[ℓ(sr)+1:N ]|W[1:ℓ(sr)]
) (24b)

= H(W[ℓ(sr)+1:N ]|W[1:ℓ(sr)]
) +H(Z[1:s+ωs,ℓ]|W[1:N ])

(24c)

≤ H(W[ℓ(sr)+1:N ]) ≤ N − ℓ

(
s

r

)

(24d)

where (23) and (24d) follow from the fact that the cache
contents are the functions of the files. Therefore, we have

H(Z[1:s+ωs,ℓ]|W[1:Ñ ]) ≤

(

N − ℓ

(
s

r

))+

. (25)

Therefore, we have the following upper bound on µ:

µ ≤
ωs,ℓ

s+ ωs,ℓ

(

N − ℓ

(
s

r

))+

. (26)

Now, we find an upper bound on ψ, where ψ =
H(X[ℓ+1:δ]|Z[1:s+ωs,ℓ], X[1:ℓ],W[1:Ñ ]).

We consider two cases a) if N ≤ ℓ
(
s+ωs,ℓ

r

)
, then it is possible

to decode all the files W[1:N ] from Z[1:s+ωs,ℓ] and X[1:ℓ] by
appropriately choosing the demand vectors d1,d2, . . . ,dδ .
Then the uncertainty in X[ℓ+1:δ] is zero. That is, when
N ≤ ℓ

(
s+ωs,ℓ

r

)
, we have ψ = 0.

b) The second case N > ℓ
(
s+ωs,ℓ

r

)
means that, ωs,ℓ = C − s.

Note that, ωs,ℓ is defined such that using the first s + ωs,ℓ
caches and ℓ transmissions, it is possible to decode the re-
maining N−ℓ

(
s
r

)
files by appropriately choosing the demands

of the remaining
(
s+ωs,ℓ

r

)
−
(
s
r

)
users, if N ≤ ℓ

(
C
r

)
. That is,

N > ℓ
(
s+ωs,ℓ

r

)
means that N > ℓ

(
C
r

)
. Then, we have

ψ = H(X[ℓ+1:δ]|Z[1:C], X[1:ℓ],W[1:Ñ ]) (27a)
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= H(X[ℓ+1:δ]|Z[1:C], X[1:ℓ],W[1:ℓ(Cr)]
) (27b)

≤ H(X[ℓ+1:δ],W[ℓ(Cr)+1:N ]|Z[1:C], X[1:ℓ],W[1:ℓ(Cr)]
)

(27c)

≤ H(W[ℓ(Cr)+1:N ]|Z[1:C], X[1:ℓ],W[1:ℓ(Cr)]
)+

H(X[ℓ+1:δ]|Z[1:C], X[1:ℓ],W[1:N ]) (27d)

= H(W[ℓ(Cr)+1:N ]|Z[1:C], X[1:ℓ],W[1:ℓ(Cr)]
) (27e)

≤ H(W[ℓ(Cr)+1:N ]) = N − ℓ

(
C

r

)

. (27f)

From cache contents Z[1:C], and the transmissions X[1:ℓ] it is
possible to decode the files W[1:ℓ(Cr)]

, hence (27b) follows.

Further, (27e) follows from the fact that given W[1:N ], there is
no uncertainty in the transmissions. Thus, we have the upper
bound on ψ,

ψ ≤

(

N − ℓ

(
C

r

))+

. (28)

Substituting (26) and (28) in (17b), we get

N ≤ sM + ℓR∗(M) +X
ωs,ℓ

s+ ωs,ℓ

(

N − ℓ

(
s

r

))+

+

(

N − ℓ

(
C

r

))+

.

Upon rearranging the terms, and optimizing over all the
possible values of s and ℓ, we have the following lower bound
on R∗(M)

R∗(M) ≥ max
s∈{r,r+1,r+2,...,C}

ℓ∈{1,2,...,⌈N/(sr)⌉}

1

ℓ

{

N−

ωs,ℓ
s+ ωs,ℓ

(

N − ℓ

(
s

r

))+

−

(

N − ℓ

(
C

r

))+

− sM
}

where ωs,ℓ = min(C − s,min
i

(
s+i
r

)
≥ ⌈Nℓ ⌉). This completes

the proof of Theorem 3. �

D. Proof of Theorem 4

First, we show that the rate R(M) = 1− rM
N is achievable

for
(Cr)−1

r(Cr)
≤ M

N ≤ 1
r . Substituting t = C − r in (7) gives

M
N =

(Cr)−1

r(Cr)
, and R = 1/

(
C
r

)
. Similarly, t = C − r + 1

gives M/N = 1/r and R = 0. By memory sharing, the rate

R(M) = 1− rM
N is achievable for

(Cr)−1

r(Cr)
≤ M

N ≤ 1
r . Now, to

show the converse, let us substitute s = r and ℓ = N in (8).
That gives,

R∗(M) ≥ 1−
rM

N
.

Therefore, we can conclude that

R∗(M) = 1−
rM

N

for
(Cr)−1

r(Cr)
≤ M

N ≤ 1
r . This completes the proof Theorem 4. �

E. Proof of Theorem 5

From Theorem 2, we know that for the (C, r,M,N) com-
binatorial MACC scheme the rate

R(M) = N − CM

is achievable when 0 ≤M ≤
N−(C−1

r )
C . By substituting s = C

and ℓ = 1, we get

R∗(M) ≥ N − CM.

Thus, we conclude that

R∗(M) = N − CM

for 0 ≤M ≤
N−(C−1

r )
C . �

F. Proof of Theorem 6

In this section, we show that the rate-memory trade-off of
Scheme 1 is within a multiplicative gap of 21 from the lower
bound on R∗(M) in Theorem 3, when r = 2 and N ≥ K
(i.e., N ≥

(
C
2

)
). We consider the cases C ≤ 6, 7 ≤ C ≤ 11,

and C ≥ 12 separately.
Case 1: First assume that, C ≤ 6. Then, we have

R(M) =

(
C
2

)

(
t+2
2

) (1−
2M

N
).

By substituting s = 2 and ℓ = N in (8), we get

R∗(M) ≥ 1−
2M

N
.

Therefore, we obtain

R(M)

R∗(M)
≤

(
C
2

)

(
t+2
2

) ≤

(
C

2

)

≤ 15. (29)

Case 2: Now, we consider the case 7 ≤ C ≤ 11. For M ≥
N/C (t = 1 corresponds to M = N/C), we have

R(M) =

(
C
2

)

(
t+2
2

) (1−
2M

N
) ≤

(
11
2

)

(
1+2
2

) (1−
2M

N
)

≤
55

3
(1 −

2M

N
).

Therefore, we have

R(M)

R∗(M)
≤

55

3
≤ 18.34 (30)

for M ≥ N/C, where 7 ≤ C ≤ 11.
Now, we consider the case M ≤ N/C and 7 ≤ C ≤ 11. By
substituting ℓ = ⌈ N

(s2)
⌉ in (8), we get

R∗(M) ≥
N − sM

⌈ N
(s2)

⌉
≥
N − sM
N

(s2)
+ 1

≥

(
s
2

)
(1− sM

N )

1 +
(s2)
N

. (31)

Substituting s = 3 in (31) yields

R∗(M) ≥
3(1− 3M

N )

1 + 3
N

.

Since C ≥ 7, we have N ≥
(
C
2

)
≥ 21. Therefore, we get

R∗(M) ≥
21

8
(1−

3M

N
).
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Therefore, we have

R(M)

R∗(M)
≤

55× 8

3× 21

(1− 2M
N )

(1− 3M
N )

.

However, we have 0 ≤ M
N ≤ 1

C ≤ 1
7 . Further, in that regime,

the function
(1− 2M

N )

(1− 3M
N )

is monotonically increasing in M
N , and

we have

(1− 2M
N )

(1− 3M
N )

≤ 1.25.

Therefore, we get

R(M)

R∗(M)
≤

55× 8× 1.25

3× 21
≤ 8.74. (32)

By combining (30) and (32), we get

R(M)

R∗(M)
≤ 18.34 (33)

when 7 ≤ C ≤ 11.

Case 3: Finally, we consider the third case, where C ≥ 12.
Now, we let s = ⌊µC⌋ and ℓ = ⌈νN/

(
s
2

)
⌉, where µ ∈ [2/C, 1]

and ν ∈ [0, 1]. Then, we have

R∗(M) ≥
1

ℓ

{

N − (1 −
s

C
)

(

N − ℓ

(
s

2

))+

−

(

N − ℓ

(
C

2

))+

− sM

}

≥
N − (1 − ⌊µC⌋

C )
(
N − ⌈νN/

(
s
2

)
⌉
(
s
2

))+

⌈νN/
(
⌊µC⌋

2

)
⌉

−

(

N − ⌈νN/
(
s
2

)
⌉
(
C
2

))+

− ⌊µC⌋M

⌈νN/
(
⌊µC⌋

2

)
⌉

≥
N − (1 − µC−1

C ) (N − νN)
+

νN/
(
⌊µC⌋

2

)
+ 1

−

(

N − ⌈νN/
(
s
2

)
⌉
(
C
2

))+

− µCM

νN/
(
⌊µC⌋

2

)
+ 1

≥
N −N(1− µ+ 1

C )(1− ν)

νN/
(
⌊µC⌋

2

)
+ 1

−

N
(

1− ν
(
C
2

)
/
(
s
2

))+

− µCM

νN/
(
⌊µC⌋

2

)
+ 1

≥
1− (1− µ+ 1

C )(1− ν)
2ν

⌊µC⌋⌊µC−1⌋ + 1
N

−

(

1− ν C(C−1)
⌊µC⌋⌊µC−1⌋

)+

− µCM
N

2ν
⌊µC⌋⌊µC−1⌋ + 1

N

≥
ν + µ(1− ν)− 1−ν

C −
(

1− ν
µ2

(C−1)
C−1/µ

)+

− µCM
N

2ν
(µC−1)(µC−2) +

1
N

.

We choose a value of ν ∈ [0, 1] such that ν ≥ µ2. Then, we

get
(

1− ν
µ2

(C−1)
C−1/µ

)+

= 0. In that case, we have

R∗(M) ≥
ν + µ(1− ν)− 1−ν

C − µCM
N

2ν
(µC−1)(µC−2) +

1
N

≥
(C − 1

µ )(C − 2
µ )

2

ν + µ(1− ν)− 1−ν
C − µCM

N

ν
µ2 +

(C− 1
µ )(C− 2

µ )

2N

.

(34)

Now, we assume that 0 ≤ M ≤ 1.1N/C. We have the rate
R(M) ≤

(
C
2

)
. Then, from (34), we obtain

R(M)

R∗(M)
≤

C(C − 1)

(C − 1
µ )(C − 2

µ )

ν
µ2 +

(C− 1
µ )(C− 2

µ )

2N

ν + µ(1− ν)− 1−ν
C − 1.1µ

≤
1− 1

C

(1− 1
µC )(1 −

2
µC )

ν
µ2 +

(C− 1
µ )(C− 2

µ )

2N

ν + µ(1− ν)− 1−ν
C − 1.1µ

.

(35)

Now, we substitute µ = 0.6 and ν = 1 in (35). Then, we
obtain

R(M)

R∗(M)
≤

1

(1− 1
12×0.6 )(1 −

2
12×0.6 )

1
.36 + 1

1− 1.1× 0.6
≤ 17.87

(36)

since N ≥
(
C
2

)
≥ (C − 1/µ)(C − 2/µ)/2. Next, we consider

the case 1.1N/C ≤M ≤ 1.9N/C. Then, we have

R(M) ≤ R(1.1
N

C
) = 0.9R(

N

C
) + 0.1R(

2N

C
) (37)

≤ 0.9

(
C
3

)

C
+ 0.1

(
C
4

)

(
C
2

)

= 0.9
(C − 1)(C − 2)

6
+ 0.1

(C − 2)(C − 3)

12

where (37) follows from memory sharing technique. Using
(34), we get

R(M)

R∗(M)
≤

2R(M)

(C − 1
µ )(C − 2

µ )

ν
µ2 +

(C− 1
µ )(C− 2

µ )

2N

ν + µ(1 − ν)− 1−ν
C − 1.9µ

where

2R(M)

(C − 1
µ )(C − 2

µ )
≤

0.9

3

(C − 1)(C − 2)

(C − 1
µ )(C − 2

µ )
+

0.1

6

(C − 2)(C − 3)

(C − 1
µ )(C − 2

µ )

≤
0.9

3

(1− 1
C )(1−

2
C )

(1 − 1
µC )(1−

2
µC )

+
0.1

6

(1− 2
C )(1 −

3
C )

(1− 1
µC )(1 −

2
µC )

.

Since C ≥ 12, we have

2R(M)

(C − 1
µ )(C − 2

µ )
≤

0.9

3

1

(1− 1
12µ )(1−

1
6µ )

+

0.1

6

1

(1 − 1
12µ )(1 −

1
6µ )

=
1.9

6

1

(1− 1
12µ )(1−

1
6µ )

.
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Now, let µ = 0.37 and ν = 0.9969. Then, we have

R(M)

R∗(M)
≤

(

1.9

6(1− 1
12×0.37 )(1 −

1
6×0.37 )

)

× (38)

( 0.9969
0.372 + 1

0.9969 + 0.37× 0.0031− 0.0031
12 − 1.9× 0.37

)

≤ 20.895. (39)

Next, we consider the memory regime 1.9N/C ≤ M ≤
0.0712N . We have

R(M) =

(
C
2

)

(
t+2
2

) (1−
2M

N
) ≤

C(C − 1)

(t+ 2)(t+ 1)

≤
C(C − 1)

(CMN + 2)(CMN + 1)
≤

(
N

M

)2

. (40)

We now let s = ⌊0.6824N/M⌋ and ℓ = ⌈N/
(
s
2

)
⌉. Then, we

have the lower bound from (8)

R∗(M) ≥
1

ℓ

{

N − (1 −
s

C
)

(

N − ℓ

(
s

2

))+

−

(

N − ℓ

(
C

2

))+

− sM

}

≥
N − (1− ⌊0.6824N/M⌋

C )
(
N − ⌈N/

(
s
2

)
⌉
(
s
2

))+

⌈N/
(
⌊0.6824N/M⌋

2

)
⌉

−

(

N − ⌈N/
(
s
2

)
⌉
(
C
2

))+

− ⌊0.6824N/M⌋M

⌈N/
(
⌊0.6824N/M⌋

2

)
⌉

≥
N − 0.6824N

N

(⌊0.6824N/M⌋
2 )

+ 1

≥
1− 0.6824

2
(0.6824N/M−1)(0.6824N/M−2) +

1
N

=

(
N

M

)2
0.3176

2
(0.6824−M/N)(0.6824−2M/N) +

( N
M )2

N

.

Therefore, we obtain

R(M)

R∗(M)
≤

2
(0.6824−M/N)(0.6824−2M/N) +

( N
M )2

N

0.3176
.

However, we have N/M ≤ C/1.9 and M/N ≤ 0.0712. Thus

R(M)

R∗(M)
≤

2
(0.6824−M/N)(0.6824−2M/N) +

( N
M )2

N

0.3176

≤

2
(0.6824−.0712)(0.6824−.1424) +

C2

3.61N

0.3176
.

Since N ≥
(
C
2

)
, we have

C2

3.61N
≤

C2

3.61
(
C
2

) =
2

3.61(1− 1
C )

≤
2

3.61(1− 1
12 )

= 0.6044.

Therefore, we obtain

R(M)

R∗(M)
≤

2
(0.6824−.0712)(0.6824−.1424) + 0.6044

0.3176
≤ 20.983.

(41)

Now, consider the case M ≥ 0.0712N . We have

R(M) =

(
C
2

)

(
t+2
2

) (1−
2M

N
) ≤

C(C − 1)

(t+ 2)(t+ 1)

(

1−
2M

N

)

≤
C(C − 1)

(CMN + 2)(CMN + 1)

(

1−
2M

N

)

≤

(
N

M

)2 (

1−
2M

N

)

.

In (8), substituting ℓ = ⌈N/
(
s
2

)
⌉ gives

R∗(M) ≥
N − sM

⌈ N
(s2)

⌉
≥
N − sM
N

(s2)
+ 1

=
1− sM

N
1

(s2)
+ 1

N

.

Therefore, we get

R(M)

R∗(M)
≤

(

1
(
s
2

) +
1

N

)

( NM )2(1 − 2M
N )

1− sM
N

.

Also, we have N ≥
(
C
2

)
≥
(
12
2

)
= 66. Then, we obtain

R(M)

R∗(M)
≤

(

1
(
s
2

) +
1

66

)

(NM )2(1− 2M
N )

1− sM
N

. (42)

Next consider the region 0.0712N ≤ M ≤ 0.1N . By
substituting s = 8 in (42), we get

R(M)

R∗(M)
≤

(
1

28
+

1

66

)
(NM )2(1− 2M

N )

1− 8M
N

where
( N
M )2(1− 2M

N )

1− 8M
N

is a function of M
N and has a maximum

value 400 in the region 0.0712 ≤M/N ≤ 0.1. Therefore, we
have

R(M)

R∗(M)
≤ 400

(
1

28
+

1

66

)

≤ 20.35. (43)

Next consider the region 0.1N ≤M ≤ 0.16N . By substituting
s = 5 in (42), we get

R(M)

R∗(M)
≤

(
1

10
+

1

66

)
(NM )2(1− 2M

N )

1− 5M
N

where the function
( N
M )2(1− 2M

N )

1− 5M
N

has a maximum value 160 in

the region 0.1 ≤M/N ≤ 0.16. Therefore, we have

R(M)

R∗(M)
≤ 160

(
1

10
+

1

66

)

≤ 18.43. (44)

Next consider the region 0.16N ≤M ≤ 0.25N . By substitut-
ing s = 3 in (42), we get

R(M)

R∗(M)
≤

(
1

3
+

1

66

)
(NM )2(1− 2M

N )

1− 3M
N

where the function
( N
M )2(1− 2M

N )

1− 3M
N

has a maximum value 51.082

in the region 0.16 ≤M/N ≤ 0.25. Therefore, we have

R(M)

R∗(M)
≤ 51.082

(
1

3
+

1

66

)

≤ 17.81. (45)
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Finally, consider the case 0.25N ≤ M ≤ 0.5N . Substituting
s = 2 and ℓ = N in (8) yield

R∗(M) ≥ 1−
2M

N
.

Also, we have

R(M) ≤

(
N

M

)2 (

1−
2M

N

)

.

Therefore, we get

R(M)

R∗(M)
≤

(
N

M

)2

≤ 16. (46)

By combining (36),(39),(41),(43),(44),(45),and (46), we get

R(M)

R∗(M)
≤ 21 (47)

when C ≥ 12.
Finally, combining (29), (33), and (47) yields the required gap
result

R(M)

R∗(M)
≤ 21 (48)

for the (C, r = 2,M,N ≥
(
C
2

)
) combinatorial MACC

scheme. �

VI. CONCLUSION

In this work, we presented two coding schemes for the
combinatorial MACC setting introduced in [30]. Both the
presented schemes employ coding in the placement phase in
addition to the coded transmissions in the delivery phase. That
is, we showed that with the help of a coded placement phase,
it is possible to achieve a reduced rate compared to the optimal
coded caching scheme under uncoded placement. Finally, we
derived an information-theoretic lower bound on the optimal
rate-memory trade-off of the combinatorial MACC scheme
and showed that the first scheme is optimal at a higher memory
regime and the second scheme is optimal when the number of
files with the server is no more than the number of users in
the system.

APPENDIX A

In this section, we calculate the normalized cache memory
as a continuation of (14). From (14), we have

M

N
=

(r̃ − 1)!
(
C−1
t−1

)
)

r̃!
(
C
t

) +

r̃−1∑

b=1

r̃!
(r̃−b)(r̃−b+1)

(
(
C−1
t−1

)
−

b∑

i=1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

)
)

r̃!
(
C
t

)

=

(
C−1
t−1

)
(

(r̃ − 1)! +
r̃−1∑

b=1

r̃!
(r̃−b)(r̃−b+1)

)

r̃!
(
C
t

) −

r̃−1∑

b=1

r̃!
(r̃−b)(r̃−b+1)

b∑

i=1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

)

r̃!
(
C
t

) .

By expanding and cancelling the terms, we get

r̃−1∑

b=1

r̃!

(r̃ − b)(r̃ − b+ 1)
= r̃!

r̃−1∑

b=1

(
1

r̃ − b
−

1

r̃ − b+ 1

)

= r̃!

(

1−
1

r̃

)

= (r̃ − 1)!(r̃ − 1).

Thus, we have

M

N
=

r̃!
(
C−1
t−1

)
−
r̃−1∑

b=1

r̃!
(r̃−b)(r̃−b+1)

b∑

i=1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

)

r̃!
(
C
t

) .

By changing the order of summation, we get

M

N
=

r̃!
(
C−1
t−1

)
−
r̃−1∑

i=1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

) r̃−1∑

b=i

r̃!
(r̃−b)(r̃−b+1)

r̃!
(
C
t

) .

By expanding and cancelling the terms, we obtain

r̃−1∑

b=i

r̃!

(r̃ − b)(r̃ − b + 1)
= r̃!

r̃−1∑

b=i

(
1

r̃ − b
−

1

r̃ − b+ 1

)

= r̃!

(

1−
1

r̃ − i+ 1

)

= r̃!
r̃ − i

r̃ − i+ 1
.

Therefore, we have the required expression in (6) as follows:

M

N
=

r̃!
(
C−1
t−1

)
− r̃!

r̃−1∑

i=1

r̃−i
r̃−i+1

(
r−1
r̃−i

)(
C−r

t−r̃+i−1

)

r̃!
(
C
t

)

=
t

C
−

1
(
C
t

)

r̃−1∑

i=1

r̃ − i

r

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

)

.

�

APPENDIX B

In this section, we show that for an M corresponds to a
t ∈ [C−r], as defined in (6), we can express the rate R(M) =
(
C
r

) (
1− rM

N

)
/
(
t+r
r

)
. From (6), we have

M

N
=

t

C
−

1
(
C
t

)

r̃−1∑

i=1

r̃ − i

r

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

)

.

Therefore, we get

rM

N

(
C

t

)

= r

(
C − 1

t− 1

)

−

r̃−1∑

i=1

(r̃ − i)

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

)

.
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We expand the term

r̃−1∑

i=1

(r̃ − i)

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

)

=

r̃−1∑

i=1

(r̃ − i + 1)

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

)

−

r̃−1∑

i=1

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + i− 1

)

=
r̃∑

j=2

j

(
r

j

)(
C − r

t− j

)

−
r̃∑

j=2

(
r

j

)(
C − r

t− j

)

where j = r̃ − i+ 1.
We can use the following identity to compute the above

sum.

Lemma 2 ([38]). Let n1, n2 be arbitrary positive integers. If

m is a positive integer such that m ≤ n1 + n2. Then

∑

k1+k2=m

k1

(
n1

k1

)(
n2

k2

)

=
mn1

n1 + n2

(
n1 + n2

m

)

where the summation ranges over all non-negative integers k1
and k2 such that k1 ≤ n1, k2 ≤ n2 and k1 + k2 = m.

Lemma 2 is a generalization of the Vandermonde identity:

∑

k1+k2=m

(
n1

k1

)(
n2

k2

)

=

(
n1 + n2

m

)

. (49)

From Lemma 2, we have

r̃∑

j=2

j

(
r

j

)(
C − r

t− j

)

=
rt

C

(
C

t

)

− r

(
C − r

t− 1

)

.

Similarly, from (49), we get

r̃∑

j=2

(
r

j

)(
C − r

t− j

)

=

(
C

t

)

− r

(
C − r

t− 1

)

−

(
C − r

t

)

.

Therefore, we have

rM

N

(
C

t

)

= r

(
C − 1

t− 1

)

−

{
rt

C

(
C

t

)

− r

(
C − r

t− 1

)

−

((
C

t

)

− r

(
C − r

t− 1

)

−

(
C − r

t

))}

= r

(
C − 1

t− 1

)

−

(
rt

C
− 1

)(
C

t

)

−

(
C − r

t

)

=

(
C

t

)

−

(
C − r

t

)

.

Thus, we get

M

N
=

1

r

(

1−

(
C−r
t

)

(
C
t

)

)

=
1

r

(

1−

(
C
t+r

)(
t+r
t

)

(
C
r

)(
C
t

)

)

. (50)

By rearranging (50), we get
(
C
t+r

)

(
C
t

) =

(
C
r

) (
1− rM

N

)

(
t+r
r

) .

We know that that R(M) =
(
C
t+r

)
/
(
C
t

)
. Therefore, we have

the required rate expression

R(M) =

(
C
r

) (
1− rM

N

)

(
t+r
r

) .

�

APPENDIX C

In this section, we show that, if we substitute t = C− r+1
in (6), we get M

N = 1
r . We have

M

N
=

t

C
−

1

r
(
C
r̃−1

)

r̃−1∑

i=1

(r̃ − i)

(
r

r̃ − i+ 1

)(
C − r

t− r̃ + r − i

)

.

a) Consider the case r̃ = r. Then, we have

M

N
=

t

C
−

1

r
(
C
r−1

)

r−1∑

i=1

(r − i)

(
r

i− 1

)(
C − r

r − i

)

=
C − r + 1

C
−

1

r
(
C
r−1

)

r−1∑

i=1

(r − i)

(
r

i− 1

)(
C − r

r − i

)

.

From Lemma 2, we have
r−1∑

i=1

(r − i)

(
r

i− 1

)(
C − r

r − i

)

=
(r − 1)(C − r)

(
C
r−1

)

C
.

Thus, we get

M

N
=
C − r + 1

C
−

(r − 1)(C − r)
(
C
r−1

)

rC
(
C
r−1

) =
1

r
.

b) Now, consider the case r̃ = t. Then, we have

M

N
=

t

C
−

1

r
(
C
t

)

t−1∑

i=1

(t− i)

(
r

t− i+ 1

)(
C − r

i− 1

)

=
t

C
−

rt
C

(
C
t

)
−
(
C
t

)

r
(
C
t

) (51)

=
1

r

where (51) follows from Lemma 2 and (49). Thus we estab-
lished that t = C − r + 1 corresponds to M/N = 1/r. �

APPENDIX D

In this section, we consider the rate-memory trade-off of
the (C, r,M,N ≥

(
C
r

)
) combinatorial MACC scheme given

by Scheme 1. We consider a general C and an r ≤ C/2, and
consider the memory regime uN/C ≤ M ≤ vN/r, for some
positive real numbers u ≥ 1 and v < 1. Notice that, for r = 2,
we chose u = 1.9 and v = 0.1424 (Case 2 in the proof of
Theorem 6). For a t ∈ [C− r+1] and corresponding M from
(6), we have

R(M) =

(
C
r

)
(1− rM

N )
(
t+r
r

)

≤
C(C − 1) . . . (C − r + 1)

(CMN + r)(CMN + r − 1) . . . (CMN + 1)

≤

(
N

M

)r

. (52)
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By substituting ℓ = ⌈ N
(sr)

⌉ in (8), we get

R∗(M) ≥
N − sM

1 + N

(sr)

. (53)

Substituting s = ⌊αN/M⌋ in (53), where v < α < 1 (ensures
that s ∈ [r : C]), yields

R∗(M) ≥
N − ⌊αN/M⌋M

1 + N

(⌊αN/M⌋
r )

≥
N − αN

1 + N

(⌊αN/M⌋
r )

≥
1− α

1
N + 1

(⌊αN/M⌋
r )

≥
1− α

1
N + r!

(αN
M −1)(αN

M −2)...(αN
M −r)

≥

(
N

M

)r
1− α

( N
M )r

N + r!
(α−M

N )(α− 2M
N )...(α− rM

N )

≥

(
N

M

)r
1− α

( N
M )r

(Cr)
+ r!

(α−M
N )(α− 2M

N )...(α− rM
N )

. (54)

From (53) and (54), we obtain

R(M)

R∗(M)
≤

( N
M )r

(Cr)
+ r!

(α−M
N )(α− 2M

N )...(α− rM
N )

1− α

≤

( N
M )r

(Cr)
+ r!

(α− rM
N )r

1− α
. (55)

Now, we separately bound the two terms in (55) as follows:

( NM )r
(
C
r

) ≤
(C/u)r
(
C
r

) =
r!

ur(1− 1
C )(1−

2
C ) . . . (1−

r−1
C )

.

Since r ≤ C/2, we have

(NM )r
(
C
r

) ≤
r!

ur(12 )
r
. (56)

The second term in (55) can be bounded as

r!

(α− rM
N )r

≤
r!

(α− v)r
(57)

since M ≤ vN/r. By combining (56) and (57), we get

R(M)

R∗(M)
≤

(
( 2u )

r + 1
(α−v)r

1− α

)

r!. (58)

From (58), we can approximately say that the gap grows in
the order

R(M)

R∗(M)
≤ czrr! (59)

where c and z > 1 are constants. Also, note that by choosing
α appropriately, we can bring z close to 1 (though not
arbitrarily close to 1). Thus, the optimality gap grows is by
the (dominant) factor r!.

For vN/r ≤M ≤ N/r, we have

R(M) ≤

(
N

M

)r (

1−
rM

N

)

. (60)

By substituting s = r and ℓ = N in (8), we get

R∗(M) ≥ 1−
rM

N
. (61)

Therefore, by combining (60) and (61), we obtain

R(M)

R∗(M)
≤

(
N

M

)r

≤
( r

v

)r

(62)

since N/M ≤ r/v. In the considered memory regime, the gap
grows with r in the order of ( rv )

r, where v < 1. �
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