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Abstract—A source coding problem over a noiseless broadcast
channel where the source is preinformed about the contents of the
cache of all receivers, is an index coding problem. Furthermore,
if each message is requested by one receiver, then we call this
an index coding problem with a unicast message setting. This
problem can be represented by a directed graph. In this paper,
we first define a structure (we call generalized interlinked cycle
(GIC)) in directed graphs. A GIC consists of cycles which are
interlinked in some manner (i.e., not disjoint), and it turns out
that the GIC is a generalization of cliques and cycles. We then
propose a simple scalar linear encoding scheme with linear time
encoding complexity. This scheme exploits GICs in the digraph.
We prove that our scheme is optimal for a class of digraphs
with message packets of any length. Moreover, we show that our
scheme can outperform existing techniques, e.g., partial clique
cover, local chromatic number, composite-coding, and interlinked
cycle cover.

Index Terms—Index coding problem, unicast, optimal broad-
cast rate, linear codes, interlinked cycles.

I. INTRODUCTION

We consider a transmitter broadcasting message through a
noiseless broadcast channel to multiple receivers, each know-
ing some message packets a priori, which is known as side
information. The side information of receivers can be utilized
in order to reduce the number of coded symbols required to
be broadcast by the transmitter to all receivers. This is known
as the index coding problem, and was introduced by Birk and
Kol in 1998 [1]. To date, the index coding problem is an open
problem. The main aim of the index coding problem is to
find an index code that has the minimum number of coded
symbols.

When each message is requested by one receiver (i.e.,
unicast), the index coding problems can be modelled by di-
graphs (i.e., directed graphs). This paper considers the unicast
message setting.

Linear index codes (scalar and vector linear) [1]-[5] have
simpler encoding and decoding process than non-linear index
codes. In the literature, optimal scalar linear index codes
can be characterized by a graph function called the minrank
function [2]]. However, finding minrank for a general digraph
is NP-hard [6], and does not provide much intuition on the
interaction between the side information configuration and the
index codes. Thus in this paper, we use the graph-theoretic
approach to exploit specific graph structures.

There are various graph-theoretic approaches such as clique
cover [1]], partial clique cover [1]], cycle cover [2]], [4], [ 7], and
graph coloring (including fractional) [1]], [8]], [9]], which exploit

the graph structure during encoding of the messages to save
transmissions (i.e., compared to sending uncoded message
packets). In our earlier work [10], we presented a new coding
scheme exploiting interlinked cycles in digraphs. This new
scheme, called interlinked cycle cover (ICC), generalized the
clique cover and the cycle cover schemes. We proved that
for a class of digraphs, called ICC digraphs, the ICC scheme
is optimal. Furthermore, we showed that for some examples,
it can outperform some existing schemes. In an interlinked
cycle structure with N number of vertices, there exists a
set of K vertices, where each vertex has a directed path to
every other vertex of the set. Each of these K vertices must
have an out-degree equal to K — 1, all remaining vertices
(i.e., N — K vertices) must have an out-degree equal to one,
and both can have an in-degree greater than or equal to one.
These conditions on out-degree of vertices make the definition
of interlinked cycles rather limiting, and it restricts the size
of the class of ICC digraphs (for which the ICC scheme is
optimal). Moreover, we were unable to show that the ICC
scheme can outperform the composite-coding scheme (based
on random coding approach which requires infinitely long
message packets) proposed by Arbabjolfai et al. [11].

A. Our Contributions

We first redefine (and extend) the previous definition of the
interlinked cycle structure, so that both the in-degree and the
out-degree of any vertex in it are allowed to be greater than
or equal to one. The resultant interlinked cycle structure is
called a generalized interlinked cycle (GIC). We then propose
a simple encoding scheme based on the GIC, called the
generalized interlinked cycle cover (GICC). The GICC scheme
generalizes the |CC scheme, the clique cover scheme, and the
cycle cover scheme. Furthermore, we characterize a class of
digraphs where the GICC is optimal (over all codes, including
non-linear index codes), and show that the GICC scheme can
outperform existing techniques (including partial clique cover,
local chromatic number, composite-coding, and interlinked
cycle cover).

II. DEFINITIONS

Consider a transmitter that wants to transmit N message
packets X = {z1,22,...,2n} to N receivers {1,2,...,N}
in a unicast message setting such that each receiver 7 is
requesting a message packet x;. Moreover, each receiver @
has side information S; C X \ {«;}. This problem can be



described by a digraph D = (V(D), A(D)), where V(D) =
{1,2,..., N} is a set of vertices representing the N receivers.
An arc (i — j) € A(D) exists from vertex i to vertex j if
and only if receiver 7 has packet z; (requested by receiver
7) as its side information. The side information of vertex i is
S; & {x; : j € Nj (i)}, where N} (i) is the out-neighborhood
of 7 in D. For simplicity, we use the term “messages” to refer
to message packets in the remainder of this paper.

Definition 1 (Valid index code): Suppose x; € {0,1}! for
all ¢, for some integer ¢ > 1, i.e., each message consists of ¢
bits. Given an index coding problem described by D, a valid
index code (Z,{%;}) is defined as follows:

1) An encoding function for the source, % : {0, 1}V —
{0,1}?, which maps X to a p-bit index for some integer
P.

2) A decoding function ¥; for every receiver v;, ¥;
{0,1}7 x {0,1}I5:/* — {0,1}¢, that maps the received
index .# (X)) and its side information .S; to the requested
message ;.

The broadcast rate of the (%,{%}) index code is the
number of transmitted bits per received message bits at every
user, or equivalently the number of coded packets (of ¢ bits),
and this is denoted by ¢(D) £ L. Thus the optimal broadcast
rate for a given index coding problem D with ¢-bit message
is B;(D) = Iri@irn £(D), and the optimal broadcast rate over all
t is defined as (D) £ irtlf Be(D).

Definition 2 (Path and cycle): A path contains a sequence
of unique (except possibly the first and last) vertices, say
1,2,..., M, and an arc (i — i+ 1) for each consecutive pair
of vertices (i,7+ 1) for all : € {1,..., M — 1}. We represent
a path in a digraph D as Py (D) = (1,...,M). Here, 1 is
the first vertex, M is the last vertex, and all remaining vertices
(2,3,...,M —1) are internal vertices of the path. A path with
the same first and last vertex is a cycle.

III. THE GIC STRUCTURE AND CODE CONSTRUCTION
A. Description of a K-GIC structure

Consider a graph structure with N vertices having the
following properties:

1) A set of K vertices, denoted by Vi, such that for any
ordered pair of its vertices (i, ), i # j, there is a path
from ¢ to § which does not include any other vertex of
V1. We call V] the inner vertex set, and without loss of
generality, we represent it as Vi = {1,2,..., K}. The
vertices of V; are refereed to as inner vertices.

2) Due to the existence of paths in between any (i, j) € V1,
for each vertex ¢, we can always find a directed rooted
tree in D, denoted by T; where vertex i is the root vertex,
and all other vertices Vi \ {i} are the leaves (see Fig.
[I(@)). The trees may be non-unique.

Denote the union of all selected K trees as Dy = UWE‘/I T;
(see Fig. [[(b)). If Dy satisfies two conditions (to be defined
shortly), we call it a K-GIC structure (denoted as a K-GIC
sub-digraph: Dy = (V(Dg), A(Dk)), where |V(Dg)| = N
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Fig. 1. (a) Outline of a tree T}, which has the root vertex ¢ € Vi, all
vertices in V7 \ {4} as the leaf vertices, and some or all vertices in V(D) \ V1
(i.e., non-inner vertex set) as intermediate vertices (between the root and the
leaves), and b) outline of the structure of a sub-digraph Ds, where different
trees T; (shown in different colors) can share non-inner vertices.

and V1 = {1,2,..., K}). Now we define a type of cycle and
a type of path.

Definition 3 (I-cycle): A cycle that includes only one inner
vertex ¢ € V1 is an I-cycle.

Definition 4 (P-path): A path in which only the first and
the last vertices are from V7, and they are distinct, is a P-path.

The conditions for a D to be qualified as a GIC are as
follows:

1) Condition 1: There is no I-cycle.
2) Condition 2: For all ordered pairs of inner vertices (¢, j),
i # j, there is only one P-path from i to j.
These two conditions are necessary for our code construction
described in the following section.

B. Code construction for a K-GIC structure
We propose the following coded symbols (which form a
scalar linear index code) for a K-GIC sub-digraph Dg:
1) A coded symbol obtained by the bitwise XOR (denoted
by @) of messages (each of ¢-bits) requested by all
vertices of the inner vertex set Vi, i.e.,

K
wr = P . 1)
i=1

2) For each non-inner vertex j € {K +1, K +2,...,N},
a coded symbol obtained by the bitwise XOR of the
message requested by j with the messages requested by
its out-neighborhood vertices, i.e.,

Dz 2)

q € NBK(j)

A
wj; = x; D

Denote this index code constructed for the K-GIC sub-digraph
by W £ {wp,w; : K+ 1 < j < N}. The calculation of
the total number of coded symbols, each of t-bits, in W is
straightforward,

((Dg)=N—K+1. 3)



Remark 1: Given a K-GIC sub-digraph D, encoding W

(K=1D+ > [INp ()
i€V (Dr)\Vi

requires at most ¢ X bit-

wise XOR operations.

Now we show that all NV vertices in Dg can decode their
respective requested messages from W.

From @2), all j € {K+1, K+2,..., N} which are non-inner
vertices, can decode their requested messages. This is because
the coded symbol w; is the bitwise XOR of the messages
requested by j and its all out-neighborhood vertices, and any
7 knows messages requested by all of its out-neighborhood
vertices as side information.

For an inner vertex ¢, rather than analyzing the sub-digraph
Dy, we will analyze its tree T;, and show that it can decode
its message from the relevant symbols in WW. We are able to
consider only the tree T; due to the following proposition.

Proposition 1: If a vertex v € V(T;) such that v ¢ V1, then
the out-neighborhood is the same in the tree 7; and in Dy,
ie., N;i (v) = Ngk (v).

Proof: Refer to Appendix [ |

Now let us take any tree 7;. Assume that it has a height H
where 1 < H < (N —K+1). The vertices in T; are at various
depths, i.e., {0,1,2,..., H} from the root vertex i. The root
vertex ¢ has depth zero, and any vertex at depth equal to the
height of the tree is a leaf vertex.

First of all, in the tree 7;, we compute the bitwise XOR
among coded symbols of all non-leaf vertices at depth greater
than zero, ie., Z; £ @jGV(Ti)\VI w;. However, in the tree
T;, the message requested by a non-leaf vertex, say p, at a
depth greater than one, appears exactly twice in {w; : j €
V(T;) \ Vi}s

i) once in wy, where k is parent of p in tree T;, and

ii) once in wy.

Thus they cancel out each other while computing Z; in the
tree T; (see (TI) in Appendix . Hence, in the tree T;, the
resultant expression which is bitwise XOR of

i) messages requested by all non-leaf vertices at depth one,
and

ii) messages requested by all leaf vertices at depth greater
than one,

is obtained (see (T3) in Appendix [B). Secondly, in the tree T;,
we compute wy B Z; (see in Appendix [B)) which yields
the bitwise XOR of

i) messages requested by all non-leaf vertices at depth one
which are in out-neighborhood of i,
ii) messages requested by all leaf vertices at depth one
which are also in out-neighborhood of ¢, and
iii) message requested by ¢, i.e., x;.
This is because the messages requested by each leaf vertex
at depth greater than one in the tree 7; is present in both the
resultant terms of Z; and in wy, thereby they cancel out itself
in w; @ Z;. Hence, wy & Z; yields the bitwise XOR of z; and
{z; 1 j € N, (9)}. As i knows all {z; : j € N (i)} as

side-information, any inner vertex ¢ can decode its required
message from wy @ Z;.

IV. RESULTS

Definition 5 (Generalized interlinked cycle cover (GICC) scheme):

For any digraph, the GICC scheme finds a set of disjoint GIC
sub-digraphs. It then (a) codes each of these GIC sub-digraphs
using the code construction described in Section [[II-B| and
(b) sends uncoded messages requested by all remaining
vertices (i.e., vertices which are not in any of these disjoint
GIC sub-digraphs).

Now we present a main result of this paper. It is best
expressed in terms of savings defined as follows:

Definition 6 (Savings): The number of packets saved (i.e.,
N — ¢(D)), by transmitting coded symbols (coded packets)
rather than transmitting uncoded message packets, is called
savings.

Theorem 1: For any digraph D, a valid index code of length

P
leoicc(D) = N — > (K; — 1) can be achieved by using the

GICC scheme, whé:?e1 (K; — 1) is the saving in each disjoint
K;-GIC sub-digraph, and ¢ is the number of disjoint GIC sub-
digraphs in D.

Proof: Consider a K-GIC sub-digraph Dg. It follows
from (@) that the total number of savings achieved by the
GICC scheme is

N —lgcc(Dg)=N—-(N-K+1)=K—-1. (4

For any digraph D containing ¢ disjoint GIC sub-digraphs,
a saving of K; — 1 is obtained in each D, (from (@), where
i € {1,...,9%}. Now the total saving is the summation of
savings in all disjoint GIC sub-digraphs, i.e., Z;/):I(Ki -1).
Hence, lgicc(D) = N — SV (K; —1). n

Remark 2: The GIC sub-digraphs found by the GICC
scheme are not unique. So, finding the best £gicc(D) involves
optimizing over all choices of disjoint GIC sub-digraphs in
D, and this requires high time complexity. We will leave the
design of algorithms or approximations as our future work.

A. GIC sub-digraphs include |\CC sub-digraphs

Theorem 2: GIC sub-digraphs include ICC sub-digraphs as
a special case.
Proof: An ICC sub-digraph Dcc, is defined as follows
[10]:

1) It has k disjoint paths, P; £ (v}, v},..., % ), for each
i€{1,2,...,k}, where each P; has n; > 1 number of
vertices.

2) For any distinct i,5 € {1,2,...,k}, there is a path
from v}, € V(P;) to some v/ € V(P;), denoted
as (v vl ,vﬁij,vﬂ. Denote the sub-path P, ; £

,v;). ), where each P; j has n;; > 0 number

X2
n;’

v,
W9 Wi
of vertices.

3) The set of vertices in all P; and in all P; ; are mutually
disjoint. ‘

4) Each first vertex v] in P; has at least one in-degree.



Select Vi = {v}, ,v2,,... vk }. Pointguarantees that, for
any ordered pair (i,7), ¢ # j and i,j € {1,2,...,k}, there
exists a path from v}, to v}, . Now we will show that the ICC
sub-digraph with the chosen V7, satisfies the two conditions to
be a GIC sub-digraph D

By construction of an ICC digraph, we have the following:
For any vfli € W, all paths from vfli must go through some
vl € V(P;) for some j, and then ”%7 before returning to v, .
Therefore, there is no I-cycle. '

Note that each vertex in V' (Dicc) \ V1 has out-degree one.
Thus it follows from points [I] and [2] that there is only one
P-path between any ¢, 5 € Vi.

Since there is only one P-path from i to j for any i, j € V4,
every P; j, which is part of the P-path from ¢ to j, must be a
sub-digraph of the tree T;. For every j € Vi, point 4 dictates
that the entire P; must be the part of the P-path from some
1 to j. Hence, P; is a sub-digraph of the tree T;. We have
included all vertices and arcs in the construction of the trees
in Dg. Consequently, Dicc = Dk [ |

B. The GICC scheme includes the |CC scheme as a special
case

Theorem 3: The GICC scheme includes the ICC scheme.

Proof: In an ICC sub-digraph Dicc [10], select Vi =
{vh ,v2,,..., vk }. The coded symbols w' = @)_, z% of
the ICC is the same as the coded symbol wy of the GICC. Now
for the remaining vertices (of set V(Dicc) \ Vi), the coded
symbols of the ICC scheme are simply the bitwise XOR of the
messages requested by each vertex j and its out-neighborhood
vertices, which is same as w;, j € V(Dg) \ W1 of the GICC
scheme. ]

C. The GICC scheme includes the cycle cover and clique cover
schemes as special cases

Corollary 1: The GICC scheme includes the cycle cover
and the clique cover schemes as special cases.

Proof: The ICC scheme includes the cycle cover scheme
and the clique cover scheme as its special cases [10]]. From
Theorem 2, the GICC scheme includes ICC scheme as its
special case. ]

D. The GICC scheme is optimal for a class of digraphs

We first prove a lemma that will help to prove the optimality
of the GICC scheme.
Lemma 1: In a GIC sub-digraph, any cycle must contain
either (i) no inner vertex, or (ii) at least two inner vertices.
Proof: 1t follows directly from the property of a GIC sub-
digraph that a cycle cannot be formed by including only one
inner vertex because this type of cycle is an I-cycle. ]

Definition 7 (Maximum acyclic induced subgraph (MAIS)):

For a digraph D, an induced acyclic sub-digraph with the
largest number of vertices is called the MAIS. We denote the
order of an MAIS by MAIS(D).

It has been shown [2] that for any D and ¢,

MAIS(D) < B(D) < B,(D) < {(D). )

Theorem 4: For a class of digraphs, in which each digraph
is a K-GIC sub-digraph Dy with

e (Case 1) no cycle among the non-inner vertices, or

e (Case 2) M > 1 disjoint cycles among non-inner vertices,

and we can group the inner vertex set Vi in to M + 1

sub-sets such that each of them forms a disjoint GIC sub-

digraph of case 1, and such GIC sub-digraphs are also

disjoint from the M cycles among non-inner vertices,
the scalar linear index code given by the GICC scheme is
optimal for messages of any ¢ > 1 bits, i.e., gicc(Dg) =
B(Dx) = Bi(Dx).

Proof: We will show that the MAIS lower bound (3)) is
tight for all ¢. We denote the digraph by D, and consider that
it has IV number of vertices. For K = 1, the digraph contains
only one vertex, and MAIS(D;) = 1. For K > 2, we have the
following:

(Case 1) From Lemma |l} any cycle must include at least
two inner vertices, or no inner vertex, thus if we remove K —1
inner vertices, then the digraph Dy becomes acyclic. Thus

MAIS(Dx) > N — K + 1. ©6)
From Theorem [T we get
laicc(Di) =N — K +1. @)

It follows from (), (6), and that MAIS(Dg) =
N — K+ 1= {lgcc(Dk). Thus lgicc(Dk) = B(Dk) =
Bi(Dg)=N—K +1.

(Case 2) A Dk can be viewed in two ways. The first way
is considering the whole D as a K-GIC digraph. The second
way is considering induced sub-digraphs of Dy which consist
of; (a) M disjoint cycles together consisting of a total of V4
(0 < Ny < N — K) non-inner vertices (if Ngo = 0 or 1,
then M = 0, which is case 1), (b) M + 1 disjoint GIC sub-
digraphs each with IN; number of vertices and K; number
of inner vertices in such a way that M K; = K, we
consider that each GIC sub-digraph is also disjoint from all
M cycles among non-inner vertices, and (c) total remaining of
Np=N-—-Ny— vaflrl N; non-inner vertices (which are not
included in M cycles, or the M +1 GIC sub-digraphs). Now we
will show that both ways of looking at D are equivalent in
the sense of the index code length generated from our proposed
scheme, and both equal to MAIS(Df). We prefer the second
way of viewing Dy for our proof since it is easier to find the
MAIS lower bound.

For the partitioned D (looking at in the second way), the
total number of coded symbols will be the summation of the
length of the coded symbols for (i) each of the M disjoint
cycles (each cycle has saving equal to one), (ii) each of the
M + 1 disjoint GIC sub-digraphs (each of GIC sub-digraphs
has savings equal to K — 1), and (iii) Np uncoded symbols
for the remaining non-inner vertices, i.e.,

M+1
licc(Dr) = (Na = M)+ > (Ni = K; +1) + Np
i=1

=N-K+1. (8)



From and @), lcicc(Dk) = E'GK:C(DK), thus from both
perspectives the code length is the same.

Now for Dg (looking at in our second way), if we remove
one vertex from each of the M cycles among non-inner
vertices (M removal in total), and remove K; — 1 vertices
from each of the M + 1 GIC sub-digraphs (Zf\iirl(Kl -1)=
K — M — 1), i.e., total removal of K — 1, then the digraph
becomes acyclic. Thus

MAIS(Dx) > (N — K +1). ©9)

It follows from (), (7), and @) that MAIS(Dg) =
N — K+ 1 = lgicc(Dk). Thus lgicc(Dk) = B(Dk) =
Bi(Dg)=N—-K+1. [ |

Conjecture 1: For any K-GIC digraph D g, and message of
any ¢ > 1 bits, the scalar index codes given by GICC scheme
is optimal, i.e., fgicc(Dk) = B(Dk) = Bi(Dk).

If MAIS(Dg) < leicc(Dk), we conjecture that we can
always find disjoint GIC sub-digraphs such that the summation
of all number of coded symbols required for each GIC sub-
digraph is equal to MAIS(Dg).

V. COMPARISON WITH EXISTING TECHNIQUES

A. The GICC scheme can outperform existing techniques in-
cluding composite-coding and interlinked cycle cover

The GIC digraph shown in Fig. has K = 4 and is
denoted by Dy. The coded symbols from the GICC scheme
have length {gicc(D4) = 3, and they are {1®2®3®4, 526
3, 63®4}. The upper bounds for the digraph D, by existing
techniques are (a) composite-coding [11]], {cc(D4) = 3.5; (b)
local chromatic number [9], ¢,.c(D4) = 4; (c) fractional partial
clique cover [12]], £ppcc(D4) = 4; (d) interlinked cycle cover
(101, licc(D4) = 4; (e) clique cover [1]], £ci(D4) = 5; and
(f) cycle cover [2], [4], [7], fcy(D4) = 4. All of these upper
bounds are strictly greater than £gicc(Dy).

B. Performance improvement of the GIC scheme over existing
schemes

We outline a class of GIC digraphs with K number of
inner vertices, and 2(K — 1) number of non-inner vertices,
so that N = 3K — 2. Without loss of generality, say Vi =
{1,2,..., K}, and the non-inner vertex setis { K+1,..., N}.
Now for i € {2,..., K — 1}, every vertex ¢ knows messages
requested by vertices K + ¢ and 3K — 7. Vertex K + i
knows all messages requested by vertices {i + 1,..., K},
and vertex 3K — 4 knows all messages requested by vertices
{1,...,4—1}. The first inner vertex (i.e., vertex 1) knows the
message requested by vertex K + 1, and vertex K + 1 knows
all messages requested by vertices V1 \ {1}. Similarly, the last
inner vertex (i.e., vertex K) knows the message requested by
vertex 2K, and vertex 2K knows all messages requested by
vertices Vi \ {K}.

For K > 3, a digraph Dy of this class is not an ICC
digraph, and its complement digraph (whose underlying graph
is a complete graph) has chromatic number X(Dg) = N =
3K — 2 = lc.(Dg), and local chromatic number X,;(Dg) =
N —1 = 3K —3 = {ic(Dk). Also, the digraph D has

()

Fig. 2. (a) A 4-GIC digraph with six vertices, and (b) a 4-GIC digraph with
ten vertices.

leicc(Di) = 25 = 2K —1, and licc(Dk ) = Laicc(Dk) +
([51-1) = 2K+[%1-2. The gap, lic(Dx)—Laicc(Dr) =
K -2, so for K > 2, the gap grows linearly with K. Similarly,
leL(Dk) —Llaicc(Di) = K — 1. Fig. [2(b) depicts an example
of a digraph in this class with K = 4.

VI. CONCLUSION

In this work, we first defined a structure, called generalized
interlinked cycle (GIC), in directed graphs. A GIC consists
of cycles that are interlinked in some manner (i.e., not dis-
joint). We then proposed a simple encoding scheme called
the generalized interlinked cycle cover (GICC). This scheme
exploits GICs in the digraph, and generalizes the interlinked
cycle cover (ICC) scheme, the clique cover scheme, and the
cycle cover scheme. Furthermore, we characterized a class of
digraphs where the GICC is optimal (over all codes, including
non-linear index codes), and showed that the GICC scheme can
outperform existing techniques (including partial clique cover,
local chromatic number, composite-coding, and interlinked
cycle cover).
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APPENDIX A
PROOF OF PROPOSITION(]]

A K-GIC sub-digraph D has some properties captured in
the following lemmas, which we will use to prove N;fi (v) =
N 'EK (v). Here we consider T; and T as any two distinct trees
present in Dp.

Lemma 2: If a vertex v € V(T;), v € V(Tj), and v ¢ Vi,
then the set of leaf vertices that fan out from the common
vertex v in each tree is a subset of V1 \ {4, j}.

Proof: In a tree T; (see Fig. , for any vertex v € V(T;)
and v ¢ Vi, let Ly, (v) be a set of leaf vertices that fan out
from the vertex v. If the vertex j € L, (v), then there exists a
path from vertex v to 5 in the tree 7;. However, in the tree 7,
there is a path from vertex j to v. Thus in the sub—digraplﬂ
Dy, we obtain a path from vertex v to j (via 7;) and vice
versa (via T}). As a result, an I-cycle containing j is present.
This contradicts the condition 1 (i.e., no I-cycle) for a Dg.
Hence, j ¢ L, (v). In other words, Lr,(v) C Vi \ {i,5}.
Similarly, L, (v) € V1 \ {3,5}. |

Lemma 3: If a vertex v € V(T;), v € V(Tj), and v ¢ W3,
then the out-neighborhood of the vertex v is same in both of
the trees, i.e., N}t (v) = N (v).

Proof: Here the proof ‘is done by contradiction. Let us
suppose that Njfi (v) # N;j (v).

For this proof we refer to Fig. 3] This proof has two parts.
In the first part, we prove Lr,(v) = Lz, (v), and then prove
Ny (v) = N (v) in the second part.

From Lemma 2} Lr, (v) is a subset of Vi \ {i, j}. Now pick
a vertex ¢ belongs to V1 \ {7, j} such that ¢ € Lz, (v) but ¢ ¢
L, (v) (such c exists since we suppose that L, (v) # L, (v)).
In tree T, there exists a directed path from the vertex @ which
includes the vertex v, and ends at the leaf vertex c. Let this
path be P,_,.(T;). Similarly, in tree T}, there exists a directed
path from the vertex j, which doesn’t include the vertex v
(since ¢ ¢ Lr,(v)), and ends at the leaf vertex c. Let this
path be P;_,.(T}). However, in the digraph Dy, we can also
obtain a directed path from the vertex j which passes through
the vertex v (via T}), and ends at the leaf vertex c (via T;). Let
this path be Pj_,.(Dg). The paths P;_,.(T};) and Pj_.(Dg)
are different which indicates the existence of multiple P-paths

'As D = UWEVI T;, a path present in any 7; also present in Dpc.

Path

4
(© v; Vi)

Vi\{i}

N
G o @
Vi {7}

Fig. 3. Directed rooted trees T; and T); with roots ¢ and j respectively, and a
non inner vertex v in common. Here we have used straight arrow to indicate
an arc, and curly arrow to indicate a path.

from the vertex j to ¢ in D, this contradict the condition 2
for a Dp. Consequently, L, (v) = L, (v).

Now we pick a vertex b such that, without loss of generality,
b€ N7 (v) but b ¢ N (v) (such b exists since we assumed
that Njfi (v) # NTt, (v)). Furthermore, we have two cases for
b, which are (case 1) b € Ly, (v), and (case 2) b ¢ Ly, (v).
Case 1 is addressed in the first part of this proof. On the other
hand, for case 2, we pick a leaf vertex d € L, (b) such that
there exists a path (see Fig.|3) that starts from v followed by b,
and ends at d, i.e., (v,b,...,d) exists in T;. A path (j,...,v)
exists in 7. Thus a path (j,...,v,b,...,d) exists in Dg.
From the first part of the proof, we have Lz, (v) = L, (v), so
d € Lt,;(v). Now in T}, there exists a path from j to d, which
includes vertex v followed by a vertex e such that e € N;fj (v)
and e # b (as b ¢ N;fj (v)), and the path ends at d, i.e.,
(J,...,v,e,...,d) which is different from (j,...,v,b,..., d).
So multiple P-paths are observed at d from j. This contradicts
condition 2 for a Dy. Consequently, N (v) = Nz (v). ®

Proof of Proposition [l For any v € V(T;) from
Lemma , N7 (v) = Nz (v) forall {j : v € T;}. Since D =
viev; 13> vertex v muth have the same out-neighborhood in
Dy as well. |

APPENDIX B

In this section, for the tree T;, we mathematically compute
Z; and wy @ Z;. These results are referred in Section [[II-B
In the tree T,

Zi- D w

JEV(Ti)\Va

= @ :L‘j@ @ LL'q

JEV(T\Vi a€NY . (5)

- D |we B we D a
FJEV(T\VA €N, (\Vi g€NF, ()NVi



Xv() = @ zj B EB Tq | @ EB z;, ® EB T, |O©.. @

HENE ()\Vi a€NS, ()\Vi J2ENE (i1)\Vi gENE, (52)\Vi

@ Tjg_p D @ Tgg_o | B @ Tjg_, B @ Lap -1

. Nt . WV o . jH_1€ + .
JH—26€NL  (Jr-3)\Vi qGJ\DK (Jr—2)\V1 - J(jHl I\Vi quDK Gr-1)\W
"Dk -2

=0

- D = (11

JENS  (N\Wi

wy D Z;

=x; D @ T; D @ T D @ Tq

jevi\{i} kENS (D\Vi q:qeVi\{i}
& q¢Np (3)

ws| D me @ wle B me| B al-we| B e @ =
JieVi\{i} J:ieVIN{i} keNgK(i)\vI q:q€Vi\{i} JieVI\{i} kezvgk(i)\vl
& jEN (i) & jEND (i) & a¢Nj (i) & JEN (0)
(12)

Where, Xy (7, £ &P z; B &P zq |, and
FEV(T\VA 4ENG  (I)\Vi

X (/(Ti) = D @ Ty | = S%) Lq-
JEV(T)\Wi qugK (N q:qEVQ{i}l
& q¢Np, (i)

Here X7, ) is bitwise XOR of messages requested by all of
the leaf vertices which branch from all of the non leaf and the
non root vertices in 7;. If we expand Xy (7, as per the group
of vertices according to their depth, then the intermediate terms
cancel out, and we get @) (we have use the same color to
indicate the terms that cancel out each other).

Now substituting Xy () of (I1) and X{/(Ti) in (10), we
get

Zi= @ wme B x| a3

keNgK(i)\VI q:q€Vi\{i}
& NP (i)
Now in the tree T;, wy @ Z; yields (I12), which is XOR
of messages requested by the inner vertex ¢, and its out-
neighbourhood vertices.
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