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Abstract

We prove the strong converse for tié-source Gaussian multiple access channel (MAC). In pdaticwe
show that any rate tuple that can be supported by a sequenmedes with asymptotic average error probability
less than one must lie in the Cover-Wyner capacity regiorr. @aof consists of the following. First, we perform
an expurgation step to convert any given sequence of coddsasymptotic average error probability less than
one to codes with asymptotic maximal error probability I#san one. Second, we quantize the input alphabets
with an appropriately chosen resolution. Upon quantizatiee apply the wringing technique (by Ahlswede) on the
quantized inputs to obtain further subcodes from the subsathtained in the expurgation step so that the resultant
correlations among the symbols transmitted by the diffesenirces vanish as the blocklength grows. Finally, we
derive upper bounds on achievable sum-rates of the subdodesns of the type-II error of a binary hypothesis
test. These upper bounds are then simplified through jusicidoices of auxiliary output distributions. Our strong
converse result carries over to the Gaussian interferemengl under strong interference as long as the sum of the
two asymptotic average error probabilities less than one.
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. INTRODUCTION

The multiple access channel (MAC) is one of the most wellligtdl problems in network information theory] [
The capacity region of the discrete memoryless MAC was iaddpntly derived by Ahlswed&] and Liao 3]
in the early 1970s. In this paper, we are interested in thes8an version of this problem for which the channel
outputY” corresponding to the inpu(sXy, Xs,..., Xy) is

rs.

[
=1
where 7 is standard Gaussian noise. We assume an average tramsnpssier constraint of; corresponding to

each transmittef € {1,2,..., N}. The capacity region was derived by Cové} &nd Wyner p] and is the set of
all rate tuples(R1, R, ..., Ry) € RY that satisfy

ZRi§%10g<1+ZPi> 2)

€T €T

X+ Z, (1)

for all subsetsI” C {1,2,...,N}. For theN = 2 case, the pentagonal region of rate tuples2nig known as the
Cover-Wyneregion and is illustrated in Figurg

Despite our seemingly complete understanding of fundaahdimits of the Gaussian MAC, it is worth high-
lighting that in the above-mentioned seminal worRE-[5], it is assumed that the average error probability tends to
zero as the length of the code grows without bound. This iespihat those established converses are, inviagk
conversesFano’s inequality I, Sec. 2.1] is typically used as a key tool to establish sucakwmnverses. In this
work, we strengthen the results of Covél and Wyner p] and show that any rate tuple that can be supported by a
sequence (in the blocklength) of Gaussian multiple accedescwith asymptotic average error probabibtyictly
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Fig. 1. Capacity region of the two-encoder Gaussian MAL; [5]. We use the shorthandS; = %log(l + P1) and Cy 2 = %log(l +
P1/(1+ P»)) and similarly forC> and Cy);.

less than ondand not necessarily tending to zero) must lie in the Covend¥ region. This is atrong converse
statement, akin to the work on strong converses for pohptsiot channels by Wolfowitz€]. It indicates that
the boundary of the Cover-Wyner region designates a shapeptiansition of the smallest achievable asymptotic
error probability, which is zero for any rate tuple inside ttapacity region and one for any rate tuple outside the
capacity region. Thus, this work augments our understandirthe first-order fundamental limit of the Gaussian
MAC. Additionally, it may also serve as a stepping stone findging the second-order asymptotic§-{10] or
upper bounds (e.g., the sphere-packing bound) on the itdigflanction of the Gaussian MAC (cf.1[1, Th. 4]).

A. Related Work

The study of MACs has a long history and we refer the readdra@xkcellent exposition in El Gamal and Kirh [
Ch. 4] for a thorough discussion. Dueck?] proved the strong converse for the (two-source) discregenoryless
MAC using the the technique of blowing up decoding sets pélly due to Ahlswede, Gacs and Kornerd,
combined with a novel strategy known as thienging techniqueThe technique of blowing up decoding sets uses
the so-calledblowing-up lemmdg13], [14] (see also [5, Ch. 5] or [L6, Sec. 3.6]). This technique is useful for
establishing strong converse results for memoryless @iamwith finite output alphabets.

Dueck’s proof proceeds in three steps. First, Dueck expesgan appropriate subset of codeword pairs to convert
any given sequence of codes with asymptaeterageerror probability bounded away from one to a sequence of
codes with asymptotimaximalerror probability bounded away from ohélhis expurgation step is performed so
that the blowing-up lemma to be applied in the third stepdgdight upper bounds on the sum-rate, which will then
lead to the desired strong converse result. Unfortunatieéy,expurgation step introduces undesirable correlations
among the codewords transmitted by tNeencoders. Second, a wringing technique is introduced togaout any
residual dependence among the symbols transmitted bytleecoders by choosing a further subcode from each
subcode obtained in the expurgation step. Wringing is reggdor establishing a tight sum-rate bound, because
the sum-rate capacity of the MAC is expressed as the supresfiunutual information terms over all independent
input distributions (the independence is due to the fadtttie/V encoders do not cooperate). Third, the blowing-up
lemma is applied to the resultant subcode to yield a tighteufgound on the sum-rate.

Ahlswede [L7] presented another strong converse proof for the (twoesudiscrete memoryless MAC by
modifying Dueck’s wringing technique as well as replacihg tise of the blowing-up lemma in Dueck’s proof with
an application of Augustin’s non-asymptotic converse lib{t8]. However, the proofs of Dueck and Ahlswede
are specific to the discrete (finite alphabet) setting angl iitat clear by examining the proofs that the same strong
converse statement follows in a straightforward way for @sussian MAC with peak power constraints.

Another approach to proving the strong converse for a geM&& is due to Han 9], who used the information
spectrum technique2[)] to provide a general formula for MACs and stated a condifib® Th. 6] for the strong
converse to hold. However, unlike for the point-to-pointtieg [20, Sec. 3.6—3.7], the property is difficult to verify
for various classes of memoryless MACs.

Although the capacity region of the Gaussian MAC is welladknowhen it is defined in terms of the average error probabjliy [4],
[5], the determination of the capacity region is an open prahifeit is defined in terms of thenaximalerror probability.



In view of the above works and the practical and theoretiogldrtance of strong converse theorems, we are
motivated to provide a self-contained proof for the strongwerse of the Gaussian MAC.

B. Challenges in Establishing the Strong Converse and Oategfies to Overcome Them

In this subsection, we discuss the challenges of leveragxigiing technigues to prove the strong converse for
the Gaussian MAC. In particular, we highlight the difficatiin directly using the ideas contained in Dueckg][
and Ahlswede’s17] proofs. We also describe, at a high level, the strategy wel@yto overcome these difficulties.
Finally, we discuss some other auxiliary proof techniques.

1) Blowing-Up Lemma in Dueck’s Proof§] Cannot be Directly Extended to Continuous AlphabétsDueck’s
paper [L2], he used a version of thelowing-up lemmatogether with other tools, to prove the strong converse
theorem for the discrete memoryless MAC. A crucial step ire€s proof involves the establishing of an upper
bound on the list size of possible messages for every ougmuence based on the blown-up decoding sets. If the
resultant list size is too large (e.g., contains an expoalkentmber of messages), the Dueck’s technique cannot
lead to the strong converse theorem. Since this crucial lsepily relies on the finiteness of the output alphabet
and the output alphabet of the Gaussian MAC is uncountalffilyitie, it is not immediately apparent how to extend
this step to the Gaussian case.

2) Wringing Technique in Ahlswede’s Prodf7] Cannot be Directly Extended to Continuous Alphabets
mentioned in the previous section, Ahlswede’s prdaf] [is based on a modification of Dueck’s wringing technique
and Augustin’s non-asymptotic converse boud].] However, it is not apparent how to adapt his techniques to
obtain a strong converse bound on the sum-rate. More sgabifiéhlswede’s wringing technique (see Equation
(5.3) in [17]) leads to the following sum-rate bound for any sequencewnfth» codes whose asymptotic average
error probability is bounded away from one:

logn
N4
In (3), X; and X, areindependentandom variables. However, the bound B) {s sensitive to the sizes of the
input and output alphabets, which prevents us from direedtending Ahlswede’s proof to the Gaussian case.
Furthermore, there are no cost constraints in the discretearyless MAC and incorporating cost constraints does
not seem to be trivial. A naive strategy to extend Ahlswegbof to the Gaussian case is to quantize the input
and output alphabets of the Gaussian MAC so thigtX,; and) depend om and their cardinalities grow with.

Say we denote the quantized alphabets)éég), 232(”) and Y™ This sequence of quantized alphabets and the
corresponding channels will be designed to provide inénghsrefined approximations to the Gaussian MACras
increases. In designin@’f"), 2?2(”) and ji("), we would also like to ensure that the power constraints atiefied

and the termO (10%) ]231")\]232")]\37(")] in (3) vanishes as tends to infinity. However, quantization arguments
that are used to prove information-theoretic statemenmtgdatinuous-valued alphabets are usually applied to the
achievability parts of coding theorems. For example, a tjpation argument is used ii[Sec. 3.4.1] for leveraging

the achievability proof for the discrete memoryless cha@®C) with cost constraints to prove the achievability
part of the capacity of the AWGN channel. To the best of ourvikedge, standard quantization arguments for
achievability parts do not work for strong converse proodsduse upon quantization, one has to ensure that the
resultant asymptotic error probability is bounded awayrfrone.

The reader is also referred tal, Appendix D.6] for a complementary explanation of why Ahésie’s original
wringing technique works for only MACs with finite alphabdigt not the Gaussian MAC.

3) Remedy — Combining a Quantization Argument with the Wfrgndechnique: The difficulties in directly
using Dueck’s and Ahlswede’s techniques led the author®mebine a novel quantization argument together with
Ahlswede’s wringing idea. We use a scalar quantizer of isirgy precision in the blocklength to discretize (only)
the input alphabets of the channel so that the Ahlswedesgivrg technique can be performed the quantized
channel inputdor any given code whose asymptotic error probability isfmed away from one. In doing so, we
obtain a sequence of subcodes whose asymptotic error plibbebbounded away from one such that the resultant
correlations among the codeword symbols transmitted bydifierent sources vanish asincreases. Note that if
the quantizer's precision is too small or too large, the ltasti upper bound on the sum-rate will be too loose
and hence not useful in proving the strong converse. We sksfaasible choices of the quantizer’s precision and

Ryt Ry SI(X1,X2;Y)+O< )|X1||X2||y|. 3)



the parameters used in the wringing technique in Sedfiéh In our proof, the quantizer’s precision is chosen in
such a way that the quantized input alphabézfg) grow no faster tharO(n%/2). It turns out that this choice of
guantization also allows us to control the approximatiomsrbetween the true channel inputs and the quantized
ones uniformly.

4) Other Ingredients in Our Proofin Ahlswede’s proof of the strong converse for the discremuoryless
MAC, he appealed to a non-asymptotic converse bound by Aug{&s]. In our proof we use a conceptually
similar non-asymptotic converse bound that is motivatedrimdern techniques relating binary hypothesis testing
to channel coding. In particular, we use a form of theta-convers¢22, Sec. IlI-E] due to Wang, Colbeck and
Renner 3, Lemma 1]. We derive a multi-user version of this non-asytiptconverse bound. After doing so,
we choose the auxiliary conditional output distributiohgrein to be product distributions that approximate the
quantizedcode distribution. We note that the flexibility of the choiskthe output distributions is essential for
proving the strong converse for the Gaussian MAC as we cawdhese distributions to depend not only on the
peak powers but also the chosen precision of the scalarigaaitf. Sectionl-B3).

C. Paper Outline

In the next subsection, we state the notation used in thismpép Sectionll, we describe the system model and
define thes-capacity region of the Gaussian MAC. In Sectltn we present the main result of the paper. We present
a few preliminaries for the proof in SectidW. The complete proof is then presented in SechonSectionVI
extends our strong converse result to the two-source twtrdgion Gaussian IC under strong interference.

D. Notation

We use the upper case lett& to denote an arbitrary (discrete or continuous) randonateiwith alphabe#’,
and use a lower case letteito denote a realization of . We useX™ to denote the random tup(ey, X, ..., X,).

The following notations are used for any arbitrary randomakdes X andY and any mapping whose domain
includes X. We let pxy and py x denote the probability distribution ofX,Y’) (can be both discrete, both
continuous or one discrete and one continuous) and thetommaliprobability distribution o™ given X respectively.
We letpy y(z,y) andpy|x(y|z) be the evaluations gfxy andpy | x respectively a{.X,Y’) = (z,y). To avoid
confusion, we do not writ®r{X = z,Y = y} to represenpx y(x,y) unlessX andY are both discrete. To make
the dependence on the distribution explicit, welre}, {g(X) € A} denote _. px(z)1{g(z) € A} dx for any
real-valued functiory and any setd. The expectation and the variance gfX) are denoted a&, [¢(X)] and
Var, [¢(X)] = Ep. [(9(X) — Ep,[9(X)])?] respectively, where we again make the dependence on thelyinde
distribution px explicit. We letN'(-;u,0?) : R — [0,00) denote the probability density function of a Gaussian
random variable whose mean and variance,asnd o2 respectively. This means that

exp ( - ﬂ) (4)

202

N(zip,0%) £

2mo?

We will take all logarithms to base 2 throughout this papdre Euclidean norm of a vectar” € R™ is denoted
by [l2" ] = \/ k=1 =i

1. GAUSSIAN MULTIPLE ACCESSCHANNEL

We consider a Gaussian MAC that consists\dofsources and one destination. Let
T2{1,2,...,N} (5)

be the index set of the sources (or encoders), and tktnote the destination (or decoder). THemessage sources
transmit information to the destination intime slots (channel uses) as follows. For eachZ, nodei chooses
message

Wi e {1,2,...,M™} (6)

)



and sendd¥; to noded whereMi(") denotes the message size. Based/gn each node prepares a codeword
X' € R" to be transmitted and’"* should satisfy

n
> Xip <nb,
k=1

where P; denotes the power constraint for the codeword transmitteddalei. Then for eachk € {1,2,...,n},
each node transmitsX; ; in time slotk and noded receives the real-valued symbol
Y=Y Xik+ Zk, (7
i€l
where 21,23, ..., Zy, are i.i.d. andZ; is a standard Gaussian random variable. Aftetime slots, noded
declares{W; };cz to be the transmittedW; },cz based ony™.
To simplify notation, we use the following convention foryall C Z. For any random tupléX;, X, ..., Xy),
we let
Xp £ (XilieT) (8)
be its subtuple, whose generic realization and alphabedemeted byz; and
xr =[] ©)
ieT
respectively. Similarly, for any € {1,2,...,n} and any random tupléX; ., Xox,..., Xy ) € X7, we let
Xrp = (Xigli€T) (10)

be its subtuple, whose realization is denoteday,. The following five definitions formally define a Gaussian
MAC and its capacity region.

Definition 1: Let 7' be a non-empty subset ih. An (n,Mé"),PI,A, T)-codefor the Gaussian MAC, where
M}") £ (Mln), 2("), . ,MJ(V")) andPr £ (Py, P, ..., Py), consists of the following:

1) A message setV; = {1,2,... ,Mi(")} at nodei for eachi € 7.

2) A support set of the message tuplé denoted by4 C Wz whereWz is uniform on.A. In addition, all the

wz’s in A have the samer-, i.e., there exists a}.. € Wr- such that for alwr € A, we havewr: = w7..
Define

Ar £ {wr € Wr|There exists aiz € A such thatwy = wr} (11)

to be the support of¥;. Consequently, the message tuplg- is uniform on.Ar.
3) An encoding functionf; : W; — R™ for each: € Z, where f; is the encoding function at nodesuch that
Xln = fz(Wz) and
1fi(wi)l|* < P (12)

for all w; € W;. The set of codeword§f;(1), fi(2),. .. ,fi(MZ.("))} is called thecodebook folV;. For each
1 € Z, the finite alphabet

X; £ {x € R|z is a component of;(w;) for somew; € W;} (13)
is called thesupportof symbols transmitted by becausef;(W;) C A*. Note that
x| < na™ (14)

for eachi € Z by (13).
4) A (possibly stochastic) decoding functign: R" — A, which is used by nodé to estimate the message
tuple Wz, i.e., Wz = o(Y™).

If A=Wz andT =Z, thenWz is uniformly distributed onVz, which implies that theV messages are mutually
independent. Sincen,Mé”),PI,WI,I)-codes are of our main interest, they are also cadbadwé”),Pz)-codes
for notational convenience. However, in the present wdrks hecessary to allowd andT to be strict subsets of



Wz andZ respectively so the generality afforded in the above déimils necessary. In this case, themessages
need not be independent. In the rest of this paper, if we fixdee aaith encoding function$f;|i € Z}, thenX; as
defined in (3) denotes the support of symbols transmitted by eael.

Definition 2: A Gaussian MAGs characterized by the conditional probability densitgdtion ¢y, satisfying

qy|x, (ylrz) = (y, Zfﬂz, ) (15)

€L

for all zz € RY and ally € R such that the following holds for any., Mé”), Pr, A, T)-code: Letpy, xz y» be
the probability distribution induced by tt(ez,M("),PI,A, T)-code. Then,

n
pwzxp v (wz, 27, y") = pw.(w1) <H H{zi = fi(w:) ) <prk|xz,k(yklxz,k)> (16)

1€l k=1

for all (wz,2%,y") € A x X} x R"™ where

Pyl Xz WelZz8) 2 avix; (Uelz0)- 17)

Sincepy,|x, , does not depend ok by (17) and (L5), the channel is stationary.

For any (n, Mé"),PI,A,T)—code defined on the Gaussian MAC, 1@% xn be the joint distribution

’ Z?anwf
induced by the code. Sindé’z is a function ofY” by Definition 1, it follows that

Pw, Xz v iy = PWa,X2.Y "Dy |y (18)
which implies from (6) that
n
Py Xa .y, = PWoX; <H py,c|xz,k> Py v (19)
k=1

Definition 3: For an(n, Mé”), Pr)-code defined on the Gaussian MAC, we can calculate accotdiitd) the
average probability of decoding errawhich is defined as

Pr{Wz #+ WI}. (20)

An (n,Mé"),PI)-code with average probability of decoding error no lardgemt: is called an(n, Mé”), Pr,€)avg
code. Similarly for an(n, M("), Pz, A, T)-code, we can calculate tmeaximal probability of decoding erratefined
as
max Pr{Wr # Wr | Wz = wr}. (21)
wz €

An (n, Mé"), Pz, A, T)-code with maximal probability of decoding error no largeanc is called an(n, M("), Pr,
A, T, €)max-code.

Definition 4: A rate tuple Rz = (Ry,R»,...,Ry) is e-achievablefor the Gaussian MAC if there exists a
sequence o(n,Mé ),PI,sn)an-codes on the Gaussian MAC such that

11H_1> mf log M;" (n) > R; (22)
for eachi € 7 and
limsupe, <e. (23)
n— o0

Definition 5: For eacte € [0, 1), thee-capacity regiorof the Gaussian MAC, denoted I8y, is the set consisting
of all e-achievable rate tupleBz. The capacity regionis defined to be th@-capacity regiorC.



1. M AIN RESULT

The following theorem is the main result in this paper.
Theorem 1:Define

Rew = ﬂ {Rr e RY | Yicr Ri < §log (14,0 Bi) } - (24)
TCT

Then for eacte € [0, 1),

C. C Rew- (25)

We now present three remarks concerning Theotem

1)

2)

Note thatR., is the Cover-Wyner4], [5] region for anN-source Gaussian MAC. The theorem says that
regardless of the admissible average error probabilitydiag as it is strictly smaller tham), all achievable
rate tuples must lie iRR.y. Since all rate tuples ik, are 0-achievable 1, Sec. 4.7], we have for every
e€l0,1)

Ce = Rew- (26)

In fact, the proof allows us to additionally assert thédiwing: For any non-vanishing average error probability
e € [0,1) and any subsel’ C Z, it can be shown that the sum-rate of the messages indexdd difyany
sequence o(n,Mén),PI,sn)a\,g-codes satisfying the constraint ig3) also satisfies

lim sup —— ZlogM( ——log <1—|—ZP>

n lo n
n—0o00 g ieT

(e, T, Pr) < 27)

for some finite constant (¢, T, Pr). See 179 in the proof of Theorenl. Even though the normalizing
speed ofy/nlogn is not the desired/n (as usually defined in second-order asymptotic analyg@sthe
techniques in this work may serve as a stepping stone tolisétan outer bound for the second-order coding
rate region f] for the Gaussian MAC. The best inner bound for the seconi@oroding rates for the Gaussian
MAC was established independently by Scarlett, Martinez, Guillen i Fabregasd] and MolavianJazi and
Laneman 9]. According to the inner bounds i8], [9] and the relation between second-order coding rates
and second-order asymptotics of sum-rateslit],

(n)
hnnl)ng ZlogM ——log<1—|—ZP>

€T €T

> Y(e,T, Pr) > —o0 (28)

for some finite constan®’(e, T, Pr). Our normalizing speed of/nlogn in (27) is slightly better than in
Ahlswede’s work on the discrete memoryless MALZ][ which is y/nlogn. We have attempted to optimize
(reduce) the exponent of the logarithgn> 0 in the normalizing speedq/n(logn)¢. However, as we will
discuss in SectioV-H in the sequel, we are unable to use our proof technique tbdureduce (improve)
¢ from 1/2. For both the discrete and Gaussian MACs, it is challengingrove that the exact normalizing
speed of the second-order termy{8:.. This is, in part, due to the use of wringing technique in tbaverse
part, which prevents one from obtaining a converse that Imest¢he achievability in the rate of growth of
the second-order term. Unless new techniques are inveategptace the wringing argument in the strong
converse proof for the MAC (such techniques have remainesive for over 30 years), the exact normalizing
speed of the second-order term for the discrete and GauseMIs will remain an open problem.

In the next section, we will present a few preliminaries foe fproof of Theoreni, which will be detailed in
SectionV.

IV. PRELIMINARIES FOR THEPROOF OFTHEOREM 1

A. Expurgation of Message Tuples

The following lemma is based on the technique of expurgatiegsage tuples introduced by Duetk,[Sec. I1],
and the proof is provided in the Appendix for completeness.



Lemma 1l:Let ¢ € [0,1). Suppose amn,Mé”),Pz,e)avg-code for the Gaussian MAC is given. Then for each

nonempty?’ C 7 such that
l1—¢ (n) 1—¢ (n)
M. > M. 29
{<1+E>H ' J_<2(1+E)>H v (29)

€T €T

there exist a sett C W7 and an(n, Mé”),PI,A, T, 1<) -code such that

_ l—¢ (n)
|Ar| = [A| > <m> 1_[]\4Z ; (30)

i€T
where Ar is as defined inX1). As a consequence, if we let;, Xp v W denote the probability distribution
induced on the Gaussian MAC by tlfe, MW P AT, %)max—code, then we have for eaety € Ar

1 2(1+¢)
pstun) < (22). (31)

Remark 1:Lemmal says that restricted to the sdtr, thei™ (for i € T') codebooks have almost the same sizes
as the original codebooks. In addition, the conditionabgtaility of decoding error for each message tuple in this
restricted codebook is upper boundedJ@i which is still smaller than one because [0,1). According to 81),

the probability of each message tuple cannot be greaterithamiginal value by a factor o( “f)).

B. Wringing Technique

The following lemma forms part of the wringing technique posed by Ahlswede and its proof can be found
in [17, Lemma 4].

Lemma 2:Let X be a finite alphabet, lety- andux~ be two probability mass functions defined &if and
let ¢ > 0 be a real number such that

pxn (") < (14 c)uxn(z") (32)
for all 2 € X™. Fix any0 < A < 1. Then for any0 < § < ¢, there exist/ natural numbers i{1,2,...,n},
denoted by, o, ..., t,, andl elements oft’ denoted byz,, , 7,, . .., Z;,, such that the following three statements
hold:

() <5,

(”) PI‘an {(Xt17Xt2>' e 7Xttz) = (‘ftnjtw' .. 7jte)} > >\é‘
() Forall ke {1,2,...,n}\ {t1,t2,...,ts}, we have

PX4|X0, Xy X, (T| T, Tty - -+, Tt,)
S max{(l + 5)uXk|th 7Xt27"'7XWz (mk‘jtl,.ftz, . ,.ft[), )\} (33)

for all z;, € X.
The crux of Lemma is in the identification of the event

F £ {(Xt1>Xt2>' . >Xte) = (jtna_jtz»' . 7jt£)} (34)

such that conditioned orF, the distributions of the resultant codeword symbols tmaitied in each time slot
can be approximated byx, (cf. (33)). In the sequel where eacki; in Lemmaz2 is substituted beTk where
XTk is some quantized version df7;, to be specified later, the joint dIStrIbutIOIk that apprOX|mate$X

will be chosen to be a product distribution (c62)) with marginalsu¢ . In order to use Lemma for provmg
Theorem1, an important step involves controlling the size Bfin Lemma2. To this end, we use the following
scalar quantizer to quantize the alphalgt(in (13)) which is exponential in the blocklength (cf. (14)) so that
its quantized version is an alphabet whose size is polyridmidne blocklength.

Definition 6: Let L be a natural number arfl be a positive real number, and let

Zopa2{—LA, (~L+1)A,..., LA} (35)



be a set oRL + 1 quantization points wherA specifies the quantization precision. A scalar quantizér domain
[—LA, LA] and precisionA is the mapping

QL,A : [—LA,LA] — ZL,A (36)
such that
if x>
Qs a() = lz/A]A if x _.0, (37)
[x/A]A otherwise.

In other words{2;, A(xz) mapsz to the closest quantized point whose value is smaller thaeqoal tox if « > 0,
and to the closest quantized point whose value is larger thagual toz if < 0. In addition, define the scalar
quantizer for a real-valued tuple as

QU =LA, LA — Z7 o (38)
such that
QA" 2 (Qa(@1), 2 a@2), -, Qs (@n): (39)
[
By our careful choice of the quantizer in Definiti@ we have the following property for alt € R:

AJA if >0,
ale) @ L7 = (40)

—[z/A]A otherwise

if >

_ |lx/AA if w_.O, (41)

|—x/A|A otherwise
= [[z[/A]A (42)
< laf. (43)

Although the following lemma looks similar td.f, Corollary 2] and they both rely on Lemn2athe proof of the
following lemma is more involved due to the additional calesation of the quantizer’s precision and the quantized
input symbols. If the quantizer’s precision is too small oo large, then the resultant bound obtained from the
following lemma will not be useful in proving the strong camnse. See SectiovtH for a detailed discussion on
the appropriate choice for the quantizer’s precision.

Lemma 3:Suppose we are given gm, MW" P AT, %)max—code such that

1—¢
L= A > M 44
€T
and | 2(1 4 ¢)
9
P (w7) < o (2 (45)
HiET Mi
for eachwr € A, wherep%/ . denotes the probability distribution induced on the Gaars81AC by the
(n,Mé"),PI,A’,T, 2) occode. Then, there exists 4n, Mé”), Pr, A,T, 1) -code with
—4|T|(1432) /—7— 1—¢ (n)
= > (1-e) togn | ————— M. 46
[Ar| = 1A 2 0~ 5 (2(1+E))g z (46)

such that the following holds: Let,, .
by the (n, M{™, Py, A, T, 1£2)

v« 1, denote the probability distribution induced on the Gaus$hC

-code. In addition, let
max

XP = Q([’ZL) npmfl( XM, (47)

define the alphabet

L
Xi 2 L1, ] e (48)
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for eachi € T (XZ” is always in the domain oL? _, because 0f47), (43) and (2), and hence’?{‘ € i’i"),

| aakt
define
xr &[4 (49)
i€T
and define

n n n ~
pWLX;X%,Y",WI(wI»$I>$T7y ,Wr)

2 g e lvzctran [l far —of? o) (50)
€T

n oAn o,m 0 n on n i iotri o ; vn
for all (wz, 27, &7, y", W) € AX X7 x X7 x R™ x A. Then there exists a distributian, defined onty where

| < o7 [[@VE +3) (51)
€T
such that for allk € {1,2,...,n}, we have
. - logn R 1 50
pXka(xTJf) < max 1+ o lelu)zw(wuk), —n4|T‘ (52)

for all #7, € Xr and

n
>SSk, [15] < Ear 3)
€T k=1 €T
Before presenting the proof of Lemn& we would like to stress the following two important implicas of
Lemmaa3.

(i) By identifying a certain event
g é {(XT,tl ) XT,tga e 7XT,t@) - (ET,tl ’ jT,tz? e 7£.T,t[)} (54)

(whose probability is quantified irvQ) in the following proof), we can find a subcode such that farteame
slot k, the resultant probability distribution of the quantizeztior of transmitted symbolﬁ’Tvk = (Xi,k; |i e
T') can be approximated by a product distributiph. - ug, ~as in 62). This is the essence of the wringing
technique 12], [17] which involves approximating the joint distribution ofeliandom variables corresponding
to the different encoders with a product distribution. B)pap(imatingf(T’k with a product distribution, we
effectively wring out the dependence among the collection of random varie{t??g;k‘ |ieT}.

(i) The alphabet size of the quantized transmitted syrtj’Bﬁ;L grows no faster than polynomially imas in 61).

Our quantization strategy that results in the polynomialngh of the alphabet sizes of the quantized symbols

appears to be an important and necessary step, becauséihal@phabet sizétr| could be exponentially
large inn (cf. (14)). Furthermore, the controlled growth bf,’T\ ensures thaPr{G} does not decay to zero
exponentially fast as shown iY@ in the following proof and hence the asymptotic rates of tbsultant
subcode are the same as that of the original code. An impgqgptzEint to note here is the following: We are
able to lower bound the probabilifyr{G} because we defined in terms of thequantizedrandom variables

(rather than the original ones). The application of the girig technique on the quantized random variables

is one of the major contributions of the present work.

Proof of Lemma3: Let p%/ be the probability distribution induced on the Gaussian M#&Cthe

XY Wy
(n,Mé"),PI,A’,T, H2)  ccode that satisfiestd) and @5), and let

/ n -n n A~
P, xp xp.v0 00, (WE O, 47, Y 0z

&P oy, (0t on) [ 1 {w =) nPJ,nl(x?)} : (55)
€T
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Define a probability mass functi . as
T7X%7X%

Lap = fitw) 1 {a =0 o D)
u/WT,X;,X;(wT’x%"%%) = H

o (56)
i€T M;

for all (wr, 2}, 27}) € Wr x X x )27@ (cf. (13) and @8)), where f; represents the encoding function df; of the
(n, Mé ) P AT T,4=), -code (cf. Definitionl). The distributionu;, . . is well-defined (the probability
masses sum to one) througsb) because e

> Uy g (wr 2, 8) (57)
(wT,I%,iT})E
WTXX"XXA'”
(56) .
S Mo X Mer=fewn X I{a=o0 ) e
wrEWr ZETM rheEXT €T gneXn i€l

=1. (59)
Using (66), we obtain

WT,XT,X" H uwl,xn Xn (60)
ieT
where )
' R X — Q" n
U 00T 80) = — 1 = a1 {ar =) ] (61)

for all (w,,xl L) € Wi x X x X We will use Lemma2 to prove the existence of a subcode of the
(n Mé ,Pr, AT 1+€)max-code such that the subcode satisf#§),((52) and 63) for someu g, defined on)?i,@.

To this end, we first consider the following chain of ineqtiedi for eachi?. € A7 such thatp;{; (1) > 0:

Po @) = Y Py, g (0r 2% 8) (62)
wr AL, THEXE
= > P wny, g, @ Elwr) (63)
wr AL, THEXE
@ N
& Z pw, (wr) H <1 {27 = fi(w;)} -1 {wln = Q(ﬂl) nPi}nl(x?)}) (64)
wre AL, xR eX €T
(45) 1 <2(1 +€)> < . (n)
< > : [T (4] = fitw)} -1 9@ = o («})
— Pi , —1 K3
wr €A X HEXT HieT Mz'(n) I—e¢ i€l (n " 1n
(65)
66 2(1 +¢) .
= 1z > Uy o (WD T, 2T (66)
wr AL, THEXE
2(1+¢) .
< 1—¢ Z u;/VT,ng,Xﬁ (UJT, l’%, l’%) (67)
wpEWnr, e €X T
21+, .,
=T U (68)
where (a) follows from 16) and £5). It follows from (68) and Lemma2 with the identifications
X—XT, Cc = 1_€, )\—m, 6= n (69)
that there exist natural numbers if1,2,...,n}, denoted by, o, . . ., t;, and/ real-valuedT'|-dimensional tuples

in Xy, denoted bYers,, 1, - -, 21, Such that the following three statements hold:
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143
M < (%) o
A . . 1
(”) Prplxn {(XT7t17XT,t27 cee 7XT7t£) = (jT,tan,tz’ cee 7jT7t2)} > m (70)
(I Forall ke {1,2,...,n}\ {ti,t2,..., 1}, we have

/ A — — —
5 5 5 5 X X X PP/
pXT,k\XT,n,XT,tz,...,XT,te( TEITT 4, ZT ks - ETt,)

logn 1
< max< |1 e o o o (ZrrlTre T ST — 71
=~ + n X k| Xy, Xy v X1, ( T,k| Tty LTty ; T,t/z)7 7’L4‘T| ( )

(60) logn H / o _ _ — 1
= max L+ n TuXi,k|Xi,t17X¢,t27~~-7Xi,tg (wl’k’wl7t1 1 Litar - - - 7xz,t[)7 ’I’L4|T‘ (72)
1S

for all &7, € Xr.
Using Statement (1), Statement (Ill) and4), we can construct a(n,Mé"), Pr, AT, %)max-code by collecting

all the codewords? for the (n, M}"), Pr, AT, %)max—code which satisfy

(i‘T,tl 3 :i'T,tzy O 732'T,tz) = (jT,tl ) jT,tzy e 7jT,tg) (73)
such that the following two statements hold:
() WAzl =4 = 04T (o) [y M,
(ii) Let Pw, X2y s denote the probability distribution induced on the GausMaC by the(n, Mé”), Pr, AT,
1<), -code, and let

n Lmn n A,
Pwy Xz X5,y Wy (wz, 27, &7, y", 1)

ieT
Then,
¢
Prpen { ﬂ X1y, = i"T,tm}} =1, (75)
m=1

and we have for alk € {1,2,...,n}\ {t1,t2,...,ts}

. [logn . 1
pXT,k(xT’k) S max { <1 ™ n ) H u;(i,HXi,tl :i‘i,thi,tg :fi,tgy---yXi,tngi,te (wi’k)’ ’I’L4|T‘ } (76)
€T

for all &7, € Xr.
Since for eachk € {t1,to,...,ts}

(Zik) (77)

pe. (rg) D 1{ar, = 2rp} = Ilu/ e % = ;
Xk ) ) ) Xk | Xty =i, Xi 00 =Tt 30y X
€T

ity =it

for all 7, € X, it follows from (76) that the following statement holds:
(i) Forall k€ {1,2,...,n}, we have

logn 1

A % < max 1 H . N N Ti k), — = 78

pXT,k(xT’k) - a { ( + n uXi,k|Xi,t1 =Tty X tg =T tg s Xi b, =Tt (:El’k)’ n4|T‘ ( )
€T

for all &7y € Xp.
Consequently,46) follows from Statement (i) and Statement (1), afi®)(follows from Statement (iii) by letting

n
A /
e 2T o o o o o 79
XT Xi,k‘Xi,tIin,tl7Xi,t2:xi,t27~~~7Xi,t[:xi,te ( )
k=1i€T
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It remains to prove the upper bounds py| and Yoier Oopet Bug . [ka] in (51) and 63) respectively. To
prove 61), we consider '

2| @I (2[nv/eR] +1) (80)

€T
<1 (2**VPi+3) (81)
€T
<n*F [[VP +3). (82)
€T

To prove 63), we first use $6) and (L2) to obtain
Pry {ZZszgz:nPi}:l. (83)
T ier k=1 iE€T
SinceXﬁk < X7, forallieT andallk e {1,2,...,n} by (55 and @3), it follows from (83) that

Prus, {Zﬁ:széZnP} = 1. (84)

ieT k=1 =
Consequently,

>3 B, [XEi]

€T k=1
5~ Zn
- Bu Ri ey =i,0) K 0y =2 Xy, =0 {ka] (85)
ik | Xi 4] =%, Xi 49 =Ti tg - Xi t,=Tq ¢t ’

ieT k=1 1 1 2 2 2 £
60
= Z Z E“/x X B X z x s [Xlzk] (86)

R Tty =TT 41 XT tg =TT tg T,t) =T, ’
el b1 T,k tq tq to to ty ty
n
= Z Z EU/X"\X 7 X z X z [ka} ®7)
Tty =TTt XT,tg =TTty T,t, =T, )
e k=1 T t1 t1 ta t2 ty ty
n
Tty =TTt XT,tg =TTty T,t, =T, )
T t1 t1 ) t2 ty ty ieT k=1

(84
< np;. (89)

€T

|

C. Binary Hypothesis Testing

The following definition concerning the non-asymptotic damental limits of a simple binary hypothesis test is
standard. See for examplgZ Sec. llI-E].

Definition 7: Let px and¢x be two probability distributions on some common alphalbiet_et
Q({0,1}|X) £ {rz x| Z and X assume values ifi0, 1} and X respectively

be the set of randomized binary hypothesis tests betwgeand ¢x where{Z = 0} indicates the test chooses
gx, and lets € [0,1] be a real number. The minimum type-II error in a simple binaypothesis test betweerx
and gx with type-1 error no larger tham — § is defined as

£ inf / 1 dax. 90
Bs(pxllgx) L S xeXTZ\X( |z)gx (x) dx (90)

fzex rz1x (1|z)px (v) dz>0
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The existence of a minimizing tesy; y is guaranteed by the Neyman-Pearson lemma.

We state in the following lemma and proposition some impurgaroperties ofgs(px|/¢x), which are crucial
for the proof of Theoreni. The proof of the following lemma can be found in, for example paper by Wang,
Colbeck, and RenneB, Lemma 1].

Lemma 4:Let px andgx be two probability distributions on some alphabétand letg be a function whose
domain containst’. Then, the following two statements hold:

1. Data processing inequality (DPI):

Bs(pxllax) < Bs(pg(x)llag(x))- (91)
2. Forall¢ >0, (@)
1 px(x

ol > ¢ (5 [ pen {280 > ¢} ao). ©2)

The proof of the following proposition is similar to Lemma 3 [23] and therefore omitted.

Proposition 5: Let prr1y be a probability distribution defined oy x )V for some finite alphabéty. In addition,
let ¢,v be a distribution defined oW, and let

a= Z%%Pr{v #u|lU = u} (93)
be a real number if0, 1) where (U, V') is distributed according tp;;yy. Then for each. € W,

Bi—a(pviv=ullav) < qv(u). (94)

V. PROOF OFTHEOREM 1
A. Expurgation to Obtain a Maximum Error Code
Let ¢ € [0,1) and supposedis is anc-achievable rate tuple. By Definitio#, there exists ay € [0,1) and a

sequence ofn, Mé"),PI,sn)an—codes such that
En J 7y (95)

for all sufficiently largen and .
liminf — log M™ > R; (96)

n—oo n,

for eachi € Z. Fix a non-empty sel’ C Z. Our goal is to prove that

ZRi§%10g<1+ZPi>. (97)

€T i€T
Since @7) holds trivially if >, R; = 0, we assume without loss of generality that

Z R, > 0. (98)
€T
It follows from (96) and ©8) that

Kil—D 1 Mi(n)J > 5 (152 ) I (99)

€T €T
for all sufficiently largen. Fix a sufficiently largen and the correspondingn,Mé"),PI,an)avg—code for the
Gaussian MAC such that99) and @9 hold. Using Lemmal, Lemma3 and Definition 1, there exists an
(n,Mé"),PI,A, T,“g—y)max-code, which induces a probability distribution on the Gaais MAC denoted by
Pwy, Xpvn W such that the following four statements hold:

(i) For allwz € A and allwr € Ar,

1
sz(wI) = W andeT(’UJT) = Ta (100)
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(i) There exists av}.. € Wr. such that for alwr € A, we havewr. = w..
(ii) The support of (W satisfies

Arl =14 2 0~ BV ( 1+,Y>HM (101)
(iv) Define
pWI,X;j,Xg,Yn,WI(wIa513%753%7ynﬂAUZ)
& b i (W, 25y ) HTl{ Gpm——ct) (102)
1€

for all (wz, x, @, y", 1) € A x X x X x R" x A, where

Xr 2 ] Z1yir e (103)
i€T
and
Xl <n's [J@VP +3). (104)
i€T
Then there exists a distributiamX% defined on)?}1 such that for allk € {1,2,...,n}, we have
. logn 1
P, (@) < max [ux, Gir) —m (105)
€T

for all #7, € X7 and
n
S, [R3] < S (106)
€T k=1 ' i€T
Note thatpWI XYW, is not the distribution induced by the origin@h,Mé”),Pz,en)avg-code but rather it is

induced by the expurgatefh, M., Pr, A, T, 1) _code.

max

B. Lower Bounding the Error Probability using Binary Hype#is Testing

Now, let
n
A

Swy Xz yn Wy — PWz,X7 (H SYkXTc)k> Dy, yn (207)

k=1
be a distribution such that for eaéhe {1,2,...,n}, the auxiliary conditional output distribution is chosenkte
v %o WelrTe ) = N {985 D Bug | . Xip] + ) w1+ P (108)

€T JjET*® €T

for all z7. ), € Ar- andy, € R. It can be seen from107) and (0§ that sy, XYy depends on the choice
of T we fixed at the start of the proof and the dlstrlbutmgn in Statement (|v) We shall see later that this choice
of Sy vz yn i, IN particular the mean of the distribution i1Qg namely > ;. E., k[X, k) + D jere Tk
combined with Propositio and Lemma4 enables us to proved(). We do not |ndeX9W Xpyo W by T' nor

U for notational brevity. To simplify notation, let = (1 + v)/2 be the maximal probablllty of decoding error

of the (n,Mé"),PI,A,T, ”T'Y) -code, wherey < 1 becausey < 1. Then for eachws € A, since

max

10 (100
sw, (wr) 2 pw, (wr) > 0, (109)
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it follows from Propositior6 and Definitionl with the identificationd/ = Wy, V = Wr, pyy = PWo g [Wope —re

AV = S (W mwre anda = max,, e 4 Pr{Wr # wy|Wz = wz} < 7 that

/81_:)/ (pWT‘WI:wI ”SWT‘WTC =Wrec )

< 51—a(pWT|WZ:wIHSWT\WTc:wTC) (110)
< S (Wi (wr|wre). (111)
C. Using the DPI to Introduce the Channel Inputs and Output
Consider the following chain of inequalities for each € A:
B (v Wy SV oo =)
@
> 51 ’\/(pY" W1|Wz lUIH Y~ WZ'WTC—U)TC) (112)
= ﬁl—ﬁ(py”\Wz=wszI|Yn,WI:wI‘ Y",WI\WTCZUJTC) (113)
(b)
= /81—'7 (pY"\WI:wszI|yn HsymWI\WTc:ch) (114)
©
> P15 <pWI‘yan;,Y"\WI —ws ||PX2 (X We=wrS xp, v WI\WTcszc) (115)
(107)
B1—5 <pWI|yan;,Yn|WI wz |[PX3|X50, We=wr PX e [Wre =wre Pyivy |y H SYi| Xre. ,C) (116)
k=1
&) -
B1-5 (pWZ|yanI,Y"|WI —wz |[PX7| X0, We=wz PX e [Wr=wzPyivy |y H SYi| Xre. k) (117)
k=1
n
= B4 (pwzynpxg,wwz:m PX3Wr=wzPyiry [y H SkaTc,k> (118)
k=1
(16 n n
B1-5 (pX;WI:wIPWIyn prk|xz,k PXp|Wr=wz Py, |y~ H SkaTc,k> ; (119)
k=1 k=1
where
(a) follows from the DPI off3,_5 by introducing the channel outpdt”.
(b) follows from the fact that
Wz —Y" - Wy (120)
forms a Markov chain under the dlstnbutl(mv
(c) follows from the DPI of/3;_5 by introducing the channel input?.
(d) follows from Definition1, WhICh saysX7. is a function of Wrp..
D. Relaxation via Chebyshev’s Inequality
Following (119, we consider
19 -
pX;7Yn7WIIWI:wI = pX%‘WI:wIpWIIY" Hka\XI,k? (121)

k=1
and we obtain from Lemmd and (21) that for eachws € A and eaclt,,, > 0,

DX |Wr=wz Py |y» H SYk|XTc,,C>

n
51—’?{ (pX;IWI:wIpWIY" H kaIXI,k
k=1

k=1

1 _ b Dvixe, (Yl Xz k)
>—(1—-5—Pry_, . . - 7 > Sw; . 122
S ( 77 Prp o sz {H (il X = ° (122)

Ee1 SY| Xpe
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Combining (11), (119 and (22, we obtain for eachvs € A and eaclt,,, > 0

1 _ “ pyvixz, (Yel Xz k)
Sy wr|wrpe) > 1= —=Prpen v —u ’ — 2> Ew; ) 123
WT|WTC( T‘ T ) — gwl ( ’Y p T’ [Wz=wg {Ig sYk|XTc’k(Yk|XTC7k;) 5 ( )

which implies that

log ( !
1w (W |wTe)
" Y| X
<logé&,, — log (1 e Prpx%yn‘wfwz {Zlog < Pyi Xz Vil Ik))) > log ng}> . (124)

P 5V Xpe o (Ye| X1e i

For eachwr € A, let

log &w, £ Epxn vniws—uz [Z log< Pyiixz, (Yel X7 k) )]
k=1

8| Xpe o (Y| X7e k)

2 = Pyi Xz (Yi| X7 1)
i J 1-— ﬁvarpx%y"\wz:wz [Z log ( — : (125)

k=1 SYi|Xre n (Yk|XTC,k)

Using Chebyshev’s inequality, it follows fronl25 that for eachws € A

E Py xz, (Ve Xz k) 1—7
Pryo, oni 1 . >logéy, p < —, 126
I‘PXIYY [Wz=wzg {kzl 0g <8Yk|XTcyk(Yk|XTc,k)) ng 2 ( )

which implies from (24) that

1 2
log <logé&y, +log| ——|. (227)
S1irp (Wpe (WT|WTe) 1-75
Sincet — log% is convex fort > 0, by Jensen’s inequality
1 1
> pw, (wr)log > log . (128)
wrEA SWTIWTC ('UJT|?,UTC) ZwIEApWI(wI)SWT|WTC (’UJT|'UJTC)
We have
100 1
S pwe(wr)sy, . (wrlwr:) (199 i > Sty (wrlwre) (129)
wzeA wzeA
@ 1 x
v Z S| Wre (WT[WTe) (130)
wrE€AT
1 *
< Al > Sy (wrlwh) (131)
wrEWr
1

where (a) follows from the definition afl7 in (11) and the fact stated in Statement (ii) that- = w7. for all
wz € A. Using 28 and (32, we obtain

1
> pws(wr)log > log | Al. (133)
wr€A SWor|Wre (wr ’ch)
Taking expectation with respect {8y, on both sides of427) and applying {33, we obtain
2
log [A] < (wz;ApWI(wI) log {wj._) + log <ﬁ> . (134)
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E. Simplification of Log-Likelihood Terms

In order to simplify (34), we will simplify the log-likelihood term inlog &,,, defined in (25. To this end, we
first let 7' (w;) 2 fi(w;) (f; is the encoding function at nodedefined in Definitionl) and we also let; 1 (w;)
denote thek™ component of:? (w;) for eachi € Z and eachk € {1,2,...n} such that

i (w;) = (@i (w;), zi2(wi), ..., xin(w;)). (135)
In addition, we let
rzk(wr) £ (21 p(wr), zop(w2), ... 2y k(wy)), (136)
and we let
orep(wre) £ (zj(wy) | j € T°) (137)
be a subtuple oz ,(wz). Similarly, let
wy(wz) = (27 (w), 25 (wa), ..., 2 (W), (138)
and let
wipe(wre) = (25 (wy) | j € T°) (139)

be a subtuple oi’}(wz). Using the fact thafX" is a function ofl¥; for all i € 7 and the notations defined above,
we obtain from {25 that

108 bz = 1 ilog< Pyi Xz (Yel2z4(wT)) )
wr Pyn|Wr=wg, X} =22 (wg) pt SYk|XTc,k(Yk’wT°,k(wTC))

2 = p k| ATk Y Zz s w
+\l 1 —ﬁvarPY"\Wz:wzvX%:m%wI) [Zlog< X ( k‘ z4lwz)) )] ) (140)
k=1

8| Xpe p (Yl|ZTe 1 (w010 ))

which implies from (L6) that

n

Py |xz, (Yelrz p(wr))
1 = E n l B
08 S M Praixzmezeion) LX:; o8 (snxw,k(Yklec,k(ch))

2 - Py Xz (Yilzz k(WD) )
+ —Varmr oo o lo : ’ , 141
\J 1— ol [Tiz.p kI Xz k=21 k(wT) [; g <3Yk|XTc,k(Yk’ch,k('wTﬂ)) ( )
which then implies that

n
Pyl (Yelzz i (w))
logSwI - ZEka\XI,k:TI,k(“’I) |:10g< -
k=1

8| Xpe p (Ye|ZTe 1 (w01e))

n

2 Yi|zz 1 (w
+J Zvaerk\XI,k:II,k(wz) |:10g< ka|XI,k( k‘ I’k( I)) >:| . (142)

1=5& Vi Xre . (YVe|oTe p(Wre))

Following (142), we use 17), (15 and (L08) to obtain
| < Pyi|xz. (Yelzzp(wz)) )
0g

8y Xpe p (Y| ZTe g (w070 ))

2
1 loge
Sy () (- (3 0) (4 D)

1€l €T 1€T

2
+ 2 (Z(ml,k(wz) — EuX”c [Xz,k])> <Yk — Zwuk(w,)) + (Z(ml,k(wl) — EuX”c [Xz,k])> ) (143)

1€l €T 1€l
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For eachwr € A and eachk < {1,2,...,n}, it follows from Definition 2 thatY;, — >, x; x(w;) is a standard
normal random variable it} is distributed according tpy, |x, , y» which then implies that

Py, x., (Yilrz p(wr))
Epyk\xz,k:mz,k(wz) IOg

8V, Xpe o (Ye|Te g (7))

2
(]i3) %log (1 + ZH) + #gijppz) ( (Z PZ> + (Z(:L’,7k(w2) — E“x”c [Xz,k])> ) (144)

i€l €T €T

ZII,k(wI

and

Var o [ _Prilxa (Yi|zz p(wr))
T 5V | Xre (Yilore 1 (wre))

2 2
(143 loge
- <m> Valpy, ix; mer o [— (;R) (Yk - ;xi,k(wi)>
+2 (Z(w“f(wl) - Euxk [sz])> (Yk - Z wzk(wz)>

€T 1€

(145)

((ZieT Pi)? +2 (ZzeT(xlk(wl) - EuXk [sz]))2> (log e)?
= TS e . (146)

Define

|Pr| 2> P, (147)
€T

and

A

Ty (wi) £ @ 0 (w;) — Eug [Xi k). (148)

Combining (34, (142), (144), (146), (147) and (48, we obtain for eachvy € A

ZwIE.ApWI(wZ) <_n|PT| + Zzzl (ZiET fz,k(wl))z) log e
21+ |Pr|)

log |A| < glog (1+|Pr]) +

+

D wseA sz(wI)\/(n|PT|2 +2370 ) (Cier ﬂ?i,k(wi))z) log e 5
+ log <ﬁ> , (149)

(1+[Pr)vI—7

which implies from Jensen’s inequality {+ /¢ is concave fort > 0) that

(=l Prl + 5y Spenpws (wr) (S Tis(wi)”) loge
2(1+ [Prl)
N \/"\PT\2 + 250 Ceapws (wr) (Siep Ti(wi)) loge e <
(L4 |Pr)vI—~ s

log |A| < glog (1+|Pr|) +

2
1—> . (150)

In the following, we will obtain an upper bound on the crudiatm >, > pw, (wz) (Xer ji7k(wi))2
which appears in the second and third terms on the right-satedof (L50).
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F. Introducing the Quantized Input Distribution to Simplthe Upper Bound
Following (150), we consider for each € {1,2,...,n}

2
> pwy(wr) (Z xi,k(%))

wrz€A €T

2
= Z pWT(wT) (ij,k(wz)> Z pWTC‘WT(’ch

wrEAT €T wre EWre

2
= Z pWT(ZUT) (Z :EL/.C(wZ-)) (152)

wrEAr €T

2
< Z pw (Wr) (Z%,k(%)) . (153)

wr EWT €T

wr) (151)

Since X" is a function ofW; for eachi € T', it follows from (148 that for eachk € {1,2,...,n}

2 2
Z pw, (wr) (Z%k(%)) = Z Pxrs (TT k) (Z <x2k_Euxk[X2k]>> ; (154)

wrEWr €T xT,kEXT €T

which implies from (53 that
2 2
Z pw, (wz) (Z xi,k(%)) < Z Xy (T k) (Z (xzk —Eu, [sz])> : (155)
wrEA i€T Tr L EXr i€T ’
Recalling the definition ofX’gﬁ and )37@ in (102 and @03 respectively, we write for each € {1,2,...,n}

Z pxr, (@7 k) (Z <-Z'zk = Bug L&k]))

Tk €EXp €T

2
= > Pxp g (BT TR (Z <33zk — Big+ Tip — Bug [Xi,k]>> (156)

-’ET,kEXT,-:%T,kGXT €T

2
= > Pxp g (BT Tk (Z(iﬂzk - i"i,k))

-’ET,kEXT,-:%T,kGXT €T

+2 > Pxyy X, (BT TTk) (Z(%k - ii,k)) (Z(@k —Bug [Xi,k])>

T, EXp o, EXp €T ieT

2
+ > P, (i) (Z(@’k—Eu}zi,k[Xi,k])> (157)

i‘T,kE)eT €T
2
= Z pXT,k,XT,k(xT,h L7 .k) Z(ﬂfi,k — 1)
T R E€Xp,Er EXp €T
+2 Z pXT,ky)ZT,k(mT7k7 :i'Tvk) Z($z7k - illyk) Z(il,k - Eu)qu [Xz7k])
@7 R EXr, 1 K EXr = €T

2
+ Y g, (i) <Z($zk _Eu)giyk[Xi,k])> (158)

B r€Xr €T
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< E Pxy X, (T ET k) (§ |k — xzk!>

mT,kGXT,jT,kGXT €T

+2 > Pxp o Xr, (BT Tk (Z\xm wzk\> <Z(\@k\ "‘Euxi)k[‘Xi,k’]))

&y €EXp, 21, EXr €T i€T

2
+ > pg, (@rp) <Z(3ﬁzk _Eu)giyk[Xi,k])> (159)

B x€Xr €T

a 2 ) 2
< ‘ﬂ v <Z \/7> > px,, (1) <Z(fi,k—Euxi,k[Xi,k])> (160)

i€T P i€l

where (a) follows from the facts below for eache 7', eachk € {1,2,...,n} and eachr;, € &; (recall the
definition of z; ;, in (102):

R @ 1
i g — Tig| < — (161)
n
and
43 (12)
|$z k| < |$z k| nkp;. (162)

G. Approximating the Quantized Input Distribution by a Pueot Distribution

In order to bound the last term irl§0), we use the bound in1Q5 for boundinng”(ﬁ:ﬂk) in terms of
uy,  (iry)) to obtain ’

2
> pg, (@) (Z(éﬁzk —Bug [Xi,k])>

fT,kG/\;T €T
1 1 2
ogn . R .
< ZA ((1 /= ) H ug, (Eir) + —n4T|> (Z(mk ~ B, [X,-vk])> (163)
Zrr€XT €T €T
1 2
_ [logn o N .
= Z <1 + n ) H uXi,k (wuk) (Z(xl’k EuXi,k [Xl,k])>
fT,kEXT €T €T
1 2
A (Z(@”“_E“&,k[){i”“])> ] (164)
€T
for eachk € {1,2,...,n}. The bound in 164 consists of two distinct terms which we now bound sepayatel

Consider the following two chains of inequalities for edeck {1,2,...,n}:

2
> (H uxk(”””f)> (Z(%k — Bug [Xi,k])>

Bp ey MET ieT

=> Bu, [(Xk —Bug, [Xi,k])2] (165)
€T

<> Eug, [ng] (166)



and
2
Zik — Bu, [Xik
> (Db, 150)
SACT,;CE.)E‘T €T
2
< ¥ <yT\max{ym EuXi’k[XM]\})
iETkEXT
e 2 7. p— A, 2
- |T| ZA Ilne%z{{(l'z,k EUXT,C[XNC]) }
Tr REXT
<ITP Y7 Y (@ik — Eug, [Kik))?
T, ke/{’T i€T )
(@) .
<2oTP Y 3 (et (B, [Kin])?)
IET,kGXT i€T
(162
Lo Y Y oan
-f%T,kE-)eT =
(b) ) .
< 4n!T\ | Pr||Xr|
2 4n3lTuTy 1PrI T[2VP +3),
€T
where

(@) follows from the fact thata — b)? < 2a? + 252 for all real numbers: andb.
(b) follows from the definition of Pr| in (147).

Combining (64, (166) and (73, we obtain for eaclt € {1,2,...,n}

2
> Px,, (E1k) <Z(§fzk —Bug [Xi,k])>

:?:T,ke?eT €T
logn N _
< (/") b, [55] rtta [ev R )
€T €T

which implies from (55 and (60) that

2
> pwy(wr) (Z wi,k(%’))
wz€A €T

_% % (Zﬁ) + (1+\/IOER>ZEUX {XQ } +4n”TNT P Pr| TT(2V/P + 3).

€T
Using (175 and 63) and recalling that7’| > 1 (becaus€l’ is non-empty), we obtain

S pw(wr) (Z xi,k(%’))

k=1 wIGA €T
< n|Pr|+ /nlogn|Pr| +4y/n|T)| (Z \/P,) +A|TP|Pp| [V P +3) +
€T €T

To simplify notation, let

Ky 2 AT (Z ﬁ) and ry 2 4T Pr| [[(2V/Pi +3)

€T €T
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(167)

(168)

(169)

(170)

(171)

(172)
(173)

(174)

(175)

(176)

a77)
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be two constants that are independent.ofThen, we combinelb0 and (L76) to yield

(Vnlogn|Pr| + \/nk1 + ra + 17! |T|?) log e
2(1 + [Pr|)
\/n|PT| (|Pr| + 2) + 2v/nlogn|Pr| +2\Fm + 29 + 2071 T2 log e log (L)
(1+|Pr|)v1— 1-5)

log || < 7 log (1+ | Prl) +

(178)

Combining 01 and (78, we obtain

4|T(1
<%> \/nlogn%—log( >—|—ZlogM

vnlogn|Pr|+ + kg + 0t T?)1
< ﬁlog(1+|PT|)+ (Vnlogn|Pr| + y/nki + k2 +n~HT|*) loge
2(1+ [Prl)

2
\/n|PT| (|Pr| + 2) + 2y/nlogn|Pr| + 2\/5141 + 2K9 + 2n~ YT |2 loge 4 log <
(L+[Pr[)v1-

Dividing both sides of 179 by n and taking limit inferior as: goes to infinity, we obtain from9g) that ©7)
holds as desired. This completes the proof of Theotem

2
ﬁ) . (179

H. Discussion on the Choices of the Quantizer's Precisiod tre Parameters Used in the Wringing Technique
in (69)
Our choice ofé in (69) has been optimized in the following sensedlfs chosen such that = o <\/1"%>,

then the second-order term on the RHS b9 would bew (\/n log n) (cf. (105 and (63)), which then leads to
an upper bound o, log M.(") with a looser (larger) second-order tetniy/n logn); if ¢ is chosen such that

§=w <\/1°g"> then the magnitude of the first term on the LHS &79 would bew (v/nlogn) (cf. (102)),

which then leads to an upper bound B log MZ.(") with a looser second-order tera(y/nlogn). Hence our

choice ofy = \/“’% “balances” the rates of growth of the two second-order teirmgl79). In this sense, our
choice of§ is optimal.

We now discuss the choice of the quantizer’s precisign= 1/n as shown in 103. Based on this choice of
A,,, we note that any choice of in (69) satisfying\n3/T1*1 = o(y/nlogn) does not affect the second-order term
of the resultant upper bound 9n,,_ log Mi(") implied by (179. In particular, the current choice= # stated
in (69) leads to the rightmost term irlQ5), which contributes to the fourth constant term &v¢ as well as the
constant term on the RHS 0179).

If the quantizer’s precision is chosen to be some othgr then it can be seen by inspectint6(), the upper
bound obtained at step (a) in the chain of inequalities leath (160), (176) and (78 that the second-order term
of resultant upper bound ol log Mi(") is Q (max{\/nlogn, Al,n*?2}). In particular, if A7, is chosen such

thatQ(i) <AL <O (—Vl(’g") for any fixeda > 1, we can follow similar calculations (with a slight modificat

of \) to conclude that the second-order term of the upper bouns on- logM is proportional to,/nlogn. As
explained in the second remark after Lem&as long as\/, decays to zero no faster than polynomiallyrinthen
|)3T| grows at most polynomially fast in, which will ensure that the asymptotic rates of the resulsmguence
of subcodes obtained from the wringing step are the sameaa®ttihe original sequence of codes. However, if
A/, decays to zero exponentially fast (i.&;, = O(27"") for someb > 0), then])?T\ will grow exponentially fast

in n and the RHS of {0) will decay exponentially rather than polynomially fashig in turn causes the asymptotic
rates of the resultant sequence of subcodes to decrease djti@gpquantity, thus resulting in a loose first-order
term on the RHS of the final inequalit 79 (which does not match the corresponding term in the Cowanai/
capacity region). Therefore, with this choice &f,, the strong converse cannot be shown.
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VI. INTERFERENCECHANNEL UNDER STRONG INTERFERENCEREGIME

The capacity region of a two-source two-destination Gaussiterference channel (IC) under strong interference
was derived by Han and Kobayasti4] and Sato 25]. Let P, P, be the received signal-to-noise ratios and let
I, I be the received interference-to-noise ratits $ec. 6.4]. Under the formulation of the Gaussian IC under
strong interferenceit is assumed thal, > P, and I; > P,. Under this condition, the capacity region was shown
in [24, Th. 5.2] to be the Han-Kobayashi region

R < %log(l + P),
Rixs = { (R1,Re) € RZ | Ry < Llog(1 + Py), . (180)
Ry + Ry <min{3log(1+ Py + I1), 3log(1+ P> + L)}
By applying Theorendl to each of the decoders of the two-source two-destinatiams§an IC, we can show that
the correspondinge, e2)-capacity regiorC,, ., is outer bounded as

C&] ,E2 - 7?’HK-S (181)

1,€2

as long ag; +¢2 < 1, whereg; characterizes the asymptotic average probability of dastin: decoding message
wrongly. Since the rate pairs iR.«.s are (0, 0)-achievable via simultaneous non-unique decodindggc. 6.4], we
have

C€1,€2 = Riks (182)

as long as; +e2 < 1. The strong converse (in fact, the complete second-ordentstics) for the Gaussian IC
under the more restrictive condition of strictly very stgonterference was shown by Le, Tan, and Mot&][ In

the rest of this section, we will describe the formulationtted Gaussian IC under strong interference and present
in SectionVI-B the corresponding strong converse result.

A. Problem Formulation and Main Result

We follow the standard setting of the Gaussian IC under gtioterference as given ir2f,, Sec. V]. The Gaussian
IC under strong interference consists of two sources, @erofs; ands, respectively, and two destinations, denoted
by d; andd, respectively. For eache {1,2}, s; chooses a messagk; and transmitsX” in » time slots, andi;
receivesY;” in n time slots and declardd’; to be the transmitted?;. The channel law in each time slbtis

Yik 1 912:|[X1k:| [Zlk:|
= o+ A 183
[ Yo } [ g1 1 Xo g Za ks (183)
wheregy; andg,» are two real constants characterizing the channel gaifeohterference links, anl 7, , Zg7k)}Z:1

aren independent copies of a Gaussian random vector denotédby,) (Z; and Z; need not be independent)
such that

E[Z)]=E[Z)] =0 (184)

and
E[Z}] =E[Z}] =1. (185)

For eachi € {1,2}, the codewords transmitted By should satisfy the peak power constraint

Pr{||X}|]* <nP} =1 (186)
for someP; > 0. We assume that the IC is under strong interference,gifg.z 1 andg§1 > 1, which implies that
I £ gi,P, > Py (187)

and
Iy £ g3, P > Py, (188)

whereI; and [, characterize the interference power received;atind ds respectively (cf. 183). The Gaussian
IC is characterized by some conditional probability dgn&inction gy, y,|x, x, and we define the Gaussian IC in
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a similar way to a Gaussian MAC (cf. Definitid?) such that 183, (184 and (L85 hold. In addition, we define
a lengthn code for the Gaussian IC as follows.

Definition 8: An (n,Ml(”),Mz(”),Pl,Pg)-codefor the Gaussian IC consists of the following:

1) A message sétV; = {1,2, ... ,Mi(")} at node; for each: € {1,2}, whereW; is uniform onW;.

2) An encoding functionf; : W; — R"™ for eachi € {1,2}, where f; is the encoding function at nodesuch
that X = f;(W;) and|| f;(w;)||* < nP; for all w; € Wi.

3) A (possmly stochastic) decoding functign : R™ — W for eachi € {1, 2}, wherey; is used by node; to
estimatel;, i.e., W; = ¢;(Y;").

We define an(n, MI"), M2n),P1,P2,El,Eg)a\,g-COde as follows.

Definition 9: For an(n, Ml("), MQ"), Py, P,)-code defined on the Gaussian IC, theerage probability of decod-
ing error for W; is defined for each € {1,2} as

Pr{W; # W;}. (189)

An (n, M{™ M™ | Py, Py)-code withPr{W; # W1} < e andPr{W, # W, } < e, is called an(n, M M,
Pl, PQ, €1, Eg)a\,g-COde.
For eachs; € [0,1) and eaches € [0, 1), we define an(ey, e2)-achievable rate pair as in Definitioh and we

define the(ey, e2)-capacity region, denoted ¥, .,, to be the set ofeq,e2)-achievable rate pairs. The following
theorem is the main result in this section.

Theorem 2:For eache; € [0,1) and eache; € [0,1) such thats; +¢e2 < 1,
C€1752 == RHK-S- (190)

B. Proof of Theoren2

We need the following definitions and lemma before presgrtire proof of Theoren2. The definition below
concerning a multicast code differs from Definiti@in the decoding functions only, but we state the whole
definition for clarity. Essentially, a multicast code fortlaussian IC is the same as a standard code except that
each decoder must output estimatedoth messages.

Definition 10: An (n,MI"),MQ"),Pl,PQ)—multicast coddor the Gaussian IC consists of the following:

1) A message sétV; = {1,2, ... ,Mi(")} at node; for each: € {1,2}, whereW; is uniform onW,.

2) An encoding functionf; : W; — R"™ for eachi € {1,2}, where f; is the encoding function at nodesuch
that X' = f;(W;) and || f;(w;)||* < nP; for all w; € W;.

3) A (pOSSIbly stochastic) decoding functign : R" — W; x W» for eachi € {1, 2} where<,pZ is used by
noded,; to estimate botil; and W> such that the pair of message estlmate(sVlis d, ,WQd ) £ i (Y).

We define an(n, Mln),Mz(n),Pl,PQ,El,EQ)an'multicaSt code as follows. Note that the multicast codesesdu
for the Gaussian IC but not a general multicast channel.

Definition 11: For an(n, Ml("), MQ("), Py, Py)-multicast code defined on the Gaussian IC,dkierage probability
of decoding error at destinatiod; is defined for eacli € {1,2} as

Pr {{Wl,di ] Wl} U {Wzvdi 4 WQ}} . (191)

An (n,Ml("),MQ("),Pl,P2)-muIticast code with average probability of decoding emordestinationd; no larger
thane; for eachi € {1,2} is called an(n,Ml("),Mé"),Pl,Pg,el,a-:g)a\,g-code.

The following lemma plays a crucial role in extending ourosty converse result for the Gaussian MAC to
the Gaussian IC under strong interference, because iesethe error probabilities for standard codes defined
for the Gaussian IC in Definitio® to the error probabilities for multicast-codes defined tog Gaussian IC in
Definition 11.
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Lemma 6:For each(n,Ml("), Mz(”), Py, Py, e1,e2)ag-code for the Gaussian IC, there exists(ali(”), Mz(”),
Py, Py e1 + e2,€1 + €2)avgMulticast code for the Gaussian IC.

Proof: Suppose we are given &n, Ml(”), Mz(”), P1, Py, €1, €2)avg-code whose encoding and stochastic decoding
functions are denoted biyf;, f2) and(¢1, ¢2) respectively (cf. Definitior8). Let pw, w, xr, xz, v, v 2,z be the
probability distribution induced by thQL,an),Mén),Pl,P2,€1,€2)avg'COde. By Definition9, we have for each
i€{1,2}

Prp, oo {@i(Yi") # Wi} <, (192)
which implies from (83 that
Prpy o L1 (1) + g2 f2(Wa) + Z1) # Wi} < e (193)
and
Prp wyzp {02(920/1(W1) + fo(W2) + Z5) # Wa} < 3. (194)

In the rest of the proof, we construct new stochastic deapflinctions atd; andds,, denoted byy) andy/, respec-
tively, such that(y1, }) and (¢2, ¢4) can be viewed as the stochastic decoding functions qfnaMf"),MQ"),
P1, Py, e1+¢€9,e1 +2)agmulticast code. To this end, we first defiﬁe andZ, to ben independent copies of the
standard normal random variable such t&, Z3 and (X7, X3, Y, Yy, Z, Z3) are independent. In addition,
there existw} € W; andwj; € W, such that

Prow, wysp 102(Y2') # Wl Wi = wi} = arg min Prpy, u, v {92(¥2") # Wa[W1 = w1} (195)

and
Prpy wynp {01 (V") # Wi [We = w3} = arg min Prp,, o 0 {01(Y7") # Wi |Wa = ws}, (196)

wa EWo

which implies from (93 and (94 that

Prpy, 2y {02(921f1(w7) + fo(W2) + Z3) # Wa} < e (197)
and
Prpy, oo {01 (f1(W1) + grafo(wy) + Z7') # Wi} < e1. (198)
Then, we define the stochastic decoders
Yy — Y. 1 -
oL (Y") £ oo (921f1(’wf) + - Sl (7)) +4/1— TZ§L> (199)
912 912
and
vy Y. 1 =~
AT 2 o < 2 P20 b wg) + 1 TZ?) , (200)
g21 921

where the randomness properties of the stochastic fursctidginate from not onlyp; ands but alsoZ{L and Zg.
Since

go1 f1(wy) + fa(W2) + Z3 (201)
and
Y — W- 1 -
gar fi(w) + WohW) 23 (202)
g12 912

have the same distribution b#&3), it follows from (197) and (199 that
Prp wosnzp LI # Wal 0 {en(Y]") = Wit}

Y- AW [1 .,
< Prpy, wy oy {902 (921f1(w1) + %;(1) /1= gTZ2> # W2} (203)
12

<eéeo. (204)
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Combining (99 and @04), we obtain

Pl wazp 2y {o1(YT") # Wy or ¢ (Y]") # Wa}
= Pry, sy {01 (V) £ Wi+ Prpy o A0 # W) 0 {07 =W} (208)
<erte. (206)
Following similar procedures for derivin@6), we obtain the following inequality by usind83), (198 and 00):
Pryy v opp 192(Y3") # Wa Or (Y5 # Wi} < er +e2. (207)

Replacing the decoding functions of the, Ml("), 2("),P1,P2,51,52)avg—code with (1, ) and (2, ¢5) and
keeping the encoding functions unchanged, we conclude f{20®) and @O07) that the resultant code is an
(n, Ml(”), Mz(”),Pl, Py, e1 + £2,€1 + €2)avg-Multicast code. [

We are now ready to prove the strong converse theorem for ¢hesstan IC under strong interference.
Proof of Theoren®: Fix £ > 0 andsy > 0 such that
e1+eg < 1. (208)

As discussed at the beginning of Sectigh, it follows from Theorem 5.2 ing4] that Co o = Rus Where the
quantities/; and I, in R.«s are defined in187) and (88 respectively. Sinc€ o C C., ., for all non-negative
real numberg, andey by definition,

1,€2

Rincs € Cor ey (209)

Therefore, it suffices to prove

Cer ey € Rincs. (210)

To this end, fix a rate pai(R;, R2) € C., .,. By definition, there exists a sequence (af Ml("),Mz("),Pl,Pg,
el™ &) .codes such that

1 n
liminf — log M™ > R; (211)
n—oo n
and
lim sup EZ(-") <e¢g; (212)
n—oo

for eachi € {1,2}. It then following from Lemma6 and @12 that there exists a sequence (of, Mln),MQ"),
Py, Py, é&"),égn))avg—multicast codes such that
limsup ™ < &) + e (213)
n—oo
for eachi € {1,2}.
Construct a subnetwork of the Gaussian IC formed by deletings well as the links connecting to it. By inspec-
tion, the resultant subnetwork is a two-source Gaussian MACthe sequence 6f;, Ml("), MQ("), Py, Py, éﬁ”) , éé"))a\,g-

multicast codes for the Gaussian IC induces a sequenge, Ml("), MQ"), P, P, é&"))avg—codes for the two-source
Gaussian MAC. It then follows from2(L1) and @13 that (R;, R2) is (¢1 + £2)-achievable for the two-source
Gaussian MAC, which implies from Theorein (208) and (L83 that

1
Ry < 5log(1+F1), (214)

1
Ry < 5 log (14 g12P,) (215)
and

1
Ri+ Ry < Slog (14 Py + g12Py) (216)
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Similarly, if we repeat the above procedures for the other-$aurce Gaussian MAC resulting from deletidg
from the Gaussian IC, we obtain

1
Ry < 5log (1+g5 1), (217)
1
Ry < 3 log (1+ P,) (218)
and
1
Ri+ Ry < 5log (1495 P+ Py). (219)

Combining the bounds in2@4), (216), (218, (219, the capacity region in180), and the strong interference
conditions in (87) and (88), we have(R;, R2) € R.s. Consequently, the outer bound i21Q) holds, and the
theorem follows from Z10) and the inner bound stated i8Q9). [ |

APPENDIX
Proof of Lemmal: Suppose arin, Mé”), Pz, €)ayg-code is given for some € [0,1), and let
ew, & Pr{Wz # wr | Wz = wz} (220)

be the probability of decoding error given that is the message tuple transmitted by the sources. Then bsiclypo
wz one by one in an increasing order @f,, we can construct a sé C Wz such that

1+e

Pr{Wr # wr | Wz = wr} <

D] > Ki - i) HM}")J . (222)

1€l

(221)

for all wz € D and

This is essentially an expurgation argument. The boun#2d)(means that there exists @m, Mé"), Pr,D, T, %)max

code such that22) holds. Fix a nonempty” C Z. Define
for eachwy. € Wy such that
> Dup| =D (224)
wre EWre

= [Lere Mi("), it follows from (222 and @24) that there exists a}.. € Wr. such that

(=]

i€l

Since |[Wre

|Dw}c

or otherwise we would obtain the following chain of ineqtia which would eventually contradic222):

22
D2 S D, (226)
wre EWrpe
< Wr Kl — 5) I1 MWJ (227)
14+¢)/- !
€T
_ m | (L=¢ (n)
_‘H M| KHe)HMi J (228)
i€Te €T

tsmue
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which contradicts 222). Due to @25, we can construct alﬁn,Mé”),Pz,Dw;c,T, H2), ,ccode based on the

(n, Mé"),PI,D,I,%)maX—code such that they have the same message sets, encodaiprisnand decoding
function and differ in only the support set of the messagdetlifg; (cf. Definition 1). In particular, the second
statement in Definitiorl is satisfied because of the following reasons:

1) By constructionVz is uniform onD,: .

2) For allwz € Dy:., we havewr. = wy. by (223).

Let A £ D, . It remains to show thaB30) and @1) hold for the (n, Mé"), Pr, AT, =)
definition of A7 in (11), we obtain from 223) that

| Al = |A7| = |Duy.

max-code. Recalling the

) (230)
which implies from 225 that

Al = |Ar| > Ki ;i) HM}")J . (231)

i€T
Consequently,30) follows from (230), (231 and @9). It remains to provedl). To this end, letp,;, Xz
denote the probability distribution induced on the Gaus$iAC by the (n,Mé”),PZ,A, T, 1)

7Yn 7WT
-code, where
ax

m
1
wr) = —— 232
pw(wr) 7] (232)
for all wr € A by Definition 1. Using €32 and @0), we obtain
1 2(1+4+¢
Py () < (2 (233)
[Ler M 1-e¢
for eachwy € Ar. [ |
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