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Abstract—A closed-form expression for a lower bound on the behaviour, where the maximum is reached at a finite threshold
per soliton capacity of the nonlinear optical fibre channel h the  power. To the best of our knowledge, the first nondecaying
presence of (optical) amplifier spontaneous emission (ASHEpise (lower) bound on the capacity of the nonlinear optical fibre

is derived. This bound is based on a non-Gaussian conditioha h I (with di . ted 10 [17
probability density function for the soliton amplitude jit ter Cchannel (with zero average dispersion) was presented o [

induced by the ASE noise and is proven to grow logarithmicayy ~ Other nondecaying bounds include, e.g., those given rgcent
as the signal-to-noise ratio increases. in [18] and [19], [20].

A multitude of different nonlinearity mitigation technigs
o i _have been proposed over recent years to suppress nortjreari
It is widely accepted that in order to meet the ever-growingquced distortions. This includes receiver-based digignal
demand for data rates in fibre-optic telecommunication SYSrocessing[[21], digital back-propagatidn [22], opticiiape
tems, the spectral effi_ciency of the optical fibre tra_nsm'rssi conjugation [[23], twin-waves phase conjugation][24], etc.
system needs to be increased [1]. The key physical effegigwever, there are still many limitations and further chal-
distinguishing a fibre optical system from a free space trangnges in applying these methods. A promising alternative f
mission are: dispersion, nonlinearity and optical nolse- [2nonjinearity compensation is the nonlinear Fourier tramsf
[5]. The implementation of the *fifth generation” of optical(NLFT) developed in the 70'S[25]/[26]. The applications
transceivers and networks operating with coherent def@ctiof the NLFT in optical communication originates from the
advanced multilevel modulation formats, and digital slgn@joneering work of Hasegawa and Nyu [27], an approach
processing techniques, has led to the possibility of chanhgat has been extended in a number of recent wdrks [28]
rates exceeding 100 Gbit/s|[6]. The key to this breakthroug#z) Notably, an experimental demonstration of a NLFTeghs
is the mitigation of linear transmission impairments, sash {ransmission was recently presented by Billow/ini [38].
chromatic and polarization mode dispersion. S The use of NLFT for nonlinearity compensation in optical
The performance of current coherent systems is limited Byre Jinks is possible because the master model governing
noise and nonlinearity. In contrast to linear channels,&v@x,  signa| propagation in a single mode optical fibre (in the ab-
spectral efficiencies for the optical fibre channel usuatlyilgit  gopce of noise and loss) is the nonlinear Schrodinger iequat
a peak and de_cay at high inpgt powers; this _is often rgferrquSE) [3]-[5] that belongs to the class aftegrable (i.e.,
to as the “nonlinear Shannon limit”[7].[8]. This behavidsr completely solvable) evolutionary equatiofs|[25]. Theutioh
caused by the Kerr nonlinearity and is believed to ultimatefnethod can be considered as the generalisation of the linear
lead to a “capacity crunch’ [1], i.e., to the inability of therqyrier transform (FT) operation onto the nonlinear (inte-
optical network infrastructure to cope with the increasingraple) system, hence the name NLFT. Similarly to the FT,
capacity demand. _ _ _ the NLFT decomposes a waveform in the NLSE space-time
The capacity analysis of the nonlinear channel relies @@main into the nonlinear normal modes inside the nonlinear
well-established methods of information theary [9L./[¥8dw-  spectral domain [29]/[35]. The key underlying feature o th
ever, most of the analytical results obtained to date cance{_ T transmission is that these nonlinear modes (nonlinear
linear channel models, and hence, are not directly appédab gjgnal spectrum) propagate without cross-talk, effebtiie a
nonlinear optical channels. Despite numerous efforts tmee |inear manner. Thus, the nonlinear spectrum can be used for

the influence of Kerr nonlinearity on the channel capaCily [7encoding and efficient transmission of information over the
[8], [11]-[16], the capacity of the nonlinear optical ch@hn ,qniinear fibre.

still remains as an open resgarch proble_m. Mos_t of the cgpaci Tne original work by Hasegawa and Nyiu [27] introduced
bounds presented in the literature typically display a peal,e concept of “eigenvalue communications”, where the in-
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signal decomposition [3] (see also [29]). In the absenceoti b @ Dlsraetime chamel

loss and noise, the evolution of nonlinear modes is inhirent E,Y.‘,’?YETE’,[F.T?_ET]?T}S'_E
free from any nonlinear impairments, including a nonlinear Amplitude- | : orward Vi
cross-talk. The loss in optical links is usually compendate > “;Azg"';gf MEREYTY I NLFT >
by using lumped or distributed amplification; in our case : P AsEnose ) :
we assume the ideal distributed Raman amplification scheme Transmiter - Opteal Fbore Recelver
resulting in the lossless NLSEI[2], [39], [40]. However, the
signal will still be distorted by amplifier-induced sponéanus o Discrete-time channel
emission (ASE) as well as signal-noise beating. / Ny~ N(0,0%)

In this paper, we study the channel capacity (in bits per ‘
soliton symboﬁ for a transmission system based on optical Ny~ N (0,02)
solitons (sufficiently separated in time domain) launch&d i &
a noisy NLSE channel. The information is assumed to be ! Y
encoded in the soliton’s amplitude only, which can be exétc » 3 Ny ~ N (0, o%) p "oy >
from the imaginary part of the discrete eigenvalue emerging @
from the NLFT signal decomposition. We consider a discrete- No~ N (0,0%)
time continuous-input continuous-output channel modedehl -
on the asymptotically exact non-Gaussian marginal sigist @

of the soliton amplitude in the presence of weak ASE noise ) . )
. . . . Fig. 1. System model: (a) Transmitter, continuous-chamnetiel governed

presented in [41]+[43]. We emphasise that the capacitynesti 1,y ). and receiver. (b) Equivalent discrete-time chanmetiel.

tions for such fundamentally nonlinear channels are qeite f

and far between. Notable exceptions are the works by Yousafieret is the time normalised bgf;, is the distance along

and Kschischang [31] and Meron et &l.[33]. While in][31the fibre normalised by., £ |5 i (not to be confused with

the channel statistics were assumed a priori to be Gaussih@ dispersion length), and, < 0 is the group velocity

[31, eq. (27)], in [33] a tight lower bound on the channadispersion coefficient. We also defindt) = ¢(0,¢) and
capacity as a function of the signal to noise ratio (SNR) wa$t) = ¢(L,t) as the input and output waveforms of the
not provided. physical channel after transmission distaricerespectively,

The discrete-time channel model governing transmissigrmalised by the nonlinear power scée. ) ~*, wherevy is
systems based on optical solitons is a noncentral chi-sequathe nonlinearity coefficient. The relationship betweét) and
distribution with four degrees of freedom [42], [43]. Basmu 1 (¢) is schematically shown in the inner part of Fig. 1(a).
this model we obtain an asymptotically growing lower bound The noise termn(t,z) on the right-hand side of(1) is
for the channel capacity vs. SNR. This bound is similar to thessumed to be a zero-meaR [((z,t)] = 0) circularly-
one in [17], where a noisy nonlinear optical fibre channehwitsymmetric additive white Gaussian noise (AWGN) process
zero fibre dispersion was considered. The results in thismpapvith autocorrelation functiori ]2, eq. (53)]
show that the reachable capacity limits for existing optica w1 , ,
fibre channels could have be%n p)r/eviously underest?maitbed. E[n(z, t)n" (<, )] = 2D 6(2 — 27) 8(t — t'), 2)
where* denotes complex conjugatidi/-] is the mathematical
expectation operator, and{-) is the Dirac’s delta function.
Here the noise intensit is written in dimensionless units|[4,
A. Waveform channel eq. (5.29)] asD = yL?2 02 /2T,. For ideal distributed Raman

We consider propagation of a slowly varying envelopamplification, the power spectral density of the ASE naige
signal formed by a sequence of solitons transmitted evefydefined as[2, eq. (56)}5 = aKr - hvgp, Wherea is
T, [s] over a nonlinear optical fibre. Our model combinethe fibre attenuation coefficienty,,; is the average photon
the effects of chromatic dispersion (we consider the case &fergy, andkr ~ 1 is the coefficient that characterizes the
anomalous dispersion), instantaneous Kerr nonlineasitgy Raman pump providing the gaihl[2].
ASE noise due to optical Raman amplification. The fibre loss It is known that the noiseless NLSE (i.e.] (1) withiz, t) =
is assumed to be continuously compensated along the fibredBypossesses a special class of solutions, the so-callea-fund
means of ideal Raman amplification and hence is set to z#&ental bright solitons[[3][5]. Atz = 0 we write it as [5,
121, [39], [40]. eg. (1.40)] (in normalised units)

The noise-perturbed NLSE in dimensionless units is given q(0,1) = A sech(Agt) 3)

by [2], [3]. [42] . . :
8 92 where Ay denotes the normalised soliton amplitude and we
q(2,1) 1 q(z’ t) +lq(z,t)[Pq(z,t) = n(z,t), (1) assume that the initial soliton frequency, phase and centre
9z 2 ot of-mass position are set to zero. The unperturbed soliton

1The practically more relevant problem of channel capacitjbit/s/Hz] is solution [3) at a distance = L is given by q(L,t) =
left for future investigation. Ag sech(Apt) exp(iAZL/2).

Il. THE MASTER EQUATION AND THE NONCENTRAL
CHI-SQUARED CHANNEL MODEL




B. Discrete-time channel PDF obtained assuming an energy-detection receiver é.e.,
The (normalised) continuous-time input signdt) is de- receiver based o)), as shownin [4, eq. (5.501)].

fined as Equation [7) is not_hin.g e!se bL_Jt a special case of a non-
e central chi-squared distribution with four degrees of fie®
s(t) = Zsk(t)’ (4) providing non-Gaussian statistics for soliton amplitudesr
k=1 future use, it is convenient to designate the output of the
where discrete-time channel mod¥l asthe square root of the output
sk(t) = Aok sech[Agx (t — k)], (5) soliton amplitudesd. By making a change of variables, the
and k is the discrete-time index. At each discrete tirhe PDF [d) can be rewritten as
the transmitter maps an amplitu to sk (t) via (8). For 2 y? % +y? 2zy
; - P : b -dﬂ)k sk (t) E)- pY\X(y|I) =5 [ Xp| — 3 L — ). (8)
simplicity of the following analysis, however, we considee ox z oN ox
square root of the amplitudes, i.& = v/ Ao _ The conditional PDF in[{8) describes a channel with the
The dimensionless energy of thgh soliton waveform is input-output relation
defined as
(k+1/2) 14 X 2
2 e [ .
E(Aok) = / |5k (t)]?dt. (6) Yo = 5 Z} (ﬁ+Nz) : 9)
—(k=1/2) -

. . _ . where N;, i = 1,2,3,4 are four independent and identi-
We consider the regime where the inter-soliton separakion cally distributed zero-mean Gaussian random variablek wit
is much larger than the typical soliton width (low duty cygle Variancegi2 = 0'1%_ The input-output relationship irf](9) is

so the integral in[{6) can be taken o\eroo, o). This yields schematically shown in Fig. 1(b).
the well-known linear energy-amplitude scaling of the teali
pulse E(Aoxr) = 2Aok. The minimum inter-soliton separation . MAIN RESULTS
is then determined by the peak powét, of each individual Since the soliton pulses are assumed to be well separated
soliton, which is in turn inversely proportional to the sgeia and the intersymbol interference due to pulse interactam c
of its width Ty, = AL%_ be neglected, the mod€ll(8) describes a scalar memoryless
The receiver in Fig. 1(b) processes the received wavefoghannel. The channel capacity is then defined_as[[9], [10]
r(t) during a window of length one via the forward NLFT oA I
= max Ixy, (10)

and returns the amplitude of the received soliton. We assume px

ideal NLFT-detection, i.e., the sampling rate is high erfougyhere 7y is the mutual information (MI) and the optimiza-
to ignore NLFT finite accuracy issues arising from a partigion is performed over all possible input distributigng with

ular algorithmic realisation [30] compared to noise-ineldic fixed average symbol enerdy[E(A,)]. The Ml Ixy can be
distortions. The inter-soliton separation is also assutodie  decomposed as1[9]. [10]

large enough so that there is no interaction between adjacen

solitons, i.e.exp(—Aor) < 1, or equivalently,l > To. An- Ixy = hy = hy|x, (11)

other source of corruption for the soliton-based transiomss wherehy andhy|x are the output and conditional differential

system emanates from the Gordon-Haus (GH) timing jittar [S}ntropies, respectively.

[33], which defines the standard deviatia™“" of the soliton  The SNR is defined as][2, eq. (29)]

position as a function of the propagation distance andwolit 5

amplitude. To avoid interaction between adjacent solittims SNR & E[E(4o)] = 2’“’57 (12)

GH timing jitter should also be taken into account [5]. For ox Ty IR

a given propagation distanck, the inter-soliton separation wherea? is the average amplitudel = E [4y] = E [X?] and

must fulfill 1 > Ty, + AT, This condition guaranteesy is the ratio between the available bandwidth and the symbol

that solitons behave as isolated pulses, and thus, there isréte 1/7,. Thus, for a fixed bandwidth and symbol rate, the

intersymbol interference. We assume that this condition &NR is proportional to the parameter2 02/o%. We shall

satisfied throughout this paper, and thus, from now on Wgnceforth consider the capacity and Ml as a functiop.of

drop the time index:. The exact solution for the power constrained optimization
The exact conditional PDF for a single received amplitudsroblem [I0) with the channel modédll (8) is unknown. To

A given a transmitted amplitudé, is written as[[42, eq. (24)] obtain alower bound on the capacity, we shall assume the

(see alsol[43]) input symbolsX are drawn from a trial input distribution. In
1 a ao + a 2./aoa this work we use the Rayleigh PDF
Paja,(alag) = poy ”a_o exp (— 002 )h( = ), (7) 9 22
N . N . _N px(r) = —5 exp (— _2)? (13)
wherec% = LL;'D/2 is the normalised variance of the Is Is

accumulated ASE noise anfi(x) is the modified Bessel which leads to exponentially-distributed soliton ampli#s A
function of the first kind. Expressiofi](7) is in fact the samwith meano3.



6.0 [ :
[ | == Closed-form expressign hy Ixy
O Numerical integration

The next two Lemmas provide exact closed-form expres-
sions for the output differential entroplyy of symbolsY
with input symbolsX distributed according td (13) and for

oy

o

—
‘

c
) ¥
the conditional differential entropyy- x. s 4.0 ¢ ]
Lemma 1: For the channel in{9) and the input distribution 5 3.0 ]
@) -
.-5 2.0 i hy|x
hy =logy/o2 —log\/1+p~1 —p~tlog\/1+p 105 )i
3 B
+p+¢(p_1)—§1/1(1)—10g2+1, (14) 05 ‘ ‘ ‘
-10 0 10 20 30 40
wherey(z) £ L InT(z) is the digamma function, anfi(z) p [dB]
is the gamma function. Fig. 2. The differential entropy of output distributiohy in (T4), the
Lemma 2: For the channel i {9) and the input distributiorgifferential conditional entropyhy|x in (13), and the MiZxy in (I7).
- esults obtained via numerical integration are also shainlés).
@3
4.0
hy|x =log/o§ +2(1+p) = (1+p~")log (1 + p) 3.0 . 1
. ool lim 00 T = 17
—p "V14p 1 F(p) - # —log2,  (15) 10 [
>.4 .
-
where =z 0
% ~ 1.0
Fo) 2 [¢r(VTHp O hObg [R©]d @) 20 f
0 -3.0
and K (z) is the modified Bessel function of the second kind 4.0~ 0 10 20 30 20

of order one. .
Sketch of the proof. ‘To prove both lemmas, the OUtpUtFi 3. The ratio between the Ml ’ in (I7) and the functionas in (I9)
distribution py (y) = [ py|x(ylz) px (x)de is calculated %~ xy as :

using [8) and((113). The derived output PPF(y) is then used 1o oyt theorem shows that the capacity lower bound is

in the definitions of diffe_rential entropies_. The resultsboith asymptotically equivalent to half the logarithm of the SNR,
Lemmas are then obtained by evaluating the correspondw ich is the main result of our work

integrals. The calculation follows closely that from theliea ) : Lo
work [17], where calculations were performed for a chi- Theorem 2: The MI Lxy in (17) satisfies
squared distribution with two degrees of freedom (cfl (1) a lim fas 1, (18)
[17, eq. (24))). n poo Iy
We note that the proof of Lemma 2 includes finding ahere
closed-form expression for the differential entropy of a-ch A1
squared distribution with four degrees of freedom. To th&t be las = 3 log p. (19)
of our knowledge, this has never been previously reported
in the literaturdd The results from Lemmas 1 and 2 can b%f
combined to produce the following theorem. rovided in [17] n
Theorem 1. For the channel{9) and the input distributiorfJ Fig. 3 shoWs the numerical evaluation of the ratio

13) I.s/Ixy and confirms that the MI behaves asymptotically
Ivv —1o Tt o) 4o tloe(VItn)— as (1/2)log p, or equivalently, ag1/2)log SNR. According
X g(ﬂ p,l) P g(ﬁl p)=p to Fig.[3, the asymptotic functioi (I1L9) approaches the Ml

T VI+p F(p) +9(p7) =9(1) = L. (17)  from above. Interestingly, the expressiénl(19) has appeare
asymptotic analyses of optical systems (see é.d., [17280], (

Proof: From Lemmas 1 and 2 and {11). [ ] i 4 nA
The results of Lemma 1, Lemma 2, and Theorem 1 are illu o1, Sec. V-A], 145, eq. (6)]). Since the channel capacity is

B . : ower-bounded byl xy, this result implies that the capacity
trated in FigLP. Analytical curves for the fu_nctloh_s, Iy x, icgrows at least as fast $/2) log SNR, whenSNR — oo.
and Iyy are compared with results obtained via humerical

integration. IV. CONCLUSIONS
) _ By using a rigorous channel model based on the exact
However, a closed-form expression for tegected-log of a noncentral

chi-squared distribution with even number of degrees aédoeen was given conditional PDF for .the soliton ampI'IUdeS inl (7)1 an elxa-Ct
in [44, Lemma 10.1]. closed-form expression for a lower bound on the capacity of

Proof: The proof follows from an asymptotic expansion
Ixvy in (I7) together with the asymptotic expansion[of] (16)



the nonlinear optical fibre channel with no inline dispemnsio[23]
compensation was derived. It has been analytically demon-
strated that the lower bound on the capacity for the chan
based on the individual amplitudes of well separated swdito
displays an unbounded growth similarly to the linear Garssi
channel. [25]
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