
Index Coding and Network Coding via Rank
Minimization

Xiao Huang and Salim El Rouayheb
ECE Department, IIT, Chicago

Emails: xhuang31@hawk.iit.edu, salim@iit.edu

Abstract—Index codes reduce the number of bits broadcast by
a wireless transmitter to a number of receivers with different
demands and with side information. It is known that the
problem of finding optimal linear index codes is NP-hard. We
investigate the performance of different heuristics based on rank
minimization and matrix completion methods, such as alternating
projections and alternating minimization, for constructing linear
index codes over the reals. As a summary of our results, the
alternating projections method gives the best results in terms of
minimizing the number of broadcast bits and convergence rate
and leads to up to 13% savings in average communication cost
compared to graph coloring algorithms studied in the literature.
Moreover, we describe how the proposed methods can be used to
construct linear network codes for non-multicast networks. Our
computer code is available online.

I. INTRODUCTION

We investigate the performance of different rank minimiza-
tion heuristics for constructing linear index codes [1], [2],
and therefore linear network codes using the equivalence in
[3], [4]. Index codes reduce the number of bits broadcast
by a wireless transmitter that wishes to satisfy the different
demands of a number of receivers with side information
in their caches. Fig. 1 illustrates an index coding example.
A wireless transmitter has n = 4 packets, or messages,
X1, . . . , X4, and there are n = 4 users (receivers) u1, . . . , u4.
User ui wants packet Xi and has a subset of the packets as
side information. The packets in the cache could have been
obtained in a number of ways: packets downloaded earlier,
overheard packets or packets downloaded during off-peak
network hours. Each user reports to the transmitter the indices
of its requested and cached packets, hence the nomenclature
index coding [5]. Assuming an error-free broadcast channel,
the objective is to design a coding scheme at the transmitter,
called index code, that satisfies the demands of all the users
while minimizing the number of broadcast messages. For
instance, the transmitter can always satisfy the demands of
all the users by broadcasting all the four packets. However,
it can save half of the broadcast rate by transmitting only 2

Wants:"
Has:"

Wants:"
Has:""

Wants:"
Has:"

Wants:"
Has:""

X1 + X4

X1 + X2 + X3

X1 X2 X3 X4

u1 u2 u3 u4
X1 X2 X3 X4

X1X3X2X3 X2X4 X1

Fig. 1: An index code example.

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

p

A
ve

ra
ge

In
de

x
C

od
e

L
en

gt
h

No Coding
Multicast
Greedy Coloring
Alternating Proj.

Fig. 2: Comparison of different methods for constructing scalar linear index
codes for n = 100 users and messages. Each user caches each message
independently with probability p (except its requested message).

coded packets, X1 +X2 +X3 and X1 +X4 to the users. Each
user can decode its requested packet by using the broadcast
packets and its side information. The problem that we focus
on here is is how to construct linear index codes that minimize
the number of broadcast messages.

Contribution: Answering the question above turns out to
be an NP-hard problem in general [6]–[8]. Motivated by a
connection between linear index codes and rank minimization
[5] (details in Sec. III-B), we propose to use rank minimization
and matrix completion methods to construct linear index
codes. The underlying matrices representing an index coding
problem have a special structure that affects the performance
of these methods. For instance, the celebrated nuclear norm
minimization method [9], [10] does not perform well here.
We present our findings on the performance of different
other methods, such as alternating projections, directional
alternating projections and alternating minimization, through
extensive simulation results on random instances of the index
coding problem. These methods are performed over the real
numbers and give linear index codes over the reals which
have applications to topological interference management in
wireless networks [11], [12]. As a sample of our results,
Fig. 2 compares the performance of index codes obtained
by the Alternating Projection (AP) method to other methods
studied in the literature. We assumed that packets are cached
independently and randomly with probability p. The figure
shows the savings in communication cost resulting from using
index codes compared to no-coding and multicast network
coding (all users decode all messages). The AP method leads
to up to 13% average savings in broadcast messages compared

ar
X

iv
:1

50
4.

06
84

4v
1

 [
cs

.I
T

]
 2

6
A

pr
 2

01
5

to graph coloring [1], [6].
Over the recent years, several connections have been es-

tablished between index coding and other problems. These
connections can be leveraged to apply the rank minimization
methods presented here to these equivalent problems. For in-
stance, using the reduction between index coding and network
coding devised in [3], [4] to show the equivalence of the two
problems, the methods proposed here could be readily applied
to construct linear network codes over the reals [13], [14]
for general non-multicast networks. Similarly, these methods
can be used to construct certain class of locally repairable
codes (over the reals) using the duality between index codes
and locally repairable codes established in [15], [16]. Our
computer code for constructing linear index codes, network
codes and locally repairable codes is available online [17].

Related work: Index coding was introduced by Birk and
Kol in [1] as a caching problem in satellite communications.
The work of [5] established the connection between linear
index codes and the minimum rank of the side information
graph representing the problem. The sub-optimality of linear
index codes was shown in [18]–[20]. The work of [21]
further explored the connection to graph coloring and studied
properties of index coding on the direct sums of graphs. Linear
programming bounds were studied in [22] and connections
to local graph coloring and multiple unicast networks were
investigated in [23] and [16], respectively. The work in [24]
investigated the property of index codes on random graphs.
Tools from network information theory [25], [26] and dis-
tributed source coding [27] were also used to tackle the index
coding problem. Related to index coding is the line of work on
distributed caching in [28], [29]. Recently, a matrix completion
method for constructing linear index codes over finite fields
was proposed in [30], and a method for constructing quasi-
linear vector network codes over the reals was described in
[31].

Organization: The rest of the paper is organized as
follows. In Section II, we describe the mathematical model
of the index coding problem and the assumptions we make.
In Section III, we summarize the connections of index coding
to graph coloring, rank minimization and topological interfer-
ence management. In Section IV, we focus on index coding
instances that can be represented by undirected graphs. We
describe the different rank minimization methods and our sim-
ulation results. In Section V, we describe the performance of
these methods for directed graphs. In SectionVI, we elaborate
more on the use of rank minimization methods for constructing
linear network codes. We conclude in Section VII.

II. MODEL

An instance of the index coding problem is defined as
follows. A transmitter or server holds a set of n messages
or packets, X = {X1, . . . , Xn}, where the Xi’s belong to
some alphabet. There are m users, u1, . . . , um. Let Wi ⊂ X
(“wants” set) represents the packets requested by ui, and the
set Hi ⊂ X (“has” set) represents the packets available to ui as
side information in its cache. WLOG, we can assume that Wi

1 2

3 4

has

(a) Gd

1 2

3 4

X1 +X2

X3 X4

(b) G

1 2

3 4

(c) Ḡ

Fig. 3: (a) Side information graph Gd of the example in Fig. 1. (b) A clique
cover for its undirected subgraph G and the corresponding index code. (c)
Graph coloring of the complement graph Ḡ corresponding to the clique cover
in G.

contains only one packet, otherwise the user can be represented
by multiple users satisfying this condition. We assume that
initially the transmitter does not know which packets are
cached at each user, and the users tell the transmitter the
indices of the packets they have in an initial stage. Typically,
the alphabet size (packet length) is much larger than the
number of packets n, so the overhead in the initial stage is
negligible. The transmitter uses an error-free broadcast channel
to transmit information to the terminals. The objective is to
design a coding scheme at the transmitter, called index code,
that satisfies the demands of all the users while minimizing the
number of broadcast bits. We will focus on linear index codes
in which the messages belong to a certain field (GF (q) or R)
and the transmitted messages are linear combinations of these
messages. Linear index codes are known not to be optimal
[19] and the gap to optimality can be arbitrarily large [18].
However, we focus on linear codes due to their tractability. For
clarity of exposition, we make the following two assumptions:

1) The number of users is equal to the number of messages
(n = m). We will assume that user ui requests message
Xi, i.e., Wi = {Xi}. It was shown in [32] that any
general instance, m ≥ n, can be reduced to this model
with no loss of generality for linear codes.

2) The messages are atomic units that cannot be divided.
This corresponds to scalar linear index codes. We refer
to the number of broadcast messages as the index
code length. We denote by Lmin the minimum number
of broadcast messages achieved by scalar linear index
codes. Our methods could be easily extended to vector
linear index codes for a givenblock length.

III. CONNECTIONS TO OTHER PROBLEMS

A. Index Coding & Graph Coloring

The minimum scalar linear index codes length Lmin can be
upper bounded by the chromatic number of a certain graph.
An index coding problem, with n messages and m = n users1,
can be represented by a directed graph Gd, referred to as side
information graph, defined on the vertex set {1, 2, ..., n}. An
edge (i, j) is in the edge set of Gd iff user ui has packet Xj

as side information.

1In the case where there are more users than messages, i.e., m > n, the
index coding problem can be represented by a multigraph [21] or a bipartite
graph [16].

The side information graph Gd representing the instance in
Fig. 1 is depicted in Fig. 3(a). Its maximal undirected subgraph
G in Fig. 3(b) is obtained from Gd by replacing any two edges
in opposite directions by an undirected edge, and removing the
remaining directed edges. We will say that Gd is undirected
if Gd and G are the same graph. A fully connected subgraph
(clique) of G represents a subset of users that can be satisfied
simultaneously by broadcasting a single coded packet that is
the XOR of all the packets indexed by the clique. Therefore,
a partition of G into cliques gives a scalar linear index code
over any field. We can optimize such a partition in order
to obtain a minimum number of cliques. Such a number is
called the minimum clique cover, χ̄(G), of G (see Fig. 3(b)).
Note that the minimum clique cover number χ̄(G) is equal
to the chromatic number χ(Ḡ) of the complement graph Ḡ
(Fig. 3(c)), and therefore finding it is an NP-hard problem [33],
[34]. Fig. 3(b) shows a minimum clique cover of G and the
resulting index code of rate 3 > 2, and therefore clique cover
based index codes are not necessarily optimal. Nevertheless,
it is the basis of many greedy heuristics in the literature [2],
[6].

A lower bound on Lmin is the independence number α(G)
which is the maximum number of vertices with no edge
between any two of them. To see this, consider the sub-
problem formed by the users corresponding to an independent
set of G and their messages. In this sub-problem, users do
not have any side information and therefore all the messages
must be transmitted. We summarize the results above in the
following Lemma.

Lemma 1: α(G) ≤ Lmin ≤ χ(Ḡ).

B. Index Coding & Rank Minimization

It was shown in [5] that finding an optimal scalar linear
index code is equivalent to minimizing the rank of a certain
matrix M . For instance, this matrix M for the example in
Fig. 1 is given by

M =

X1 X2 X3 X4

u1

1 ∗ ∗ 0
∗ 1 ∗ 0
0 ∗ 1 ∗
∗ 0 0 1

u2
u3
u4

.

The matrix M is constructed by setting all the diagonal
elements to 1’s, a star in the (i, j)th position if edge (i, j)
exists in Gd, i.e., user ui caches packet Xj , otherwise the entry
is 0. The intuition is that the ith row of M represents the linear
coefficients of the coded packet that user ui will use to decode
Xi. Hence, the zero entries enforce that this coded packet does
not involve packets that ui does not have as side information.
The packets that ui has as side information can always be
subtracted out of the linear combination. The goal is to choose
values for the stars “∗” from a certain field F such that the rank
of M is minimized. The saving in transmitted messages can be
achieved by making the transmitter only broadcast the coded
packets that generate the row space of M . It turns out that this
formulation of index coding coincides with the minimum rank

1 1′

2 2′

3 3′

4 4′

Fig. 4: Interference management problem equivalent to the index coding
instance in Fig. 1 for the linear case. Circles represent transmitter nodes
connected by black links to their intended receivers represented by squares.
Dashed red links represent the interference between the different transmitters
and receivers.

of a graph G, minrk(G), defined by Haemers [35]. Therefore,
the optimal rate for a scalar linear index code is Lmin =
minrk(G) ≤ χ̄(Gd) [5].

C. Index Coding & Topological Interference Management

It was shown in [11] that, in the linear case, the index
coding problem is equivalent to the topological interference
management problem in wireless networks. The latter problem
consists of finding optimal transmission schemes in inter-
ference networks with no channel state information at the
transmitter. This equivalence holds over any field, in particular
the field of real numbers R on which we focus in this paper.

We will briefly describe this equivalence using an example
and refer the interested reader to the results in [11] and related
literature [12], [36] for more details. Fig. 4 depicts the wireless
interference network that is equivalent to the index coding
problem in Fig. 1. Black solid links connect a transmitter
i with its intended receiver i′. Dashed red links indicate
the set of receivers with which a transmitter node interferes
when transmitting. For example, transmitter 1 interferes with
receiver 4′. Transmitted signals are added “in the air” and
a receiver will receive the sum of his intended signal plus
the interference on the red links. The intuition behind the
connection to index coding can be explained as follows. Take
for example receiver 1′, it does not suffer of interference
from 2 and 4 which is equivalent to 1′ getting interference
from all the transmitters and 1′ possessing the messages of 2
and 4 as side information, so it can cancel them out. One
communication scheme for this network consists of letting
each transmitter sends his message during a different time
slot while the other transmitters are “off”. This corresponds to
the trivial index coding solution of sending all the messages.
The index code in Fig. 1 gives a more efficient scheme
for interference network in Fig. 4: nodes {1, 2, 3} transmit
together in the first time slot, then nodes {1, 4} transmit
together in the second time slot.

IV. INDEX CODING ON RANDOM UNDIRECTED GRAPHS

We start by considering undirected side information graphs
Gd (Gd = G), i.e., for every directed edge (i, j) in G there
is an edge (j, i) in the opposite direction. Our approach is to
use convex optimizing methods to find Lmin by minimizing
the rank of the matrix M over the reals. The problem of rank

d1

c1

C d2 D
c2

d3c3

d∗

(a)

d1
Rank M ≤ r

C D

(b)
Fig. 5: (a) Alternating Projections (AP) method between two convex sets.
(b) AP method for the index coding problem (see Eqs. (1) and (2)).

minimization has been extensively studied in system theory
[37], [38]. In [9], [10], it was shown that the convex relaxation
that replaces the rank function by the nuclear norm (sum of
singular values) leads to finding the minimum rank with high
probability under certain conditions on the matrix rank and the
number of fixed (observed) entries in the matrix. However,
these results do not carry over directly to the index coding
problem because the model there assumes the location of the
fixed entries is chosen uniformly at random. In contrast, the
index coding matrix M has a specific structure that dictates
all the the diagonal entries to be equal to one. Indeed, the
semi-definite program (SDP) relaxation in [9] always output
the maximum rank n (instead of the minimum rank) which is
obtained by setting all the “*” entries in M to zero making
it the identity matrix (see Appendix A). Next, we will show
that other rank minimization methods, such as the alternating
projections (AP) method [38], [39], can be used to construct
near-optimal scalar linear index codes.

A. Alternating Projection Method

Given two convex regions C and D, a sequence of alter-
nating projections between these two regions converges to a
point in their intersection as illustrated in Fig. 5(a) [38]–[40].
Therefore, completing the index coding matrix M by choosing
values for the “*” such that M has a low rank r can be thought
of as finding the intersection of two regions C and D in Rn×n,
in which

C = {M ∈ Rn×n; rank(M) ≤ r}, (1)

is the set of matrices of rank less or equal to a given rank r,
and

D = {M ∈ Rn×n;mij = 0 if (i, j) /∈ G and mii = 1,

i = 1, . . . , n}. (2)

Note that C is not convex and therefore convergence of the AP
method is not guaranteed. However, the AP method can give
a certificate, which is the completed matrix M , that a certain
rank r is achievable. Therefore, we will use the AP method
as a heuristic as described in algorithm APIndexCoding.
Algorithm APIndexCoding: The projection of a matrix on
the region C is obtained by singular value decomposition
(SVD) [41]. We noticed from our simulations that a consider-
able improvement in performance and convergence rate, (See

Figs. 16 and 17 in Appendix F) can be obtained by projecting
on C′ ⊆ C, the set of positive semi-definite matrices of rank
less or equal than r,

C′ = {M ∈ Rn×n;M � 0 and rank(M) ≤ r}. (3)

The projection on C′ is obtained by eigenvalue decomposi-
tion and taking the eigenvectors corresponding to the r largest
eigenvalues, as done in Step 8. The Projection on region D is
obtained by setting the diagonal entries of the matrix to 1 and
the abth entry to 0 if edge (a, b) does not exist in G, as done
in Step 9 and 10.

Theoretically, the time complexity of the algorithm can be
reduced by doing a binary search on r. However, we found
that it is much faster to start with r equal to the coloring
number returned by the greedy coloring algorithm (Step 1).
The stopping criteria in Step 11 uses the `2 norm, ‖·‖, which
is equal to the largest singular value of the matrix.

B. Simulation Results

We tested the performance of algorithm APIndexCoding
on randomly generated graphs. We used the Erdos-Renyi
model to generate random undirected graphs G(n, p) on n
vertices where edges between two vertices are chosen iid with
probability p. We compared the performance of algorithm
APIndexCoding to greedy coloring2 and Least Difference
Greedy (LDG) (see Appendix B for details on LDG). We also

2We used the greedy coloring function in the mathgraph Matlab Library.

Algorithm APIndexCoding: Alternating projections
method for index coding.

Input: Graph G (or Gd)
Output: Completed matrix M∗ with low rank r∗

1 Set rk = greedy coloring number of Ḡ;
2 while ∃M ∈ C′ such that rankM ≤ rk do
3 Randomly pick M0 ∈ C′. Set i = 0 and rk = rk − 1;
4 repeat
5 i = i+ 1;

/* Projection on C′ (resp. C) via
eigenvalue decomposition (resp.
SVD) */

6 Find the eigenvalue decomposition
Mi−1 = UΣV T , with
Σ =diag(σ1, . . . , σn), σ1 ≥ · · · ≥ σn;

7 Set σl = 0 if σl < 0, l = 1, . . . , n;
8 Compute Mi =

∑rk
j=1 σjujv

T
j ;

/* Projection on D */
9 Mi+1 = Mi Set the diagonal entries of Mi+1 to

1’s;
10 Change the (a, b)th position in Mi+1 to 0 if edge

(a, b) does not exist in G;
11 until ‖Mi+1 −Mi‖ ≤ ε;
12 end
13 return M∗ = Mi and r∗ = rk.

p = 0.2

p = 0.4

p = 0.6

p = 0.8

20 40 60 80 100
0

10

20

30

n

A
ve

ra
ge

In
de

x
C

od
e

L
en

gt
h

APIndexCoding
LDG
Greedy Col.

Fig. 6: Average index code length obtained by APIndexCoding, LDG and
Greedy Coloring on random undirected graphs G(n, p).

p = 0.4

p = 0.2

p = 0.6

p = 0.8

0 20 40 60 80 100
0

0.2

0.4

0.6

Index Code Length

H
is

to
gr

am

APIndexCoding
LDG
Greedy Col.

Fig. 7: Histogram of index code length obtained by APIndexCoding, LDG
and Greedy Coloring on random undirected graphs G(n, p) with n = 100.

tested the Alternating Minimization method (AltMin) [38],
[42], [43] described in Appendix C. It does not perform as
good as AP (see Fig. 18) and suffers from a slow convergence
rate.

Fig. 6 shows the average rank obtained by the APIndex-
Coding algorithm for n between 0 and 100 and different
values of p. In all our simulations, each data point is obtained
by running the algorithms on 1000 graph realizations and
ε = 0.001 in the stopping criterion. The APIndexCoding
algorithm always outperforms LDG and Greedy coloring. For
instance, an improvement of 13.6% over greedy coloring is
obtained for n = 30 and p = 0.8. Fig. 7 shows the histogram
of the distribution of the rank by APIndexCoding which
suggests a concentration around the mean of ranks returned by
APIndexCoding3. Fig. 8 shows the savings achieved by APIn-
dexCoding over linear network codes which allow all users
to decode all the messages (multicast)4. Similarly, Figs. 19,
20 and 21 in Appendix F show the percentage savings of
APIndexCoding over uncoded transmissions, greedy coloring
and LDG.

Lower bounds: We tested the APIndexCoding algorithm on

3The concentration of the minimum rank of G(n, p) around its average
can be proven using the vertex exposition martingale method [44]. However,
finding an expression of the average remains an open problem [24].

4Linear network codes can achieve multicast by transmitting n−mini |Hi|.

20 40 60 80 100

40

50

60

70

n

A
PI

nd
ex

C
od

in
g

Sa
vi

ng
s

ov
er

M
ul

tic
as

t
in

%

p=0.2
p=0.4
p=0.6
p=0.8

Fig. 8: Savings in percentage of APIndexCoding over multicast network
codes.

10 20 30 40 50
3

3.5

4

n

A
ve

ra
ge

In
de

x
C

od
e

L
en

gt
h

Greedy Col.
LDG
APIndexCoding

Fig. 9: Average index code length obtained by using Greedy Coloring, LDG
and APIndexCoding for random 3-colorable graphs when p = 0.5.

all non-homomorphic directed graphs on at most 5 vertices and
compared its performance to the optimal rates reported in [45].
APIndexCoding was always able to find the optimal index
coding length except for when it is not an integer (28 graphs
on n = 5 vertices). Moreover, we tested APIndexCoding on
random 3-colorable graphs (3-partite graphs). For these graphs,
we know a priori that the matrix M could be completed to
have rank 3 or less. Fig. 9 shows that APIndexCoding beats
greedy coloring and LDG and gives an average rank very close
to 3.

C. Convergence Rate and Running Time

We ran the simulations on a DELL XPS i7 - 16GB Memory
Desktop using Matlab software. Figs. 10 and 23 depict respec-
tively the average time and average number of iterations taken
by the APIndexCoding algorithm to converge on a random
undirected graph G(n, p). We notice that the time complexity
of the algorithm roughly increases exponentially as n increases
(and p constant) and as p increases (and n constant).

To speed up the converge time, we tested a variant of
the AP method, called Directional Alternating Projections
(DirAP) [46] which is described in Appendix D. DirAP can
lead to considerable savings in time as seen in Fig. 11 (60%
for n = 10 and 85% for n = 140, both for p = 0.2).
We should mention that Greedy coloring and LDG have
complexity quadratic in n and are therefore much faster than
Directional APIndexCoding as seen in Fig. 11. However, the
savings in transmissions induced by DirAP or APIndexCoding

may justify their computation overhead in scenarios where the
computation can be done offline or can be amortized over a
long time such as finding codes for interference networks with
static or slowly changing topologies.

20 40 60 80 100
0

100

200

300

n

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
pe

r
G

ra
ph

(s
ec

.) p=0.2
p=0.4
p=0.6
p=0.8

Fig. 10: Average running time of one Graph by using APIndexCoding on
random undirected graphs.

0 20 40 60 80 100 120 140
0

20

40

60

80

n

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
pe

r
G

ra
ph

(s
ec

.) Greedy Col.
LDG
DirAP
APIndexCoding

Fig. 11: Running time of APIndexCoding and Directional APIndexCoding
(DirAP) on random undirected graphs G(n, p) with p = 0.2.

D. Decoding Error Analysis

The APIndexCoding algorithm returns a completed matrix
M∗ with low rank r∗. However, M∗ is not in C in general,
but is very “close” to a matrix in C (in `2 norm distance) as
dictated by to the stopping criteria of the algorithm. This will
cause a small decoding error at the users side.

Example 2: For the index coding instance of Fig. 1, our
implementation of algorithm APIndexCoding with ε = 0.001
returns following matrix M∗ with rank 2,

M∗ =

1.0000 1.4492 1.8671 1 · 10−5

0.6900 1.0000 1.2883 −1 · 10−5

9 · 10−6 0.7762 1.0000 −0.7519
0.7122 1 · 10−5 −1 · 10−5 1.0000

 . (4)

It can be seen that M∗ is not in C since that the positions that
are supposed to be zero are not exactly 0 but relatively small
numbers.

The next result shows that if the quantization interval of
the messages Xi’s is not very small, the decoding error can

be avoided. Assume Xi ∈ [−Xmax, Xmax], i = 1, . . . , n, and
let X̂i be the decoded message Xi. Lemma 3 upper bounds
the decoding error as a function of ε, where ε is the distance
of the matrix M∗ to C and is used as a stopping criteria in
APIndexCoding.

Lemma 3: Let X = [X1, X2, . . . , Xn]T be the message
vector at the transmitter. Assume that the index code given
by matrix M∗ is used and let X̂ = [X̂1, X̂2, . . . , X̂n]T be the
messages decoded by the users. Then,

‖X− X̂‖ ≤ εXmax

√
n. (5)

Proof: See Appendix E.
To illustrate the result in Lemma 3, we first elaborate on

the encoding and decoding functions of the index code once
M∗ is obtained from the algorithms.

Let r∗ be the rank of M∗ and Let A be a r∗×n submatrix
of M∗ of rank r∗. WLOG, we can assume that A is formed
of the first r∗ rows of M∗. Let m∗i denotes the ith row of M∗,
with i = 1, . . . , n.

The transmitter broadcasts

Y =
[
Y1, Y2, . . . , Yr∗

]T
= AX. (6)

When decoding, user i can obtain X̂i by the following
decoding equation:

X̂i =

{
Yi −m∗iφ

T
i 1 ≤ i ≤ r∗,

m∗iA
†Y −m∗iφ

T
i r∗ < i ≤ n, (7)

where A† = AT (AAT)−1 is the Moore-Penrose pseudoinverse
of A and φi is a dimension n vector that contains all the side
information that user i has, with 0’s on all the other positions.
For instance, in the example of Fig. 1, φ1 =

[
0, X2, X3, 0

]
.

Example 2 (continued): Suppose the transmitter wants to
send X =

[
10, 10,−10, 10

]T
to the users. Let

A =

[
1.0000 1.4492 1.8671 1 · 10−5

9 · 10−6 0.7762 1.0000 −0.7519

]
be a submatrix of M∗ in (4) of rank 2. Then, the transmitter
should broadcast Y = AX =

[
5.8211,−9.7575

]
. The

decoding vector given by (7) is

X̂ =
[
9.999, 9.9998,−9.9997, 10.0002

]T
.

The aggregate decoding error here is ‖X−X̂‖ = 3.6894·10−4.
This should be compared to the bound from Lemma 3 which
gives ‖X− X̂‖ = 2 · 10−2.

In general, it would be interesting to bound the decoding
error per user. However, we found it more tractable to bound
the aggregate decoding error. The bound on the decoding
error in Lemma 3 is loose, but can give guidelines on how
the stopping criteria affects the decoding error and can help
design the quantization of the source if zero-decoding error is
required. Fig. 12 shows the gap between the theoretical bound
of Lemma 3 and the average error obtained in simulations.

10 20 30 40 50 60 70 80
10−5

10−4

10−3

10−2

10−1

n

D
ec

od
in

g
E

rr
or

APIndexCoding Decoding Error
Theoretic Bound in Lemma 3

Fig. 12: Average decoding error ‖X − X̂‖ in APIndexcoding on random
undirected graphs when p = 0.2, ε = 0.001 and Xi ∈ [−10, 10] (Xmax =
10).

p = 0.6

p = 0.2

p = 0.4

10 20 30 40 50 60 70 80
0

20

40

n

A
ve

ra
ge

In
de

x
C

od
e

L
en

gt
h

LDG on Gd

DirSVDAP on Gd

APIndexCoding on G

Fig. 13: Average index code length of LDG, Directional APIndexCoding
via SVD (DirSVDAP) on Gd and APIndexCoding on the undirected subgraph
G, for random directed graphs Gd(n, p).

V. INDEX CODING ON RANDOM DIRECTED GRAPHS

In this section, we consider the more general case in which
the side information graph Gd is a directed random graph.
Each directed edge (i, j) exists with probability p and the
graph edges are chosen independently. In this case, we can
apply all the rank minimization methods described in the
previous section on the graph G, the maximal undirected
subgraph of Gd. In addition, we can apply the AP and
Directional AP methods via SVD directly on the graph Gd

(SVD is needed here because the matrix M is not symmetric).
Fig. 13 depicts the top three among these methods having the
best performance. For relatively small values of n, DirSVDAP
on the directed graph Gd has the best performance. However,
for large n APIndexCoding on G performs better. It is worth
mentioning that this directed random graph model was used
in Fig. 2 and the results on alternating projections there were
also obtained by applying APIndexCoding algorithm on G.

To address the practical setting in which users have a fixed
cache size, we evaluated the performance of these methods on
random directed regular graphs. These results are presented in
Fig. 24 and show that APIndex coding gives the best results
in terms of minimizing the index code length.

VI. NETWORK CODING VIA RANK MINIMIZATION

Network coding can be thought as a generalization of
routing schemes in networks. It allows intermediate nodes to
forward coded packets that are functions of their incoming
packets [47]–[49]. There are now efficient algorithms to con-
struct capacity-achieving network codes for multicast networks
and some related variants [50]–[53]. However, making similar
progress for general networks with non-multicast demands is
believed to be a very hard problem [54]–[57], even for two-
unicast networks [58]. With this backdrop, the rank minimiza-
tion heuristics presented here provide a computational tool
that contribute to making progress towards constructing linear
network codes for non-multicast networks.

Input: Network N(G,E) with
source, destinations and edge
capacities c(.).

Construct the matrix M of the
equivalent index coding problem
using the reduction in [3], [4].

Find r∗, the minimum rank of M
using APIndexCoding algorithm.

Is r∗ =∑
e∈E

C(e) ?

Output: Linear network code
given by the completed matrix
M∗ that defines the local
encoding functions for the edges
and decoding functions for the
destinations.

Output: “Either the network does
not admit a linear network code
or the rank minimization method
could not find an optimal index
coding solution.”

End

Yes

No

Fig. 14: Flowchart summarizing the different steps in our code in [17] for
constructing linear network codes for general networks using rank minimiza-
tion via APIndexCoding algorithm.

The main idea here is to use the efficient reduction in
[3], [4] to transform a given network coding problem NC
to an index coding problem IC and then to apply the rank
minimization methods presented here to IC. Suppose that NC
is defined over a network N(V,E) with vertex set V , edge
set E, and each edge e ∈ E has capacity c(e). The reduction
guarantees the following property: NC has a network code
over a certain alphabet that allows all the destinations to
decode their messages with zero probability of error if and
only if IC has an index code of length r∗ =

∑
e∈E c(e)

over the same alphabet. This property gives the algorithm
illustrated in Fig. 14. The proposed rank minimization methods
are not guaranteed to find the minimum rank (i.e., minimum
scalar linear index code length), but can give a certificate (the
completed matrix) for the low rank it find. For this reason,
the algorithm in Fig. 14 either outputs a linear network code
solution or a “do not know” message. This algorithm was
implemented in Matlab and can be found and tested on the
link in [17].

VII. CONCLUSION

We have investigated the performance of different rank
minimization methods for constructing linear index codes over
the reals. Our simulation results indicate that the Alternating
Projections method and its directional variant, always out-
perform (smaller code length) graph coloring algorithms, and
they converge much faster than the Alternating Minimization
method. Due to the special structure of the underlying matrices
representing the index coding problem (all ones diagonal),
the well-studied nuclear norm minimization method performs
badly here. Our results lead to the following open questions
that we plan to address in our future work:

1) Can the proposed methods here be adapted to construct
linear index codes over finite fields?

2) Under what conditions on the index coding matrices,
can these methods be given theoretical guaranties to
construct optimal linear index codes?

VIII. ACKNOWLDGEMENT

The second author would like to thank Prof. Stephen Boyd
for suggesting the use of the alternating projections method,
Borja Peleato-Inarrea and Carlos Fernandez for discussions
on the alternating minimization method and Alex Dimakis for
insightful discussions on index coding and graph coloring.

APPENDIX A
NUCLEAR NORM MINIMIZATION

Using the nuclear norm minimization method to minimize
the rank of the index coding matrix M will always give the
maximum rank n. This corresponds to the trivial index code
obtained by replacing all the “*” in M by zero. This follows
directly from the results in [10] which we reproduce here for
completion. Let ‖·‖∗ denotes the nuclear norm.

Lemma 4: The nuclear norm can be written as,

‖M‖∗ = max{Tr(MTX);X ∈ Rn×n, ‖X‖ ≤ 1},

where Tr(.) is the trace of a matrix.
In the previous lemma, if we pick X to be the identity matrix
then ‖M‖∗ ≥ Tr(M) = n. Therefore, applying the nuclear
norm minimization to the index coding problem will always
return the diagonal matrix as the optimal solution.

APPENDIX B
LDG ALGORITHM:

Birk and Kol proposed a greedy algorithm named Least
Difference Greedy (LDG) in [1], [2] for finding scalar linear
index codes. LDG can be regarded as a heuristic for finding
clique cover for graphs. The idea is to minimize the rank of
the index coding matrix M by greedily searching for rows
that could be made equal and “merging” them. Two rows are
mergeable if there does not exist any column in which one of
these rows has a “0” and the other a “1”. Therefore, the two
rows can be made the same by giving appropriate values to

“ ∗ ”. For instance, in the example of Fig. 1, we start from
matrix

M0 =

X1 X2 X3 X4

row1

1 ∗ ∗ 0
∗ 1 ∗ 0
0 ∗ 1 ∗
∗ 0 0 1

row2

row3

row4

Row 1 and row 2 are mergeable. After merging them we get

M1 =

X1 X2 X3 X4

row1

1 1 ∗ 0
0 ∗ 1 ∗
∗ 0 0 1

row3

row4

There are no more mergeable rows in M1. The remaining
“*”’s can be set arbitrarily, for example they could be set all
to 0. And, the LDG algorithm will output the 3 transmitted
messages X1 +X2, X3 and X4. For completion, we give next
the details of the LDG algorithm as proposed in [1], [2].

Algorithm LDG: The Least Difference Greedy Clique-
Cover method [1], [2].

Input: Index coding n× n matrix M .
Output: Linear index code over GF (2).

1 Set i = 1;
2 while i < n do
3 Row set S := {rowi+1, · · · , rown} ;
4 while ∃ at least one row in S mergeable with rowi

do
5 Randomly pick a mergeable row rowj from S;
6 Merge rowj into rowi column by column by

using the following rules:
“ ∗ ” + “ ∗ ” = “ ∗ ”, 1 + “ ∗ ” = 1, 0 + “ ∗ ” = 0;

7 Delete rowj from matrix M ;
8 end
9 i = i+ 1 ;

10 end
11 forall the rowi in M do
12 Create a coded message by XORing all messages

that corresponding to the positions of 1 in rowi;
13 end

APPENDIX C
ALTERNATING MINIMIZATION ALGORITHM:

The Alternating Minimization (AltMin) is now a well stud-
ied method for rank minimization [38], [42], [43]. We briefly
describe it here for completion.

If the matrix M ∈ Rn×n has rank r then it can be factored
as M = EFT , where E and F ∈ Rn×r and FT is the
transpose of F . Thus, the problem becomes the following

argmin
M∈C, E,F∈Rn×r

||M − EFT ||F , (8)

where ‖ · ‖F denotes the Frobenius norm. The optimization
problem in (8) is not convex. However, it will become convex

if either E or F is fixed. Algorithm AltMin [38] shows the
iterations between fixing E and F and solves the resulting
convex problem at each time (Steps 5 and 6, respectively).
Each of these steps is a least squares problem that has an
analytical solution [59, p. 4-5].

Algorithm AltMin: Alternating Minimization [38].
Input: Matrix M
Output: Competed matrix M∗ with low rank r∗

1 Set r0 = n ;
2 while ∃M ∈ C such that rankM ≤ rk: do
3 Randomly pick E0 ∈ Rn×r. Set i = 1 and

rk = rk − 1;
4 repeat
5 Fi = argmin

M∈C, F∈Rn×rk

||M − Ei−1F
T ||F ,

6 (Mi, Ei) = argmin
M∈C, E∈Rn×rk

||M − EFT
i ||F ,

7 ei = ||Mi − EiF
T
i ||F ;

8 i = i+ 1;
9 until |ei − ei−1| ≤ ε, or ei ≤ ε;

10 end
11 return M∗ = EiF

T
i and r∗ = rk.

APPENDIX D
DIRECTIONAL ALTERNATING PROJECTIONS:

The Directional Alternating Projections (DirAP) method
[46] can converge faster than AP and can give a low rank
close to that of AP. Fig. 15 depicts geometrically the first
steps of the DirAP method starting with a random point e0
followed by the first four projection points d1, c1, d2, c2. In
the AP method, the fourth projection point would be c2 ∈ C,
whereas in DirAP the fourth projection is onto the tangent
space on C at point c1 which gives point e1 obtained by the
following equation:

e1 = d1 + λ(d2 − d1), with λ =
‖d1 − c1‖2F

Tr(d1 − d2)T (d1 − c1)
.

It can be shown [46] that if C and D are two convex regions
with intersection, then the series of these projections starting
from e0, e1, e2, . . . will converge to a point in C ∩ D.

e0

d1

c1

C d2 D
c2

e1

d∗

Fig. 15: Directional Alternating Projection (DirAP) method. The projection
points starting from a random point e0 are d1, c1, d2, e1. The difference with
AP method is that in AP the fourth projection point is c2 ∈ C instead of e1.

APPENDIX E
PROOF OF LEMMA 3

The decoding function in (7), can be rewritten as

X̂ = Y −M∗ ◦ ΦX, (9)

where ◦ denotes the entry-wise matrix product (Hadamard
product), and Φ is a n × n matrix, with 1’s in the (i, j)th
positions if edge (i, j) in Gd, and 0’s in all the other positions.
For instance, in the example of Fig. 1,

Φ =

0 1 1 0
1 0 1 0
0 1 0 1
1 0 0 0

 .
We can prove Lemma 3 as following:

‖X− X̂‖ = ‖X−M∗A†AX−M∗ ◦ ΦX‖ (10)
= ‖X−M∗X−M∗ ◦ ΦX‖ (11)
= ‖(I +M∗ ◦ Φ−M∗)X‖ (12)
= ‖(MD −M∗)X‖ (13)
≤ ‖MD −M∗‖‖X‖ (14)

= ‖U
[
0 0
0 Σn−r∗

]
V T ‖Xmax

√
n (15)

≤ σr∗+1Xmax

√
n (16)

≤ εXmax

√
n. (17)

The matrix MD = Mi−1 in (13) is the matrix in D whose
projection on C in the last iteration of APIndexCoding gives
the matrix M∗ = Mi returned by the algorithm. Eq (15)
follows from the fact that if MD = UΣV T is the SVD of
MD, with Σ = diag(σ1, σ2, . . . , σn), then

M∗ = U

[
Σr∗ 0
0 0

]
V T .

Eq (14) follows from the definition of `2 norm

‖M‖ = sup
X∈Rn

X 6=0

‖MX‖
‖X‖

.

APPENDIX F
FIGURES

10 15 20 25 30 35 40

10

15

n

A
ve

ra
ge

In
de

x
C

od
e

L
en

gt
h

Greedy Col.
SVDAP
APIndexCoding

Fig. 16: Average index code length obtained using AP via SVD (SVDAP),
APIndexCoding and greedy coloring on undirected random graphs G(n, p)
with p = 0.2.

10 15 20 25 30 35 40
0

200

400

600

800

n

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
pe

r
G

ra
ph

(s
ec

.)

SVDAP
APIndexCoding

Fig. 17: Average running time of AP via eigenvalue decomposition (APIn-
dexCoding) vs. SVD decomposition (SVDAP) on undirected random graphs
G(n, p) with p = 0.2.

10 20 30 40 50 60 70

10

20

30

n

A
ve

ra
ge

In
de

x
C

od
e

L
en

gt
h

Greedy Col.
AltMin
DirAP

Fig. 18: Average index code length obtained by Alternating Minimiza-
tion and Directional APIndexCoding (DirAP) for undirected random graphs
G(n, p) with p = 0.2.

20 40 60 80 100

40

60

80

100

n

A
PI

nd
ex

C
od

in
g

Sa
vi

ng
s

ov
er

un
co

de
d

in
%

p=0.2
p=0.4
p=0.6
p=0.8

Fig. 19: Savings in percentage of APIndexCoding over uncoded transmis-
sions.

20 40 60 80 100
0

5

10

15

nA
PI

nd
ex

C
od

in
g

Sa
vi

ng
s

ov
er

G
re

ed
y

C
ol

.i
n

%

p=0.2
p=0.4
p=0.6
p=0.8

Fig. 20: Savings in percentage of APIndexCoding over greedy coloring.

20 40 60 80 100
0

5

10

15

n

A
PI

nd
ex

C
od

in
g

Sa
vi

ng
s

ov
er

L
D

G
in

%

p=0.2
p=0.4
p=0.6
p=0.8

Fig. 21: Savings in percentage of APIndexCoding over LDG.

20 40 60 80 100
0

1 · 10−3

2 · 10−3

3 · 10−3

n

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
pe

r
It

er
at

io
n p=0.2

p=0.4
p=0.6
p=0.8

Fig. 22: Average running time of one iteration by using APIndexCoding on
random undirected graphs G(n, p).

20 40 60 80 100
0

0.5

1

·105

n

A
ve

ra
ge

N
um

be
r

of
It

er
at

io
ns

p=0.2
p=0.4
p=0.6
p=0.8

Fig. 23: Average iteration number of one Graph by using APIndexCoding
on random undirected graphs G(n, p).

c = 8

c = 16

c = 32

20 40 60 80 100
0

20

40

60

80

n

A
ve

ra
ge

In
de

x
C

od
e

le
ng

th

Greedy Col.
LDG
APIndexCoding

Fig. 24: Average index code length for directed c-regular random graphs
for fixed cache size c fixed.

REFERENCES

[1] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over
broadcast channels,” INFOCOM, vol. 3, pp. 1257–1264, 1998.

[2] Y. Birk and T. Kol., “Coding on demand by an informed source (ISCOD)
for efficient broadcast of different supplemental data to caching clients,”
IEEE Transactions on Information Theory, vol. 52, pp. 2825–2830, June
2006.

[3] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding
problem and its relation to network coding and matroid theory,” IEEE
Transactions on Information Theory, vol. 56, July 2010.

[4] M. Effros, S. El Rouayheb, and M. Langberg, “An Equivalence between
Network Coding and Index Coding,” IEEE International Symposium on
Information Theory, pp. 967–971, 2013.

[5] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index Coding with
Side Information,” In Proceedings of 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 197–206, 2006.

[6] S. El Rouayheb, M. A. R. Chaudhry, and A. Sprintson, “On the minimum
number of transmissions in single-hop wireless coding networks,” in
Information Theory Workshop (ITW), 2007.

[7] R. Peeters, “Orthogonal Representations Over Finite Fields and the
Chromatic Number of Graphs,” Combinatorica, vol. 16, no. 3, pp. 417–
431, 1996.

[8] M. A. R. Chaudhry, Z. Asad, A. Sprintson, and M. Langberg, “On the
complementary index coding problem,” in IEEE International Sympo-
sium on Information Theory, pp. 244–248, IEEE, 2011.

[9] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational mathematics, vol. 9, no. 6,
pp. 717–772, 2009.

[10] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM review, vol. 52, no. 3, pp. 471–501, 2010.

[11] H. Maleki, V. R. Cadambe, and S. A. Jafar, “Index coding: An interfer-
ence alignment perspective,” in International Symposium on Information
Theory, 2012.

[12] S. A. Jafar, “Topological interference management through index cod-
ing,” Information Theory, IEEE Transactions on, vol. 60, no. 1, pp. 529–
568, 2013.

[13] B. K. Dey, S. Katti, S. Jaggi, D. Katabi, M. Médard, and S. Shintre,
““Real” and “Complex” Network Codes: Promises and Challenges,” Net-
work Coding, Theory and Applications. NetCod 2008. Fourth Workshop
on, pp. 1–6, January 2008.

[14] N. Goela and M. Gastpar, “Reduced-dimension linear transform coding
of correlated signals in networks,” IEEE TRANSACTIONS ON SIGNAL
PROCESSING, vol. 60, no. 6, 2012.

[15] A. Mazumdar, “On a duality between recoverable distributed storage
and index coding,” in IEEE International Symposium on Information
Theory (ISIT), pp. 1977–1981, July 2003.

[16] K. Shanmugam and A. G. Dimakis, “Bounding multiple unicasts through
index coding and locally repairable codes,” in IEEE International
Symposium on Information Theory, pp. 296–231, IEEE, 2013.

[17] X. Huang and S. El Rouayheb, “APIndexCoding Matlab Code.” http:
//www.ece.iit.edu/∼salim/software.html, 2015.

[18] E. Lubetzky and U. Stav, “Non-linear Index Coding Outperforming the
Linear Optimum,” In Proceedings of 48th Annual IEEE Symposium on
Foundations of Computer Science, pp. 161–168, 2007.

[19] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the Relation
Between the Index Coding and the Network Coding Problems,” In
proceedings of IEEE International Symposium on Information Theory
(ISIT), 2008.

[20] A. Blasiak, R. Kleinberg, and E. Lubetzky, “Lexicographic products and
the power of non-linear network coding,” In Proceedings of 52nd Annual
IEEE Symposium on Foundations of Computer Science, pp. 609–618,
2011.

[21] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim, “Broad-
casting with side information.,” In Proceedings of 49th Annual IEEE
Symposium on Foundations of Computer Science, pp. 823–832, 2008.

[22] A. Blasiak, R. Kleinberg, and E. Lubetzky, “Index coding via linear
programming,” in arXiv preprint arXiv:1004.1379, 2010.

[23] K. Shanmugam, A. G. Dimakis, and M. Langberg, “Local graph coloring
and index coding,” in International Symposium on Information Theory,
2013.

[24] I. Haviv and M. Langberg, “On linear index coding for random graphs,”
in IEEE International Symposium on Information Theory, pp. 2231–
2235, IEEE, 2012.

[25] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasoglu, and L. Wang, “On
the capacity region for index coding,” in IEEE International Symposium
on Information Theory, pp. 962–966, IEEE, 2013.

[26] F. Arbabjolfaei and Y.-H. a. Kim, “Local time sharing for index coding,”
in 2014 IEEE International Symposium on Information Theory, pp. 286–
290, IEEE, 2014.

[27] S. Unal and A. B. Wagner, “General index coding with side information:
Three decoder case,” in IEEE International Symposium on Information
Theory, pp. 1137–1141, IEEE, 2013.

[28] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” in
International Symposium on Information Theory, 2013.

[29] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” arXiv preprint arXiv:1301.5848,
2013.

[30] H. Esfahanizadeh, F. Lahouti, and B. Hassibi, “A matrix completion
approach to linear index coding problem,” Information Theory Workshop
(ITW), IEEE, pp. 531–535, 2014.

[31] M. Schwartz and M. Médard, “Quasi-linear network coding,” Interna-
tional Symposium on Network Coding, 2014.

[32] S. A. Jafar, “Elements of cellular blind interference alignment—aligned
frequency reuse, wireless index coding and interference diversity,” arXiv
preprint arXiv:1203.2384, 2012.

[33] R. M. Karp, “Reducibility among combinatorial problems,” Proc. Symp.
Complexity of Computer Computations, pp. 85–103, 1972.

[34] M. R. Garey and D. S. Johnson, Computers and intractability. Macmil-
lan Higher Education, 1978.

[35] C. E. Shannon, “The zero error capacity of a noisy channel,” Information
Theory, IRE Transactions on, vol. 2, no. 3, pp. 8–19, 1956.

[36] H. Sun and S. A. Jafar, “Index coding capacity: How far can one go
with only shannon inequalities?,” arXiv preprint arXiv:1303.7000, 2013.

[37] M. Fazel, H. Hindi, and S. P. Boyd, “A rank minimization heuristic with
application to minimum order system approximation,” in Proceedings of
the 2001 American Control Conference, vol. 6, pp. 4734–4739, IEEE,
2001.

[38] M. Fazel, H. Hindi, and S. Boyd, “Rank minimization and applications
in system theory,” in American Control Conference, vol. 4, pp. 3273–
3278, IEEE, 2004.

[39] S. Boyd and J. Dattorro, “Alternating projections.” EE392o, Stanford
University, 2003.

[40] L. M. Bregman, “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming,” USSR Computational Math. and Math. Physics, vol. 7,
no. 3, pp. 200–217, 1967.

[41] G. Y. C. Eckart, “The approximation of one matrix by another of lower
rank,” Psychometrika, vol. 1, pp. 211–218, September 1936.

[42] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pp. 665–674, ACM, 2013.

[43] M. Hardt, “Understanding alternating minimization for matrix comple-
tion,” Foundations of Computer Science (FOCS), IEEE 55th Annual
Symposium on, pp. 651–660, 2014.

[44] N. Alon and J. H. Spencer, The Probabilistic Method. Wiley-Interscience
publication, 1992.

[45] http://circuit.ucsd.edu/∼yhk/indexcoding.html.
[46] L. E. Ghaoui and S. lulian Niculescu, Advances in Linear Matrix

Inequality Methods in Control. the Society for Industrial and Applied
Mathematics., 1987.

[47] C. Fragouli and E. Soljanin, “Monograph on network coding: Funda-
mentals and applications,” Foundations and Trends in Networking, vol. 2,
no. 1, 2007.

[48] T. Ho and D. Lun, Network coding: an introduction. Cambridge
University Press, 2008.

[49] R. W. Yeung, “Information Theory and Network Coding,” Springer,
2008.

[50] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain,
and L. Tolhuizen, “Polynomial time algorithms for multicast network
code construction,” IEEE Transactions on Information Theory, vol. 51,
pp. 1973–1982, June 2005.

[51] R. Koetter and M. Médard, “An Algebraic Approach to Network Cod-
ing,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782–
795, 2003.

http://www.ece.iit.edu/~salim/software.html
http://www.ece.iit.edu/~salim/software.html
http://circuit.ucsd.edu/~yhk/indexcoding.html

[52] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[53] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks,” Information Theory, IEEE Transactions on, vol. 52, no. 6,
pp. 2608–2623, 2006.

[54] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of Linear Coding
in Network Information Flow,” IEEE Transactions on Information
Theory, vol. 51, no. 8, pp. 2745–2759, 2005.

[55] R. Dougherty, C. Freiling, and K. Zeger, “Networks, Matroids, and Non-
Shannon Information Inequalities,” IEEE Transactions on Information
Theory, vol. 53, no. 6, pp. 1949–1969, 2007.

[56] A. R. Lehman and E. Lehman, “Complexity classification of network
information flow problems,” in Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 142–150, Society for
Industrial and Applied Mathematics, 2004.

[57] M. Médard, M. Effros, D. Karger, and T. Ho, “On coding for non-
multicast networks,” in Proceedings of the Annual Allerton Conference
on Communication Control and Computing, vol. 41, pp. 21–29, The
University; 1998, 2003.

[58] S. Kamath, D. N. C. Tse, and C.-C. Wang, “Two-unicast is hard,” in
IEEE International Symposium on Information Theory, pp. 1–5, 2014.

[59] S. Boyd, Convex Optimization. Cambridge University Press, 2004.

	I Introduction
	II Model
	III Connections to Other Problems
	III-A Index Coding & Graph Coloring
	III-B Index Coding & Rank Minimization
	III-C Index Coding & Topological Interference Management

	IV Index Coding on Random Undirected Graphs
	IV-A Alternating Projection Method
	IV-B Simulation Results
	IV-C Convergence Rate and Running Time
	IV-D Decoding Error Analysis

	V Index Coding on Random Directed Graphs
	VI Network coding via Rank Minimization
	VII Conclusion
	VIII Acknowldgement
	Appendix A: Nuclear norm minimization
	Appendix B: LDG Algorithm:
	Appendix C: Alternating Minimization Algorithm:
	Appendix D: Directional Alternating Projections:
	Appendix E: Proof of Lemma ??
	Appendix F: Figures
	References

