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Abstract—We consider distributed storage (DS) for a wireless
network where mobile devices arrive and depart according to
a Poisson random process. Content is stored in a number
of mobile devices, using an erasure correcting code. When
requesting a piece of content, a user retrieves the content from
the mobile devices using device-to-device communication or, if
not possible, from the base station (BS), at the expense of a
higher communication cost. We consider the repair problem when
a device that stores data leaves the network. In particular, we
introduce a repair scheduling where repair is performed (from
storage devices or the BS) periodically. We derive analytical
expressions for the overall communication cost of repair and
download as a function of the repair interval. We illustrate
the analysis by giving results for maximum distance separable
codes and regenerating codes. Our results indicate that DS
can reduce the overall communication cost with respect to the
case where content is only downloaded from the BS, provided
that repairs are performed frequently enough. The required
repair frequency depends on the code used for storage and
the network parameters. In particular, minimum bandwidth
regenerating codes require frequent repairs, while maximum
distance separable codes give better performance if repair is
performed less frequently. We also show that instantaneous repair
is not always optimal.

I. INTRODUCTION

It is predicted that global mobile data traffic will reach
24.3 exabytes per month by 2019, nearly a tenfold increase
compared to the traffic in 2014 [1]. This dramatic increase
in mobile data traffic threatens to completely congest the
already burdened wireless networks. One popular approach
to reduce peak traffic is to store popular data closer to the
end users, a technique also known as caching. Recently, a
novel architecture was proposed to efficiently handle highly
predictable bulky traffic, such as video traffic [2]. The idea
is to deploy a number of access points (called helpers) with
large storage capacity, but low-rate wireless backhaul, and
store data across them. Users can then download content from
the helpers, resulting in a performance gain.

In [3] it was suggested to store content directly in the
mobile devices, taking advantage of the high storage capacity
of modern smart phones and tablets. Hence, no additional
infrastructure is required. Traffic to the BS is alleviated by
maximizing the number of times a requested file can be re-
trieved from the mobile devices storing content, using device-
to-device (D2D) communication. The problem of repairing the
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lost data when a device leaves the network was considered
in [4], where data is stored in the mobile devices using
erasure correcting coding. In particular, the communication
cost incurred by data download and repair is analyzed in [4],
assuming an infinite storage capacity in the mobile devices
and instantaneous repair.

In this paper, we consider distributed storage (DS) in a wire-
less network scenario similar to the one in [4]. We consider a
cellular system where mobile devices roam in and out of a cell
according to a Poisson random process and request content
at random times. The cell is served by a base station (BS),
which always has access to the content. Content is also stored
across a limited number of mobile devices using an erasure
correcting code. When a user requests a piece of content, it
attempts to download it from the mobile devices using D2D
communication. If not possible, the content is downloaded
from the BS, at the expense of a higher communication cost.
Our main focus is on the repair problem when a device that
stores data leaves the network. In particular, we introduce a
repair scheduling where lost content is repaired (from storage
devices sojourning in the cell or from the BS) at periodic times.
We derive analytical expressions for the total communication
cost of repair and download as a function of the repair interval.
Furthermore, we analyze several erasure correcting codes,
namely maximum distance separable (MDS), and regenerating
codes. We show that DS can reduce the overall communication
cost as compared to the classical scenario where content
is only downloaded from the BS, provided that repairs are
performed frequently enough. The required frequency depends
on the code family and on the network parameters. Somewhat
surprisingly, instantaneous repair is not always the optimal.

II. SYSTEM MODEL

We consider a single cell in a cellular network, served by
a BS, where mobile devices (referred to as nodes) arrive and
depart according to a Poisson process. The average number of
nodes in the network is N . Nodes wish to download content
from the network. For simplicity, we assume that there is a
single object (file), of size M bits, stored at the BS. We further
assume that nodes can store data and communicate between
them using D2D communication. The considered scenario is
depicted in Fig. 1.

Arrival-departure model. Nodes arrive according to a Pois-
son process with exponential independent, identically dis-
tributed (i.i.d.) random inter-arrival times Ta with probability
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Figure 1. A wireless network with data storage in the mobile devices (nodes).
A new node arrives to the network at rate Nλ. The departure rate per node is
µ. Blue nodes store exactly α bits each. The green node requests the file and
downloads it from the storage nodes (solid arrows), or from the BS (dashed
arrow). The repair of a node (in red) is carried out by transmitting γD2D bits
from storage nodes (solid arrows) or γBS bits from the BS (dashed arrow).

density function (pdf)

fTa(t) = Nλe−Nλt, t ≥ 0, (1)

where Nλ is the expected arrival rate of a node and t ∈ R is
time, measured in time units (t.u.).

The nodes stay in the cell for an i.i.d. exponential random
lifetime Tl with pdf

fTl(t) = µe−µt, t ≥ 0, (2)

where µ is the expected departure rate of a node. The number
of nodes in the cell can be described by an M/M/∞ queuing
model. We assume that µ = λ, i.e., the average number of
nodes in the cell stays constant (equal to N ).

Data storage. The file is partitioned into k packets and
encoded using an (n, k) erasure correcting code of rate R =
k/n. The encoded data is stored in n nodes, referred to as
storage nodes. For simplicity, we assume n � N , hence the
probability that the number of nodes in the cell is smaller than
n is negligibly small. Therefore, the file can always be stored
in the network. In particular, each storage node stores exactly
α bits, i.e., we consider a symmetric allocation [5]. Hence,

α =
M

k
. (3)

Like [5], we also introduce an overall storage budget constraint
of ΓM bits, Γ ≥ 1, across the nodes in the cell, i.e., nα ≤
ΓM . Note that to satisfy this constraint, R ≥ 1/Γ.

Data delivery. Nodes request the file at random times with
i.i.d. random inter-request time Tr with pdf

fTr(t) = ωe−ωt, t ≥ 0, (4)

where ω is the expected request rate per node. Whenever pos-
sible, the file is downloaded from the storage nodes using D2D
communication, referred to as D2D download. In particular,
we assume that data can be downloaded from any subset of
h ∈ {k, . . . , n} storage nodes. In other words, D2D download
is possible if h or more storage nodes remain in the cell. In

this case, the amount of downloaded data is hα ≥ M bits,
where the inequality follows because h ≥ k. The parameter h
depends on the properties of the erasure correcting code used
for storage, and will be discussed in Section IV. In the case
where there are less than h storage nodes in the cell, the file
is downloaded from the BS, referred to as BS download. In
this case, M bits are downloaded. To simplify the analysis
in Section III, we assume that the download bandwidth is the
same irrespective of whether the request comes from a storage
node itself or not. This is a reasonable approximation, since
n� N .

We assume that transmission from the BS and from a node
(in D2D communication) have different costs. We denote by
ρBS and ρD2D the cost (in cost units (c.u.) per bit, [c.u./bit]) of
transmitting one bit from the BS and from a node, respectively,
and by ρ = ρBS/ρD2D its ratio. We further assume ρ ≥ 1,
hence transmission from the BS is at least as costly as the
transmission in D2D communication.

A. Repair Process

When a storage node leaves the network, its stored data is
lost (see blue node with orange stripes in Fig. 1). Therefore,
another node needs to be populated with data to maintain the
initial state of reliability of the DS network, i.e., n storage
nodes. The restore (repair) of the lost data onto another node,
chosen uniformly at random from all nodes in the cell that
do not store any content, will be referred to as the repair
process. In particular, we introduce a scheduled repair scheme
where the repair process is launched periodically. We denote
the interval between two repairs by ∆ (in t.u.), ∆ ≥ 0. Note
that ∆ = 0 corresponds to the case of instantaneous repair,
considered in [4].

Similarly to the download, repair can be accomplished from
the storage nodes (D2D repair) or from the BS (BS repair),
with cost per bit ρD2D and ρBS, respectively. The amount of
data (in bits) that needs to be retrieved from the network
to repair a single failed node is referred to as the repair
bandwidth, γ. In particular, we assume that D2D repair can
be performed from any subset of r ∈ {k, . . . , n − 1} storage
nodes by retrieving β ≤ α bits from each node. In other words,
D2D repair is possible if there are at least r storage nodes in
the cell at the moment of repair. r is usually referred to as
the repair access in the literature. In this case γD2D = rβ,
where the subindex indicates that repair is performed from
the storage nodes. If there are less than r storage nodes in
the network at the moment of repair, then the repair is carried
out by the BS. In this case γBS = α. We assume that repair
always succeeds. Furthermore, for both repair and download
we assume error-free transmission.

III. REPAIR AND DELIVERY COST

In this section, we derive analytical expressions for the
repair cost, E (Cr), download cost, E (Cd), and total cost
E(C) = E (Cr) + E (Cd), as a function of the repair interval,
∆. The cost is defined in cost units per bit and time unit
[c.u./(bit×t.u.)]



A. Average Repair Cost

Denote by nD2D
r and nBS

r the average number of nodes
repaired from the storage nodes and from the BS, respec-
tively, in one repair interval. Also, let {bi(n, p)}ni=0 be the
probability mass function (pmf) of the binomial distribution
with parameters n and p.

Lemma 1.

nD2D
r =

n∑
i=r

(n− i)bi(n, p), (5)

nBS
r =

r−1∑
i=0

(n− i)bi(n, p), (6)

where p = e−µ∆.

Proof: As the inter-departure times are exponentially
distributed, the probability that a storage node has not left
the network during a time ∆ and is accessible for repair is
p = e−µ∆. Hence, the probability that i storage nodes are
accessible is bi(n, p). If only i storage nodes remain in the
network, then n− i repairs need to be performed. D2D repair
is performed if i ≥ r; BS repair is performed otherwise.
Therefore, (5) and (6) hold.

The average repair cost, E (Cr), is given in the following
theorem.

Theorem 1. Consider the DS network in Section II with
parameters M , ∆, ρBS, γBS, ρD2D, γD2D, µ, n and r. The
average repair cost is

E (Cr) =
1

M∆

(
ρBSγBSn

BS
r + ρD2DγD2Dn

D2D
r

)
(7)

=
1

M∆

(
ρBSγBS

r−1∑
i=0

(n− i)bi(n, p)

+ρD2DγD2D

n∑
i=r

(n− i)bi(n, p)
)
, (8)

where p = e−µ∆.

Proof: From the system model, it follows that the cost
of repairing a single storage node from the BS is ρBSγBS c.u.
Similarly, the cost of D2D repair of a single node is ρD2DγD2D
c.u.. Normalizing by the file size (M bits) and the duration of
the repair interval ∆, we obtain (7) in [c.u./bit×t.u.]. Finally,
using Lemma 1, we obtain (8).

B. Average Download Cost

The average download cost is given in the following theo-
rem.

Theorem 2. Consider the DS network in Section II with
parameters N , ω, M , ρBS, ρD2D, n, h, α, µ and ∆. Let

µi = iµ, for i ∈ {h, . . . , n}, and pi = e−µi∆. Then

E (Cd) =
Nω

M
(ρBSM Pr{BS down.}+ ρD2DhαPr{D2D down.})

= Nω

(
ρBS +

(
ρD2D

hα

M
− ρBS

)
1

∆

n∑
i=h

1− pi
µi

n∏
j=h
j 6=i

µj

(µj − µi)

)
,

(9)

where Pr{BS download}+ Pr{D2D download} = 1.

Proof: See appendix.

C. Average Total Cost

Combining Theorems 1 and 2, one obtains the expression
for E(C) = E (Cr) + E (Cd). Note that in general E(C) is
not monotone with ∆. We can derive the following result for
∆→ 0 and ∆→∞.

Corollary 1. lim∆→0 E(C) = ρD2D
M (nµγD2D +Nωhα). More-

over, for µ > 0, lim∆→∞ E(C) = NωρBS.

For instantaneous repair (∆ = 0), both repair and download
are always performed from the storage nodes. Thus, the two
terms in E(C) for ∆ → 0 in Corollary 1 correspond to the
repair and download costs in the D2D regime. For ∆ → ∞,
data is never repaired (hence, E (Cr) = 0). For µ > 0, the
number of storage nodes in the cell will become smaller than
h at some point, and D2D download is not possible. Therefore,
the average download cost is the average BS download cost.

IV. MDS AND REGENERATING CODES

From Section III it can be seen that the total cost, E(C),
depends on the DS system parameters n, h, r, γD2D = rβ,
and γBS = α (among others). This section describes how, in
turn, these parameters depend on the (n, k) erasure correcting
codes used for storage. We consider as examples MDS codes
[6] and regenerating codes [7].

A. Maximum Distance Separable Codes

Assume the use of an (n, k) MDS code for DS. Then, due to
the MDS property, D2D repair and D2D download require to
contact r = h = k storage nodes. Moreover, βMDS = αMDS =
M
k , which means that γD2D = M . The fact that an amount

of information equal to the size of the entire file has to be
retrieved to repair a single storage node is a known drawback
of MDS codes [7].

The simplest MDS code is the n-replication scheme. In this
case, each storage node stores the entire file, i.e., αrep = M .
For the replication scheme, r = h = 1 and βrep = M .

B. Regenerating Codes

A lower repair bandwidth γD2D (as compared to MDS codes)
can be obtained by using regenerating codes [7], but at the
expense of increasing r [7]. Two main classes of regenerating
codes are covered here, minimum storage regenerating (MSR)
codes and minimum bandwidth regenerating (MBR) codes.
For given n and k, MSR codes yield the best storage efficiency,
i.e., αMSR is minimum, while MBR codes achieve minimum
D2D repair bandwidth, i.e., γD2D is minimum.
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Figure 2. Normalized total cost E(C)/Nωρ versus the normalized repair
interval µ∆ for MDS, MSR, and MBR codes.
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Figure 3. µ∆max as a function of the cost ratio ρ.

For an (n, k) MSR code in a DS system, h = k. Moreover,
r ∈ {k, . . . , n − 1} storage nodes are contacted during the
D2D repair process. Hence, the download cost E (Cd) for an
(n, k) MSR code is equal to the one of an (n, k) MDS code.
However, βMSR = M

h
1

r−h+1 ≤ βMDS [7]. γD2D = rβMSR is
minimized for r = n − 1. For r = k, the total cost E(C) of
the MSR code is equal to that of the MDS code.

As described in [7], an (n, k) MBR code in a DS system
has r ∈ {h, . . . , n − 1} and γD2D = rβMBR = M

h
2r

2r−h+1 .
Furthermore, γD2D = αMBR = M

k [7], where the last equality
comes from (3). The relationship between k, h and r is
therefore k = h 2r−h+1

2r .

V. NUMERICAL RESULTS

In this section, we evaluate the total cost E(C) for MDS and
regenerating codes. For the results, we consider a network with
N = 100 average nodes, request rate ω = 0.5, and a cost ratio
ρ = 200. Also, the storage budget is set to Γ = 5. Without
loss of generality we set ρD2D = 1 c.u./bit, i.e., ρ = ρBS. To
specify a code, we use the alternative notation [n, h, r].

Fig. 2 shows the value of the normalized cost E(C)/Nωρ
versus the normalized repair interval µ∆ for µ = 50, for the
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Figure 4. Normalized total cost E(C)/Nωρ for the same codes as in Fig. 2,
but for much smaller normalized repair intervals µ∆.

[10, 2, 2] MDS code, the [10, 2, r] MSR code with r ∈ {5, 9},
i.e., moderate and high repair access respectively, the [10, 3, r]
MBR code with r ∈ {5, 9} and the 5-replication scheme. The
code rate for all codes is R = 1/5, except for the [10, 3, 5]
MBR code that has R = 6/25 = 0.24 and the [10, 3, 9] MBR
code that has R = 4/15 ≈ 0.27. In the figure, µ∆ = 1 means
that the repair interval is equal to one average node lifetime.

The code parameters are chosen to highlight particularly
interesting behaviors of the different codes. Note that since α,
β (and hence γD2D) and γBS are proportional to the file size
M , as specified in Section IV, the repair and download cost
in (7) and (9), respectively, are independent of the file size
M . From Corollary 1, E(C)/Nωρ → 1 (the cost of always
downloading content from the BS) when ∆→∞. We observe
from Fig. 2 that this is indeed the case. It is interesting to point
out that the normalized total cost exceeds 1 for values of the
repair interval larger than a threshold ∆max. We define the
maximum repair interval as

∆max , sup
{

∆ : E(C) < lim
∆→∞

E(C)
}
. (10)

For ∆ > ∆max, retrieving the file from the BS is always less
costly, therefore storing data in the nodes is useless. Clearly,
∆max is a function of the cost ratio ρ. Fig. 3 shows µ∆max
as a function of ρ ∈ [1, 200], for all codes in Fig. 2. We
observe that if ρ < 5, approximately, it is never beneficial
to use the devices for storage, i.e., the file should always be
downloaded from the BS. As ρ increases, storing data in the
mobile devices is beneficial, if repair is performed with ∆ ≤
∆max. The regenerating codes with high repair access require
very frequent repairs. Although not included here due to space
constraints, the same is true for other MSR and MBR codes
with high repair access. The MDS codes and the regenerating
codes with moderate repair access require less frequent repairs;
for large ρ, the repair interval must be at most around 1.5 and
0.5 average node lifetimes respectively.

For the same parameters and codes used in Fig. 2, Fig. 4
shows the normalized total cost for shorter repair intervals. We
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observe that instantaneous repair is optimal for the MBR and
MSR codes with r = 9 (Fig. 4(a)). On the other hand, E(C)
for the MDS codes and the regenerating codes with moderate
repair access is minimized for ∆ > 0 (Fig. 4(b)).

VI. CONCLUSIONS

We considered distributed storage for a wireless network
where data is stored in a distributed manner across mobile
devices. We introduced a repair scheduling where the repair of
the data lost due to device departures is performed periodically.
We derived analytical expressions for the total communication
cost, due to repair and download, as a function of the repair
interval. For a particular network, we showed that there exists a
maximum value of the repair interval after which retrieving the
file from the BS is always less costly. Therefore, DS is useful if
the repair can be performed frequently enough. Instantaneous
repair is not always the best solution. The optimal repair
interval that minimizes the total communication cost depends
on the code used for storage. For a given repair interval, one
should find the code that minimizes the total communication
cost. A more thorough investigation is left for future research.

APPENDIX A
OUTLINE OF THE PROOF OF THEOREM 2

A file request entails a cost ρD2Dhα with probability
Pr{D2D download}, and a cost ρBSM with probability
Pr{BS download}. The overall request rate per t.u. is Nω.
Normalizing by the file size M gives the first equality in (9).
In the following, we prove the last equality of the theorem.

Within a repair interval, the number of storage nodes n(t)
in the cell is described by a Poisson death process [8]. Denote
by Ti the time interval for which n(t) = i, i ∈ {h, . . . , n}
(see Fig. 5 for illustration). Ti is exponentially distributed with
rate µi = iµ. Denote by Sh the time instant within the repair
interval at which n(t) changes from h to h− 1. Then,

Sh =

n∑
i=h

Ti. (11)

The pdf of Sh is given by [9]

fSh
(t) =

n∑
i=h

µnµn−1 . . . µh∏n
j=h
j 6=i

(µj − µi)
e−µit, t ≥ 0. (12)

We are interested in the distribution of file requests within a
repair interval ∆. Let Wl be the time instant of the lth request.
Wl is computed as the sum of l inter-request times with pdf
given by (4). Thus, Wl is an Erlang distributed random variable
with pdf [8]

fWl
(t) =

ωltl−1e−ωt

(l − 1)!
, t ≥ 0. (13)

Define W̃l ,Wl mod ∆. The following result holds.

Lemma 2. The distribution of W̃l for t ∈ [0,∆) is

fW̃l
(t) =

∞∑
i=0

ωl(t+ i∆)l−1e−ω(t+i∆)

(l − 1)!
.

Lemma 3. liml→∞ fW̃l
(t) = 1

∆ .

The proofs are omitted due to lack of space. It can be
verified numerically that fW̃l

(t) converges to the uniform
distribution already for small values of l.

D2D download is possible if at least h storage nodes are
available in the network. Thus, given the sequence of random
variables {W̃1, W̃2, . . .},

Pr{D2D download} = lim
L→∞

1

L

L∑
l=1

Pr(W̃l < Sh)

≈ Pr(W̃∞ < Sh),

where the approximation follows because for large enough l,
fW̃l

(t) ≈ 1
∆ .

Now, using (12), after some calculations we obtain

Pr{D2D download} =
1

∆

n∑
i=h

1− pi
µi

n∏
j=h
j 6=i

µj
(µj − µi)

. (14)

Finally, using (14) and Pr{BS download} = 1 −
Pr{D2D download} we obtain (9). This completes the proof.
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