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Abstract

We prove the strong converse for theN -source Gaussian multiple access channel (MAC). In particular, we
show that any rate tuple that can be supported by a sequence ofcodes with asymptotic average error probability
less than one must lie in the Cover-Wyner capacity region. Our proof consists of the following. First, we perform
an expurgation step to convert any given sequence of codes with asymptotic average error probability less than
one to codes with asymptotic maximal error probability lessthan one. Second, we quantize the input alphabets
with an appropriately chosen resolution. Upon quantization, we apply the wringing technique (by Ahlswede) on the
quantized inputs to obtain further subcodes from the subcodes obtained in the expurgation step so that the resultant
correlations among the symbols transmitted by the different sources vanish as the blocklength grows. Finally, we
derive upper bounds on achievable sum-rates of the subcodesin terms of the type-II error of a binary hypothesis
test. These upper bounds are then simplified through judicious choices of auxiliary output distributions. Our strong
converse result carries over to the Gaussian interference channel under strong interference as long as the sum of the
two asymptotic average error probabilities less than one.

Index Terms

Gaussian multiple access channel, Strong converse, Binaryhypothesis testing, Expurgation, Wringing technique

I. INTRODUCTION

The multiple access channel (MAC) is one of the most well-studied problems in network information theory [1].
The capacity region of the discrete memoryless MAC was independently derived by Ahlswede [2] and Liao [3]
in the early 1970s. In this paper, we are interested in the Gaussian version of this problem for which the channel
outputY corresponding to the inputs(X1,X2, . . . ,XN ) is

Y =

N
∑

i=1

Xi + Z, (1)

whereZ is standard Gaussian noise. We assume an average transmission power constraint ofPi corresponding to
each transmitteri ∈ {1, 2, . . . , N}. The capacity region was derived by Cover [4] and Wyner [5] and is the set of
all rate tuples(R1, R2, . . . , RN ) ∈ R

N
+ that satisfy

∑

i∈T
Ri ≤

1

2
log

(

1 +
∑

i∈T
Pi

)

(2)

for all subsetsT ⊆ {1, 2, . . . , N}. For theN = 2 case, the pentagonal region of rate tuples in (2) is known as the
Cover-Wynerregion and is illustrated in Figure1.

Despite our seemingly complete understanding of fundamental limits of the Gaussian MAC, it is worth high-
lighting that in the above-mentioned seminal works [2]–[5], it is assumed that the average error probability tends to
zero as the length of the code grows without bound. This implies that those established converses are, in fact,weak
converses. Fano’s inequality [1, Sec. 2.1] is typically used as a key tool to establish such weak converses. In this
work, we strengthen the results of Cover [4] and Wyner [5] and show that any rate tuple that can be supported by a
sequence (in the blocklength) of Gaussian multiple access codes with asymptotic average error probabilitystrictly
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Fig. 1. Capacity region of the two-encoder Gaussian MAC [4], [5]. We use the shorthandsC1 , 1

2
log(1 + P1) andC1|2 , 1

2
log(1 +

P1/(1 + P2)) and similarly forC2 andC2|1.

less than one(and not necessarily tending to zero) must lie in the Cover-Wyner region. This is astrong converse
statement, akin to the work on strong converses for point-to-point channels by Wolfowitz [6]. It indicates that
the boundary of the Cover-Wyner region designates a sharp phase transition of the smallest achievable asymptotic
error probability, which is zero for any rate tuple inside the capacity region and one for any rate tuple outside the
capacity region. Thus, this work augments our understanding of the first-order fundamental limit of the Gaussian
MAC. Additionally, it may also serve as a stepping stone for studying the second-order asymptotics [7]–[10] or
upper bounds (e.g., the sphere-packing bound) on the reliability function of the Gaussian MAC (cf. [11, Th. 4]).

A. Related Work

The study of MACs has a long history and we refer the reader to the excellent exposition in El Gamal and Kim [1,
Ch. 4] for a thorough discussion. Dueck [12] proved the strong converse for the (two-source) discrete memoryless
MAC using the the technique of blowing up decoding sets originally due to Ahlswede, Gács and Körner [13],
combined with a novel strategy known as thewringing technique. The technique of blowing up decoding sets uses
the so-calledblowing-up lemma[13], [14] (see also [15, Ch. 5] or [16, Sec. 3.6]). This technique is useful for
establishing strong converse results for memoryless channels with finite output alphabets.

Dueck’s proof proceeds in three steps. First, Dueck expurgates an appropriate subset of codeword pairs to convert
any given sequence of codes with asymptoticaverageerror probability bounded away from one to a sequence of
codes with asymptoticmaximalerror probability bounded away from one.1 This expurgation step is performed so
that the blowing-up lemma to be applied in the third step yields tight upper bounds on the sum-rate, which will then
lead to the desired strong converse result. Unfortunately,the expurgation step introduces undesirable correlations
among the codewords transmitted by theN encoders. Second, a wringing technique is introduced to wring out any
residual dependence among the symbols transmitted by theN encoders by choosing a further subcode from each
subcode obtained in the expurgation step. Wringing is necessary for establishing a tight sum-rate bound, because
the sum-rate capacity of the MAC is expressed as the supremumof mutual information terms over all independent
input distributions (the independence is due to the fact that theN encoders do not cooperate). Third, the blowing-up
lemma is applied to the resultant subcode to yield a tight upper bound on the sum-rate.

Ahlswede [17] presented another strong converse proof for the (two-source) discrete memoryless MAC by
modifying Dueck’s wringing technique as well as replacing the use of the blowing-up lemma in Dueck’s proof with
an application of Augustin’s non-asymptotic converse bound [18]. However, the proofs of Dueck and Ahlswede
are specific to the discrete (finite alphabet) setting and it is not clear by examining the proofs that the same strong
converse statement follows in a straightforward way for theGaussian MAC with peak power constraints.

Another approach to proving the strong converse for a general MAC is due to Han [19], who used the information
spectrum technique [20] to provide a general formula for MACs and stated a condition[19, Th. 6] for the strong
converse to hold. However, unlike for the point-to-point setting [20, Sec. 3.6–3.7], the property is difficult to verify
for various classes of memoryless MACs.

1Although the capacity region of the Gaussian MAC is well-known when it is defined in terms of the average error probability[1], [4],
[5], the determination of the capacity region is an open problem if it is defined in terms of themaximalerror probability.
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In view of the above works and the practical and theoretical importance of strong converse theorems, we are
motivated to provide a self-contained proof for the strong converse of the Gaussian MAC.

B. Challenges in Establishing the Strong Converse and Our Strategies to Overcome Them

In this subsection, we discuss the challenges of leveragingexisting techniques to prove the strong converse for
the Gaussian MAC. In particular, we highlight the difficulties in directly using the ideas contained in Dueck’s [12]
and Ahlswede’s [17] proofs. We also describe, at a high level, the strategy we employ to overcome these difficulties.
Finally, we discuss some other auxiliary proof techniques.

1) Blowing-Up Lemma in Dueck’s Proof [12] Cannot be Directly Extended to Continuous Alphabets:In Dueck’s
paper [12], he used a version of theblowing-up lemma, together with other tools, to prove the strong converse
theorem for the discrete memoryless MAC. A crucial step in Dueck’s proof involves the establishing of an upper
bound on the list size of possible messages for every output sequence based on the blown-up decoding sets. If the
resultant list size is too large (e.g., contains an exponential number of messages), the Dueck’s technique cannot
lead to the strong converse theorem. Since this crucial stepheavily relies on the finiteness of the output alphabet
and the output alphabet of the Gaussian MAC is uncountably infinite, it is not immediately apparent how to extend
this step to the Gaussian case.

2) Wringing Technique in Ahlswede’s Proof [17] Cannot be Directly Extended to Continuous Alphabets:As
mentioned in the previous section, Ahlswede’s proof [17] is based on a modification of Dueck’s wringing technique
and Augustin’s non-asymptotic converse bound [18]. However, it is not apparent how to adapt his techniques to
obtain a strong converse bound on the sum-rate. More specifically, Ahlswede’s wringing technique (see Equation
(5.3) in [17]) leads to the following sum-rate bound for any sequence of length-n codes whose asymptotic average
error probability is bounded away from one:

R1 +R2 ≤ I(X1,X2;Y ) +O

(

log n√
n

)

|X1||X2||Y|. (3)

In (3), X1 andX2 are independentrandom variables. However, the bound in (3) is sensitive to the sizes of the
input and output alphabets, which prevents us from directlyextending Ahlswede’s proof to the Gaussian case.
Furthermore, there are no cost constraints in the discrete memoryless MAC and incorporating cost constraints does
not seem to be trivial. A naı̈ve strategy to extend Ahlswede’s proof to the Gaussian case is to quantize the input
and output alphabets of the Gaussian MAC so thatX1, X2 andY depend onn and their cardinalities grow withn.
Say we denote the quantized alphabets asX̂ (n)

1 , X̂ (n)
2 and Ŷ(n). This sequence of quantized alphabets and the

corresponding channels will be designed to provide increasingly refined approximations to the Gaussian MAC asn

increases. In designinĝX (n)
1 , X̂ (n)

2 and Ŷ(n), we would also like to ensure that the power constraints are satisfied

and the termO
(

logn√
n

)

|X̂ (n)
1 ||X̂ (n)

2 ||Ŷ(n)| in (3) vanishes asn tends to infinity. However, quantization arguments
that are used to prove information-theoretic statements for continuous-valued alphabets are usually applied to the
achievability parts of coding theorems. For example, a quantization argument is used in [1, Sec. 3.4.1] for leveraging
the achievability proof for the discrete memoryless channel (DMC) with cost constraints to prove the achievability
part of the capacity of the AWGN channel. To the best of our knowledge, standard quantization arguments for
achievability parts do not work for strong converse proofs because upon quantization, one has to ensure that the
resultant asymptotic error probability is bounded away from one.

The reader is also referred to [21, Appendix D.6] for a complementary explanation of why Ahlswede’s original
wringing technique works for only MACs with finite alphabetsbut not the Gaussian MAC.

3) Remedy – Combining a Quantization Argument with the Wringing Technique:The difficulties in directly
using Dueck’s and Ahlswede’s techniques led the authors to combine a novel quantization argument together with
Ahlswede’s wringing idea. We use a scalar quantizer of increasing precision in the blocklength to discretize (only)
the input alphabets of the channel so that the Ahlswede’s wringing technique can be performedon the quantized
channel inputsfor any given code whose asymptotic error probability is bounded away from one. In doing so, we
obtain a sequence of subcodes whose asymptotic error probability is bounded away from one such that the resultant
correlations among the codeword symbols transmitted by thedifferent sources vanish asn increases. Note that if
the quantizer’s precision is too small or too large, the resultant upper bound on the sum-rate will be too loose
and hence not useful in proving the strong converse. We discuss feasible choices of the quantizer’s precision and
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the parameters used in the wringing technique in SectionV-H. In our proof, the quantizer’s precision is chosen in
such a way that the quantized input alphabetsX̂ (n)

i grow no faster thanO(n3/2). It turns out that this choice of
quantization also allows us to control the approximation errors between the true channel inputs and the quantized
ones uniformly.

4) Other Ingredients in Our Proof:In Ahlswede’s proof of the strong converse for the discrete memoryless
MAC, he appealed to a non-asymptotic converse bound by Augustin [18]. In our proof we use a conceptually
similar non-asymptotic converse bound that is motivated bymodern techniques relating binary hypothesis testing
to channel coding. In particular, we use a form of themeta-converse[22, Sec. III-E] due to Wang, Colbeck and
Renner [23, Lemma 1]. We derive a multi-user version of this non-asymptotic converse bound. After doing so,
we choose the auxiliary conditional output distributions therein to be product distributions that approximate the
quantizedcode distribution. We note that the flexibility of the choiceof the output distributions is essential for
proving the strong converse for the Gaussian MAC as we can allow these distributions to depend not only on the
peak powers but also the chosen precision of the scalar quantizer (cf. SectionI-B3).

C. Paper Outline

In the next subsection, we state the notation used in this paper. In SectionII , we describe the system model and
define theε-capacity region of the Gaussian MAC. In SectionIII , we present the main result of the paper. We present
a few preliminaries for the proof in SectionIV. The complete proof is then presented in SectionV. SectionVI
extends our strong converse result to the two-source two-destination Gaussian IC under strong interference.

D. Notation

We use the upper case letterX to denote an arbitrary (discrete or continuous) random variable with alphabetX ,
and use a lower case letterx to denote a realization ofX. We useXn to denote the random tuple(X1,X2, . . . ,Xn).

The following notations are used for any arbitrary random variablesX andY and any mappingg whose domain
includesX . We let pX,Y and pY |X denote the probability distribution of(X,Y ) (can be both discrete, both
continuous or one discrete and one continuous) and the conditional probability distribution ofY givenX respectively.
We let pX,Y (x, y) andpY |X(y|x) be the evaluations ofpX,Y andpY |X respectively at(X,Y ) = (x, y). To avoid
confusion, we do not writePr{X = x, Y = y} to representpX,Y (x, y) unlessX andY are both discrete. To make
the dependence on the distribution explicit, we letPrpX

{g(X) ∈ A} denote
∫

x∈X pX(x)1{g(x) ∈ A}dx for any
real-valued functiong and any setA. The expectation and the variance ofg(X) are denoted asEpX

[g(X)] and
VarpX

[g(X)] = EpX
[(g(X) − EpX

[g(X)])2] respectively, where we again make the dependence on the underlying
distribution pX explicit. We letN ( · ;µ, σ2) : R → [0,∞) denote the probability density function of a Gaussian
random variable whose mean and variance areµ andσ2 respectively. This means that

N (z;µ, σ2) ,
1√
2πσ2

exp

(

− (z − µ)2

2σ2

)

. (4)

We will take all logarithms to base 2 throughout this paper. The Euclidean norm of a vectorxn ∈ R
n is denoted

by ‖xn‖ =
√

∑n
k=1 x

2
k.

II. GAUSSIAN MULTIPLE ACCESSCHANNEL

We consider a Gaussian MAC that consists ofN sources and one destination. Let

I , {1, 2, . . . , N} (5)

be the index set of the sources (or encoders), and letd denote the destination (or decoder). TheN message sources
transmit information to the destination inn time slots (channel uses) as follows. For eachi ∈ I, nodei chooses
message

Wi ∈ {1, 2, . . . ,M (n)
i } (6)
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and sendsWi to noded whereM (n)
i denotes the message size. Based onWi, each nodei prepares a codeword

Xn
i ∈ R

n to be transmitted andXn
i should satisfy

n
∑

k=1

X2
i,k ≤ nPi,

wherePi denotes the power constraint for the codeword transmitted by nodei. Then for eachk ∈ {1, 2, . . . , n},
each nodei transmitsXi,k in time slotk and noded receives the real-valued symbol

Yk =
∑

i∈I
Xi,k + Zk, (7)

where Z1, Z2, . . . , Zn are i.i.d. andZ1 is a standard Gaussian random variable. Aftern time slots, noded
declares{Ŵi}i∈I to be the transmitted{Wi}i∈I based onY n.

To simplify notation, we use the following convention for any T ⊆ I. For any random tuple(X1,X2, . . . ,XN ),
we let

XT , (Xi | i ∈ T ) (8)

be its subtuple, whose generic realization and alphabet aredenoted byxT and

XT =
∏

i∈T
Xi (9)

respectively. Similarly, for anyk ∈ {1, 2, . . . , n} and any random tuple(X1,k,X2,k, . . . ,XN,k) ∈ XI , we let

XT,k , (Xi,k | i ∈ T ) (10)

be its subtuple, whose realization is denoted byxT,k. The following five definitions formally define a Gaussian
MAC and its capacity region.

Definition 1: Let T be a non-empty subset inI. An (n,M
(n)
I , PI ,A, T )-code for the Gaussian MAC, where

M
(n)
I , (M

(n)
1 ,M

(n)
2 , . . . ,M

(n)
N ) andPI , (P1, P2, . . . , PN ), consists of the following:

1) A message setWi , {1, 2, . . . ,M (n)
i } at nodei for eachi ∈ I.

2) A support set of the message tupleWI denoted byA ⊆ WI whereWI is uniform onA. In addition, all the
wI ’s in A have the samewT c , i.e., there exists aw∗

T c ∈ WT c such that for allwI ∈ A, we havewT c = w∗
T c .

Define
AT , {wT ∈ WT |There exists ãwI ∈ A such thatwT = w̃T } (11)

to be the support ofWT . Consequently, the message tupleWT is uniform onAT .
3) An encoding functionfi : Wi → R

n for eachi ∈ I, wherefi is the encoding function at nodei such that
Xn

i = fi(Wi) and
‖fi(wi)‖2 ≤ nPi (12)

for all wi ∈ Wi. The set of codewords{fi(1), fi(2), . . . , fi(M (n)
i )} is called thecodebook forWi. For each

i ∈ I, the finite alphabet

Xi , {x ∈ R |x is a component offi(wi) for somewi ∈ Wi } (13)

is called thesupportof symbols transmitted byi becausefi(Wi) ⊆ X n
i . Note that

|Xi| ≤ nM
(n)
i (14)

for eachi ∈ I by (13).
4) A (possibly stochastic) decoding functionϕ : Rn → A, which is used by noded to estimate the message

tupleWI , i.e., ŴI = ϕ(Y n).

If A = WI andT = I, thenWI is uniformly distributed onWI , which implies that theN messages are mutually
independent. Since(n,M (n)

I , PI ,WI ,I)-codes are of our main interest, they are also called(n,M
(n)
I , PI)-codes

for notational convenience. However, in the present work, it is necessary to allowA andT to be strict subsets of
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WI andI respectively so the generality afforded in the above definition is necessary. In this case, theN messages
need not be independent. In the rest of this paper, if we fix a code with encoding functions{fi|i ∈ I}, thenXi as
defined in (13) denotes the support of symbols transmitted by eachi ∈ I.

Definition 2: A Gaussian MACis characterized by the conditional probability density function qY |XI
satisfying

qY |XI
(y|xI) = N

(

y;
∑

i∈I
xi, 1

)

(15)

for all xI ∈ R
N and ally ∈ R such that the following holds for any(n,M (n)

I , PI ,A, T )-code: LetpWI ,Xn
I ,Y

n be

the probability distribution induced by the(n,M (n)
I , PI ,A, T )-code. Then,

pWI ,Xn
I ,Y

n(wI , x
n
I , y

n) = pWI
(wI)

(

∏

i∈I
1{xni = fi(wi)}

)(

n
∏

k=1

pYk|XI,k
(yk|xI,k)

)

(16)

for all (wI , xnI , y
n) ∈ A× X n

I × R
n where

pYk|XI,k
(yk|xI,k) , qY |XI

(yk|xI,k). (17)

SincepYk|XI,k
does not depend onk by (17) and (15), the channel is stationary.

For any (n,M (n)
I , PI ,A, T )-code defined on the Gaussian MAC, letpWI ,Xn

I ,Y
n,ŴI

be the joint distribution

induced by the code. SincêWI is a function ofY n by Definition 1, it follows that

pWI ,Xn
I ,Y

n,ŴI
= pWI ,Xn

I ,Y
npŴI|Y n , (18)

which implies from (16) that

pWI ,Xn
I ,Y

n,ŴI
= pWI ,Xn

I

(

n
∏

k=1

pYk|XI,k

)

pŴI|Y n . (19)

Definition 3: For an(n,M (n)
I , PI)-code defined on the Gaussian MAC, we can calculate accordingto (19) the

average probability of decoding errorwhich is defined as

Pr
{

ŴI 6= WI
}

. (20)

An (n,M
(n)
I , PI)-code with average probability of decoding error no larger thanε is called an(n,M (n)

I , PI , ε)avg-
code. Similarly for an(n,M (n)

I , PI ,A, T )-code, we can calculate themaximal probability of decoding errordefined
as

max
wI∈A

Pr
{

ŴT 6= WT

∣

∣WI = wI
}

. (21)

An (n,M
(n)
I , PI ,A, T )-code with maximal probability of decoding error no larger thanε is called an(n,M (n)

I , PI ,
A, T, ε)max-code.

Definition 4: A rate tupleRI , (R1, R2, . . . , RN ) is ε-achievablefor the Gaussian MAC if there exists a
sequence of(n,M (n)

I , PI , εn)avg-codes on the Gaussian MAC such that

lim inf
n→∞

1

n
logM

(n)
i ≥ Ri (22)

for eachi ∈ I and
lim sup
n→∞

εn ≤ ε. (23)

Definition 5: For eachε ∈ [0, 1), theε-capacity regionof the Gaussian MAC, denoted byCε, is the set consisting
of all ε-achievable rate tuplesRI . The capacity regionis defined to be the0-capacity regionC0.
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III. M AIN RESULT

The following theorem is the main result in this paper.
Theorem 1:Define

RCW ,
⋂

T⊆I

{

RI ∈ R
N
+

∣

∣

∑

i∈T Ri ≤ 1
2 log

(

1+
∑

i∈T Pi

)}

. (24)

Then for eachε ∈ [0, 1),
Cε ⊆ RCW. (25)

We now present three remarks concerning Theorem1.

1) Note thatRCW is the Cover-Wyner [4], [5] region for anN -source Gaussian MAC. The theorem says that
regardless of the admissible average error probability (aslong as it is strictly smaller than1), all achievable
rate tuples must lie inRCW. Since all rate tuples inRCW are 0-achievable [1, Sec. 4.7], we have for every
ε ∈ [0, 1)

Cε = RCW. (26)

2) In fact, the proof allows us to additionally assert the following: For any non-vanishing average error probability
ε ∈ [0, 1) and any subsetT ⊆ I, it can be shown that the sum-rate of the messages indexed byT of any
sequence of(n,M (n)

I , PI , εn)avg-codes satisfying the constraint in (23) also satisfies

lim sup
n→∞

1√
n log n

[

∑

i∈T
logM

(n)
i − n

2
log

(

1 +
∑

i∈T
Pi

)

]

≤ Υ(ε, T, PI) < ∞ (27)

for some finite constantΥ(ε, T, PI). See (179) in the proof of Theorem1. Even though the normalizing
speed of

√
n log n is not the desired

√
n (as usually defined in second-order asymptotic analyses [7]), the

techniques in this work may serve as a stepping stone to establish an outer bound for the second-order coding
rate region [7] for the Gaussian MAC. The best inner bound for the second-order coding rates for the Gaussian
MAC was established independently by Scarlett, Martinez, and Guillén i Fàbregas [8] and MolavianJazi and
Laneman [9]. According to the inner bounds in [8], [9] and the relation between second-order coding rates
and second-order asymptotics of sum-rates in [10],

lim inf
n→∞

1√
n

[

∑

i∈T
logM

(n)
i − n

2
log

(

1 +
∑

i∈T
Pi

)

]

≥ Υ(ε, T, PI) > −∞ (28)

for some finite constantΥ(ε, T, PI). Our normalizing speed of
√
n log n in (27) is slightly better than in

Ahlswede’s work on the discrete memoryless MAC [17], which is
√
n log n. We have attempted to optimize

(reduce) the exponent of the logarithmζ > 0 in the normalizing speed
√
n(log n)ζ . However, as we will

discuss in SectionV-H in the sequel, we are unable to use our proof technique to further reduce (improve)
ζ from 1/2. For both the discrete and Gaussian MACs, it is challenging to prove that the exact normalizing
speed of the second-order term is

√
n. This is, in part, due to the use of wringing technique in the converse

part, which prevents one from obtaining a converse that matches the achievability in the rate of growth of
the second-order term. Unless new techniques are invented to replace the wringing argument in the strong
converse proof for the MAC (such techniques have remained elusive for over 30 years), the exact normalizing
speed of the second-order term for the discrete and GaussianMACs will remain an open problem.

In the next section, we will present a few preliminaries for the proof of Theorem1, which will be detailed in
SectionV.

IV. PRELIMINARIES FOR THEPROOF OFTHEOREM 1

A. Expurgation of Message Tuples

The following lemma is based on the technique of expurgatingmessage tuples introduced by Dueck [12, Sec. II],
and the proof is provided in the Appendix for completeness.



8

Lemma 1:Let ε ∈ [0, 1). Suppose an(n,M (n)
I , PI , ε)avg-code for the Gaussian MAC is given. Then for each

nonemptyT ⊆ I such that
⌊

(

1− ε

1 + ε

)

∏

i∈T
M

(n)
i

⌋

≥
(

1− ε

2(1 + ε)

)

∏

i∈T
M

(n)
i , (29)

there exist a setA ⊆ WI and an
(

n,M
(n)
I , PI ,A, T, 1+ε

2

)

max
-code such that

|AT | = |A| ≥
(

1− ε

2(1 + ε)

)

∏

i∈T
M

(n)
i , (30)

whereAT is as defined in (11). As a consequence, if we letpWI ,Xn
I ,Y

n,ŴI
denote the probability distribution

induced on the Gaussian MAC by the
(

n,M
(n)
I , PI ,A, T, 1+ε

2

)

max
-code, then we have for eachwT ∈ AT

pWT
(wT ) ≤

1
∏

i∈T M
(n)
i

·
(

2(1 + ε)

1− ε

)

. (31)

Remark 1:Lemma1 says that restricted to the setAT , the ith (for i ∈ T ) codebooks have almost the same sizes
as the original codebooks. In addition, the conditional probability of decoding error for each message tuple in this
restricted codebook is upper bounded by1+ε

2 , which is still smaller than one becauseε ∈ [0, 1). According to (31),

the probability of each message tuple cannot be greater thanits original value by a factor of
(

2(1+ε)
1−ε

)

.

B. Wringing Technique

The following lemma forms part of the wringing technique proposed by Ahlswede and its proof can be found
in [17, Lemma 4].

Lemma 2:Let X be a finite alphabet, letpXn anduXn be two probability mass functions defined onX n and
let c > 0 be a real number such that

pXn(xn) ≤ (1 + c)uXn(xn) (32)

for all xn ∈ X n. Fix any 0 < λ < 1. Then for any0 < δ < c, there existℓ natural numbers in{1, 2, . . . , n},
denoted byt1, t2, . . . , tℓ, andℓ elements ofX denoted bȳxt1 , x̄t2 , . . . , x̄tℓ , such that the following three statements
hold:

(I) ℓ ≤ c
δ .

(II) PrpXn {(Xt1 ,Xt2 , . . . ,Xtℓ) = (x̄t1 , x̄t2 , . . . , x̄tℓ)} ≥ λℓ.
(III) For all k ∈ {1, 2, . . . , n} \ {t1, t2, . . . , tℓ}, we have

pXk|Xt1 ,Xt2 ,...,Xtℓ
(xk|x̄t1 , x̄t2 , . . . , x̄tℓ)

≤ max{(1 + δ)uXk |Xt1 ,Xt2 ,...,Xtℓ
(xk|x̄t1 , x̄t2 , . . . , x̄tℓ), λ} (33)

for all xk ∈ X .

The crux of Lemma2 is in the identification of the event

F , {(Xt1 ,Xt2 , . . . ,Xtℓ) = (x̄t1 , x̄t2 , . . . , x̄tℓ)} (34)

such that conditioned onF , the distributions of the resultant codeword symbols transmitted in each time slotk
can be approximated byuXk

(cf. (33)). In the sequel where eachXk in Lemma2 is substituted byX̂T,k where
X̂T,k is some quantized version ofXT,k to be specified later, the joint distributionuX̂T,k

that approximatespX̂T,k

will be chosen to be a product distribution (cf. (52)) with marginalsuX̂i,k
. In order to use Lemma2 for proving

Theorem1, an important step involves controlling the size ofX in Lemma2. To this end, we use the following
scalar quantizer to quantize the alphabetXi (in (13)) which is exponential in the blocklengthn (cf. (14)) so that
its quantized version is an alphabet whose size is polynomial in the blocklength.

Definition 6: Let L be a natural number and∆ be a positive real number, and let

ZL,∆ , {−L∆, (−L+ 1)∆, . . . , L∆} (35)
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be a set of2L+1 quantization points where∆ specifies the quantization precision. A scalar quantizer with domain
[−L∆, L∆] and precision∆ is the mapping

ΩL,∆ : [−L∆, L∆] → ZL,∆ (36)

such that

ΩL,∆(x) =

{

⌊x/∆⌋∆ if x ≥ 0,

⌈x/∆⌉∆ otherwise.
(37)

In other words,ΩL,∆(x) mapsx to the closest quantized point whose value is smaller than orequal tox if x ≥ 0,
and to the closest quantized point whose value is larger thanor equal tox if x < 0. In addition, define the scalar
quantizer for a real-valued tuple as

Ω
(n)
L,∆ : [−L∆, L∆]n → Z

n
L,∆ (38)

such that
Ω
(n)
L,∆(x

n) , (ΩL,∆(x1),ΩL,∆(x2), . . . ,ΩL,∆(xn)). (39)

�

By our careful choice of the quantizer in Definition6, we have the following property for allx ∈ R:

|ΩL,∆(x)| (37)
=

{

⌊x/∆⌋∆ if x ≥ 0,

−⌈x/∆⌉∆ otherwise
(40)

=

{

⌊x/∆⌋∆ if x ≥ 0,

⌊−x/∆⌋∆ otherwise
(41)

= ⌊|x|/∆⌋∆ (42)

≤ |x|. (43)

Although the following lemma looks similar to [17, Corollary 2] and they both rely on Lemma2, the proof of the
following lemma is more involved due to the additional consideration of the quantizer’s precision and the quantized
input symbols. If the quantizer’s precision is too small or too large, then the resultant bound obtained from the
following lemma will not be useful in proving the strong converse. See SectionV-H for a detailed discussion on
the appropriate choice for the quantizer’s precision.

Lemma 3:Suppose we are given an
(

n,M
(n)
I , PI ,A′, T, 1+ε

2

)

max
-code such that

|A′
T | = |A′| ≥

(

1− ε

2(1 + ε)

)

∏

i∈T
M

(n)
i (44)

and

p′WT
(wT ) ≤

1
∏

i∈T M
(n)
i

·
(

2(1 + ε)

1− ε

)

(45)

for eachwT ∈ A′
T wherep′

WI ,Xn
I ,Y

n,ŴI

denotes the probability distribution induced on the Gaussian MAC by the
(

n,M
(n)
I , PI ,A′, T, 1+ε

2

)

max
-code. Then, there exists an

(

n,M
(n)
I , PI ,A, T, 1+ε

2

)

max
-code with

|AT | = |A| ≥ n
−4|T |(1+3ε)

(1−ε)

√
n

log n

(

1− ε

2(1 + ε)

)

∏

i∈T
M

(n)
i (46)

such that the following holds: LetpWI,Xn
I ,Y

n,ŴI
denote the probability distribution induced on the Gaussian MAC

by the
(

n,M
(n)
I , PI ,A, T, 1+ε

2

)

max
-code. In addition, let

X̂n
i = Ω

(n)

⌈n√nPi⌉,n−1
(Xn

i ), (47)

define the alphabet
X̂i , Z⌈n√nPi⌉,n−1 (48)
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for eachi ∈ T (X̂n
i is always in the domain ofZn

⌈n√nPi⌉,n−1
because of (47), (43) and (12), and henceX̂n

i ∈ X̂ n
i ),

define
X̂T ,

∏

i∈T
X̂i (49)

and define

pWI,Xn
I ,X̂

n
T ,Y

n,ŴI
(wI , x

n
I , x̂

n
T , y

n, ŵI)

, pWI,Xn
I ,Y

n,ŴI
(wI , x

n
I , y

n, ŵI)
∏

i∈T
1

{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

}

(50)

for all (wI , xnI , x̂
n
T , y

n, ŵI) ∈ A×X n
I × X̂ n

T ×R
n ×A. Then there exists a distributionuX̂n

T

defined onX̂ n
T where

|X̂T | ≤ n
3|T |

2

∏

i∈T
(2
√

Pi + 3) (51)

such that for allk ∈ {1, 2, . . . , n}, we have

pX̂T,k
(x̂T,k) ≤ max

{(

1 +

√

log n

n

)

∏

i∈T
uX̂i,k

(x̂i,k),
1

n4|T |

}

(52)

for all x̂T,k ∈ X̂T and
∑

i∈T

n
∑

k=1

EuX̂i,k

[

X̂2
i,k

]

≤
∑

i∈T
nPi. (53)

Before presenting the proof of Lemma3, we would like to stress the following two important implications of
Lemma3.

(i) By identifying a certain event

G , {(X̂T,t1 , X̂T,t2 , . . . , X̂T,tℓ) = (x̄T,t1 , x̄T,t2 , . . . , x̄T,tℓ)} (54)

(whose probability is quantified in (70) in the following proof), we can find a subcode such that for each time
slot k, the resultant probability distribution of the quantized vector of transmitted symbolŝXT,k = (X̂i,k | i ∈
T ) can be approximated by a product distribution

∏

i∈T uX̂i,k
as in (52). This is the essence of the wringing

technique [12], [17] which involves approximating the joint distribution of the random variables corresponding
to the different encoders with a product distribution. By approximatingX̂T,k with a product distribution, we
effectively wring out the dependence among the collection of random variables{X̂i,k | i ∈ T}.

(ii) The alphabet size of the quantized transmitted symbolX̂T,k grows no faster than polynomially inn as in (51).
Our quantization strategy that results in the polynomial growth of the alphabet sizes of the quantized symbols
appears to be an important and necessary step, because the original alphabet size|XT | could be exponentially
large inn (cf. (14)). Furthermore, the controlled growth of|X̂T | ensures thatPr{G} does not decay to zero
exponentially fast as shown in (70) in the following proof and hence the asymptotic rates of theresultant
subcode are the same as that of the original code. An important point to note here is the following: We are
able to lower bound the probabilityPr{G} because we definedG in terms of thequantizedrandom variables
(rather than the original ones). The application of the wringing technique on the quantized random variables
is one of the major contributions of the present work.

Proof of Lemma3: Let p′
WI ,Xn

I ,Y
n,ŴI

be the probability distribution induced on the Gaussian MACby the
(

n,M
(n)
I , PI ,A′, T, 1+ε

2

)

max
-code that satisfies (44) and (45), and let

p′
WI,Xn

I ,X̂
n
T ,Y

n,ŴI
(wI , x

n
I , x̂

n
T , y

n, ŵI)

, p′
WI ,Xn

I ,Y
n,ŴI

(wI , x
n
I , y

n, ŵI)
∏

i∈T
1

{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

}

. (55)
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Define a probability mass functionu′
WT ,Xn

T ,X̂
n
T

as

u′
WT ,Xn

T ,X̂
n
T

(wT , x
n
T , x̂

n
T ) ,

∏

i∈T

1 {xni = fi(wi)} · 1
{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

}

M
(n)
i

(56)

for all (wT , x
n
T , x̂

n
T ) ∈ WT ×X n

T ×X̂ n
T (cf. (13) and (48)), wherefi represents the encoding function forWi of the

(

n,M
(n)
I , PI ,A′, T, 1+ε

2

)

max
-code (cf. Definition1). The distributionu′

WT ,Xn
T ,X̂

n
T

is well-defined (the probability
masses sum to one) through (56) because

∑

(wT ,xn
T ,x̂

n
T )∈

WT×Xn
T ×X̂n

T

u′
WT ,Xn

T ,X̂
n
T

(wT , x
n
T , x̂

n
T ) (57)

(56)
=

∑

wT∈WT

∏

i∈T

1

M
(n)
i

∑

xn
T∈Xn

T

∏

i∈T
1 {xni = fi(wi)}

∑

x̂n
T∈X̂n

T

∏

i∈T
1

{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

}

(58)

= 1. (59)

Using (56), we obtain
u′
WT ,Xn

T ,X̂
n
T

=
∏

i∈T
u′
Wi,Xn

i ,X̂
n
i

(60)

where

u′
Wi,Xn

i ,X̂
n
i

(wi, x
n
i , x̂

n
i ) =

1

M
(n)
i

· 1 {xni = fi(wi)} · 1
{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

}

(61)

for all (wi, x
n
i , x̂

n
i ) ∈ Wi × X n

i × X̂ n
i . We will use Lemma2 to prove the existence of a subcode of the

(

n,M
(n)
I , PI ,A′, T, 1+ε

2

)

max
-code such that the subcode satisfies (46), (52) and (53) for someuX̂n

T

defined onX̂ n
T .

To this end, we first consider the following chain of inequalities for eacĥxnT ∈ X̂ n
T such thatp′

X̂n
T

(x̂nT ) > 0:

p′
X̂n

T

(x̂nT ) =
∑

wT∈A′
T ,x

n
T∈Xn

T

p′
WT ,Xn

T ,X̂
n
T

(wT , x
n
T , x̂

n
T ) (62)

=
∑

wT∈A′
T ,x

n
T∈Xn

T

p′WT
(wT )p

′
Xn

T ,X̂
n
T |WT

(xnT , x̂
n
T |wT ) (63)

(a)
=

∑

wT∈A′
T ,xn

T∈Xn
T

p′WT
(wT )

∏

i∈T

(

1 {xni = fi(wi)} · 1
{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

})

(64)

(45)
≤

∑

wT∈A′
T ,x

n
T∈Xn

T

1
∏

i∈T M
(n)
i

·
(

2(1 + ε)

1− ε

)

∏

i∈T

(

1 {xni = fi(wi)} · 1
{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

})

(65)

(56)
=

2(1 + ε)

1− ε

∑

wT∈A′
T ,x

n
T∈Xn

T

u′
WT ,Xn

T ,X̂
n
T

(wT , x
n
T , x̂

n
T ) (66)

≤ 2(1 + ε)

1− ε

∑

wT∈WT ,xn
T∈Xn

T

u′
WT ,Xn

T ,X̂
n
T

(wT , x
n
T , x̂

n
T ) (67)

=
2(1 + ε)

1− ε
· u′

X̂n
T

(x̂nT ) (68)

where (a) follows from (16) and (55). It follows from (68) and Lemma2 with the identifications

X , X̂T , c ,
1 + 3ε

1− ε
, λ ,

1

n4|T | , δ ,

√

log n

n
(69)

that there existℓ natural numbers in{1, 2, . . . , n}, denoted byt1, t2, . . . , tℓ, andℓ real-valued|T |-dimensional tuples
in X̂T , denoted bȳxT,t1 , x̄T,t2 , . . . , x̄T,tℓ , such that the following three statements hold:
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(I) ℓ ≤
(

1+3ε
1−ε

)
√

n
logn .

(II) Prp′
X̂n

{

(X̂T,t1 , X̂T,t2 , . . . , X̂T,tℓ) = (x̄T,t1 , x̄T,t2 , . . . , x̄T,tℓ)
}

≥ 1

n4|T |ℓ . (70)

(III) For all k ∈ {1, 2, . . . , n} \ {t1, t2, . . . , tℓ}, we have

p′
X̂T,k|X̂T,t1 ,X̂T,t2 ,...,X̂T,tℓ

(x̂T,k|x̄T,t1 , x̄T,t2 , . . . , x̄T,tℓ)

≤ max

{(

1 +

√

log n

n

)

u′
X̂T,k|X̂T,t1 ,X̂T,t2 ,...,X̂T,tℓ

(x̂T,k|x̄T,t1 , x̄T,t2 , . . . , x̄T,tℓ),
1

n4|T |

}

(71)

(60)
= max

{(

1 +

√

log n

n

)

∏

i∈T
u′
X̂i,k|X̂i,t1 ,X̂i,t2 ,...,X̂i,tℓ

(x̂i,k|x̄i,t1 , x̄i,t2 , . . . , x̄i,tℓ),
1

n4|T |

}

(72)

for all x̂T,k ∈ X̂T .

Using Statement (II), Statement (III) and (44), we can construct an
(

n,M
(n)
I , PI ,A, T, 1+ε

2

)

max
-code by collecting

all the codewordsxnI for the
(

n,M
(n)
I , PI ,A′, T, 1+ε

2

)

max
-code which satisfy

(x̂T,t1 , x̂T,t2 , . . . , x̂T,tℓ) = (x̄T,t1 , x̄T,t2 , . . . , x̄T,tℓ) (73)

such that the following two statements hold:

(i) |AT | = |A| ≥ n−4|T |ℓ
(

1−ε
2(1+ε)

)

∏

i∈T M
(n)
i .

(ii) Let pWI,Xn
I ,Y

n,ŴI
denote the probability distribution induced on the Gaussian MAC by the

(

n,M
(n)
I , PI ,A, T,

1+ε
2

)

max
-code, and let

pWI,Xn
I ,X̂

n
T ,Y

n,ŴI
(wI , x

n
I , x̂

n
T , y

n, ŵI)

, pWI ,Xn
I ,Y

n,ŴI
(wI , x

n
I , y

n, ŵI)
∏

i∈T
1

{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

}

. (74)

Then,

PrpX̂n
T

{

ℓ
⋂

m=1

{X̂T,tm = x̄T,tm}
}

= 1, (75)

and we have for allk ∈ {1, 2, . . . , n} \ {t1, t2, . . . , tℓ}

pX̂T,k
(x̂T,k) ≤ max

{(

1 +

√

log n

n

)

∏

i∈T
u′
X̂i,k|X̂i,t1=x̄i,t1 ,X̂i,t2=x̄i,t2 ,...,X̂i,tℓ

=x̄i,tℓ

(x̂i,k),
1

n4|T |

}

(76)

for all x̂T,k ∈ X̂T .

Since for eachk ∈ {t1, t2, . . . , tℓ}

pX̂T,k
(x̂T,k)

(75)
= 1 {x̂T,k = x̄T,k} =

∏

i∈T
u′
X̂i,k|X̂i,t1=x̄i,t1 ,X̂i,t2=x̄i,t2 ,...,X̂i,tℓ

=x̄i,tℓ

(x̂i,k) (77)

for all x̂T,k ∈ X̂T , it follows from (76) that the following statement holds:

(iii) For all k ∈ {1, 2, . . . , n}, we have

pX̂T,k
(x̂T,k) ≤ max

{(

1 +

√

log n

n

)

∏

i∈T
u′
X̂i,k|X̂i,t1=x̄i,t1 ,X̂i,t2=x̄i,t2 ,...,X̂i,tℓ

=x̄i,tℓ

(x̂i,k),
1

n4|T |

}

(78)

for all x̂T,k ∈ X̂T .

Consequently, (46) follows from Statement (i) and Statement (I), and (52) follows from Statement (iii) by letting

uX̂n
T

,

n
∏

k=1

∏

i∈T
u′
X̂i,k|X̂i,t1=x̄i,t1 ,X̂i,t2=x̄i,t2 ,...,X̂i,tℓ

=x̄i,tℓ

. (79)
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It remains to prove the upper bounds on|X̂T | and
∑

i∈T
∑n

k=1 EuX̂i,k

[

X̂2
i,k

]

in (51) and (53) respectively. To
prove (51), we consider

|X̂T | (48)
=
∏

i∈T

(

2
⌈

n
√

nPi

⌉

+ 1
)

(80)

≤
∏

i∈T

(

2n3/2
√

Pi + 3
)

(81)

≤ n
3|T |

2

∏

i∈T
(2
√

Pi + 3). (82)

To prove (53), we first use (56) and (12) to obtain

Pru′
Xn

T
,X̂n

T

{

∑

i∈T

n
∑

k=1

X2
i,k ≤

∑

i∈T
nPi

}

= 1. (83)

SinceX̂2
i,k ≤ X2

i,k for all i ∈ T and allk ∈ {1, 2, . . . , n} by (55) and (43), it follows from (83) that

Pru′
X̂n

T

{

∑

i∈T

n
∑

k=1

X̂2
i,k ≤

∑

i∈T
nPi

}

= 1. (84)

Consequently,

∑

i∈T

n
∑

k=1

EuX̂i,k

[

X̂2
i,k

]

(79)
=
∑

i∈T

n
∑

k=1

Eu′
X̂i,k|X̂i,t1

=x̄i,t1
,X̂i,t2

=x̄i,t2
,...,X̂i,tℓ

=x̄i,tℓ

[

X̂2
i,k

]

(85)

(60)
=
∑

i∈T

n
∑

k=1

Eu′
X̂T,k|X̂T,t1

=x̄T,t1
,X̂T,t2

=x̄T,t2
,...,X̂T,tℓ

=x̄T,tℓ

[

X̂2
i,k

]

(86)

=
∑

i∈T

n
∑

k=1

Eu′
X̂n

T
|X̂T,t1

=x̄T,t1
,X̂T,t2

=x̄T,t2
,...,X̂T,tℓ

=x̄T,tℓ

[

X̂2
i,k

]

(87)

= Eu′
X̂n

T
|X̂T,t1

=x̄T,t1
,X̂T,t2

=x̄T,t2
,...,X̂T,tℓ

=x̄T,tℓ

[

∑

i∈T

n
∑

k=1

X̂2
i,k

]

(88)

(84)
≤
∑

i∈T
nPi . (89)

C. Binary Hypothesis Testing

The following definition concerning the non-asymptotic fundamental limits of a simple binary hypothesis test is
standard. See for example [22, Sec. III-E].

Definition 7: Let pX andqX be two probability distributions on some common alphabetX . Let

Q({0, 1}|X ) , {rZ|X |Z andX assume values in{0, 1} andX respectively}
be the set of randomized binary hypothesis tests betweenpX and qX where{Z = 0} indicates the test chooses
qX , and letδ ∈ [0, 1] be a real number. The minimum type-II error in a simple binaryhypothesis test betweenpX
andqX with type-I error no larger than1− δ is defined as

βδ(pX‖qX) , inf
rZ|X∈Q({0,1}|X ):∫

x∈X
rZ|X(1|x)pX(x) dx≥δ

∫

x∈X
rZ|X(1|x)qX(x) dx. (90)
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The existence of a minimizing testrZ|X is guaranteed by the Neyman-Pearson lemma.
We state in the following lemma and proposition some important properties ofβδ(pX‖qX), which are crucial

for the proof of Theorem1. The proof of the following lemma can be found in, for example, the paper by Wang,
Colbeck, and Renner [23, Lemma 1].

Lemma 4:Let pX andqX be two probability distributions on some alphabetX , and letg be a function whose
domain containsX . Then, the following two statements hold:

1. Data processing inequality (DPI):
βδ(pX‖qX) ≤ βδ(pg(X)‖qg(X)). (91)

2. For all ξ > 0,

βδ(pX‖qX) ≥ 1

ξ

(

δ −
∫

x∈X
pX(x)1

{

pX(x)

qX(x)
≥ ξ

}

dx

)

. (92)

The proof of the following proposition is similar to Lemma 3 in [23] and therefore omitted.

Proposition 5: Let pU,V be a probability distribution defined onW×W for some finite alphabetW. In addition,
let qV be a distribution defined onW, and let

α = max
u∈W

Pr{V 6= u|U = u} (93)

be a real number in[0, 1) where(U, V ) is distributed according topU,V . Then for eachu ∈ W,

β1−α(pV |U=u‖qV ) ≤ qV (u). (94)

V. PROOF OFTHEOREM 1

A. Expurgation to Obtain a Maximum Error Code

Let ε ∈ [0, 1) and supposeRI is an ε-achievable rate tuple. By Definition4, there exists aγ ∈ [0, 1) and a
sequence of(n,M (n)

I , PI , εn)avg-codes such that
εn ≤ γ (95)

for all sufficiently largen and

lim inf
n→∞

1

n
logM

(n)
i ≥ Ri (96)

for eachi ∈ I. Fix a non-empty setT ⊆ I. Our goal is to prove that
∑

i∈T
Ri ≤

1

2
log

(

1 +
∑

i∈T
Pi

)

. (97)

Since (97) holds trivially if
∑

i∈T Ri = 0, we assume without loss of generality that
∑

i∈T
Ri > 0. (98)

It follows from (96) and (98) that
⌊

(

1− γ

1 + γ

)

∏

i∈T
M

(n)
i

⌋

≥ 1

2

(

1− γ

1 + γ

)

∏

i∈T
M

(n)
i (99)

for all sufficiently largen. Fix a sufficiently largen and the corresponding(n,M (n)
I , PI , εn)avg-code for the

Gaussian MAC such that (95) and (99) hold. Using Lemma1, Lemma 3 and Definition 1, there exists an
(

n,M
(n)
I , PI ,A, T, 1+γ

2

)

max
-code, which induces a probability distribution on the Gaussian MAC denoted by

pWI ,Xn
I ,Y

n,ŴI
, such that the following four statements hold:

(i) For all wI ∈ A and allwT ∈ AT ,

pWI
(wI) =

1

|A| andpWT
(wT ) =

1

|AT |
. (100)
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(ii) There exists aw∗
T c ∈ WT c such that for allwI ∈ A, we havewT c = w∗

T c .
(iii) The support ofWT satisfies

|AT | = |A| ≥ n
−4|T |(1+3γ)

(1−γ)

√
n

log n

(

1− γ

2(1 + γ)

)

∏

i∈T
M

(n)
i . (101)

(iv) Define

pWI,Xn
I ,X̂

n
T ,Y

n,ŴI
(wI , x

n
I , x̂

n
T , y

n, ŵI)

, pWI,Xn
I ,Y

n,ŴI
(wI , x

n
I , y

n, ŵI)
∏

i∈T
1

{

x̂ni = Ω
(n)

⌈n√nPi⌉,n−1
(xni )

}

(102)

for all (wI , xnI , x̂
n
T , y

n, ŵI) ∈ A× X n
I × X̂ n

T × R
n ×A, where

X̂T ,
∏

i∈T
Z⌈n√nPi⌉,n−1 (103)

and
|X̂T | ≤ n

3|T |

2

∏

i∈T
(2
√

Pi + 3). (104)

Then there exists a distributionuX̂n
T

defined onX̂ n
T such that for allk ∈ {1, 2, . . . , n}, we have

pX̂T,k
(x̂T,k) ≤ max

{(

1 +

√

log n

n

)

∏

i∈T
uX̂i,k

(x̂i,k),
1

n4|T |

}

(105)

for all x̂T,k ∈ X̂T and

∑

i∈T

n
∑

k=1

EuX̂i

[

X̂2
i,k

]

≤
∑

i∈T
nPi . (106)

Note thatpWI ,Xn
I ,Y

n,ŴI
is not the distribution induced by the original(n,M (n)

I , PI , εn)avg-code but rather it is

induced by the expurgated
(

n,M
(n)
I , PI ,A, T, 1+γ

2

)

max
-code.

B. Lower Bounding the Error Probability using Binary Hypothesis Testing

Now, let

sWI,Xn
I ,Y

n,ŴI
, pWI,Xn

I

(

n
∏

k=1

sYk|XTc,k

)

pŴI|Y n (107)

be a distribution such that for eachk ∈ {1, 2, . . . , n}, the auxiliary conditional output distribution is chosen to be

sYk|XTc,k
(yk|xT c,k) = N



yk;
∑

i∈T
EuX̂i,k

[X̂i,k] +
∑

j∈T c

xj,k, 1 +
∑

i∈T
Pi



 (108)

for all xT c,k ∈ XT c and yk ∈ R. It can be seen from (107) and (108) that sWI ,Xn
I ,Y

n,ŴI
depends on the choice

of T we fixed at the start of the proof and the distributionuX̂n
T

in Statement (iv). We shall see later that this choice

of sWI ,Xn
I ,Y

n,ŴI
, in particular the mean of the distribution in (108) namely

∑

i∈T EuX̂i,k
[X̂i,k] +

∑

j∈T c xj,k,
combined with Proposition5 and Lemma4 enables us to prove (97). We do not indexsWI ,Xn

I ,Y
n,ŴI

by T nor

uX̂n
T

for notational brevity. To simplify notation, let̄γ , (1 + γ)/2 be the maximal probability of decoding error

of the
(

n,M
(n)
I , PI ,A, T, 1+γ

2

)

max
-code, wherēγ < 1 becauseγ < 1. Then for eachwI ∈ A, since

sWI
(wI)

(107)
= pWI

(wI)
(100)
> 0, (109)
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it follows from Proposition5 and Definition1 with the identificationsU ≡ WT , V ≡ ŴT , pU,V ≡ pWT ,ŴT |WTc=wTc
,

qV ≡ sŴT |WTc=wTc
andα ≡ maxwI∈A Pr{ŴT 6= wT |WI = wI} ≤ γ̄ that

β1−γ̄(pŴT |WI=wI
‖sŴT |WTc=wTc

)

≤ β1−α(pŴT |WI=wI
‖sŴT |WTc=wTc

) (110)

≤ sŴT |WTc
(wT |wT c). (111)

C. Using the DPI to Introduce the Channel Inputs and Output

Consider the following chain of inequalities for eachwI ∈ A:

β1−γ̄(pŴI |WI=wI
‖sŴI |WTc=wTc

)

(a)
≥ β1−γ̄(pY n,ŴI |WI=wI

‖sY n,ŴI|WTc=wTc
) (112)

= β1−γ̄(pY n|WI=wI
pŴI |Y n,WI=wI

‖sY n,ŴI|WTc=wTc
) (113)

(b)
= β1−γ̄(pY n|WI=wI

pŴI |Y n‖sY n,ŴI |WTc=wTc
) (114)

(c)
≥ β1−γ̄

(

pŴI |Y npXn
I ,Y

n|WI=wI

∥

∥

∥
pXn

T |Xn
Tc ,WI=wI

sXn
Tc ,Y n,ŴI|WTc=wTc

)

(115)

(107)
= β1−γ̄

(

pŴI|Y npXn
I ,Y

n|WI=wI

∥

∥

∥

∥

∥

pXn
T |Xn

Tc ,WI=wI
pXn

Tc |WTc=wTcpŴI |Y n

n
∏

k=1

sYk|XTc,k

)

(116)

(d)
= β1−γ̄

(

pŴI|Y npXn
I ,Y

n|WI=wI

∥

∥

∥

∥

∥

pXn
T |Xn

Tc ,WI=wI
pXn

Tc |WI=wI
pŴI|Y n

n
∏

k=1

sYk|XTc,k

)

(117)

= β1−γ̄

(

pŴI |Y npXn
I ,Y

n|WI=wI

∥

∥

∥

∥

∥

pXn
I |WI=wI

pŴI|Y n

n
∏

k=1

sYk|XTc,k

)

(118)

(16)
= β1−γ̄

(

pXn
I |WI=wI

pŴI |Y n

n
∏

k=1

pYk|XI,k

∥

∥

∥

∥

∥

pXn
I |WI=wI

pŴI |Y n

n
∏

k=1

sYk|XTc,k

)

, (119)

where

(a) follows from the DPI ofβ1−γ̄ by introducing the channel outputY n.
(b) follows from the fact that

WI → Y n → ŴI (120)

forms a Markov chain under the distributionpWI ,Y n,ŴI
.

(c) follows from the DPI ofβ1−γ̄ by introducing the channel inputXn
I .

(d) follows from Definition1, which saysXn
T c is a function ofWT c .

D. Relaxation via Chebyshev’s Inequality

Following (119), we consider

pXn
I ,Y

n,ŴI |WI=wI

(19)
= pXn

I |WI=wI
pŴI |Y n

n
∏

k=1

pYk|XI,k
, (121)

and we obtain from Lemma4 and (121) that for eachwI ∈ A and eachξwI
> 0,

β1−γ̄

(

pXn
I |WI=wI

pŴI|Y n

n
∏

k=1

pYk|XI,k

∥

∥

∥

∥

∥

pXn
I |WI=wI

pŴI |Y n

n
∏

k=1

sYk|XTc,k

)

≥ 1

ξwI

(

1− γ̄ − PrpXn
I

,Y n,ŴI|WI=wI

{

n
∏

k=1

pYk|XI,k
(Yk|XI,k)

sYk|XTc,k
(Yk|XT c,k)

≥ ξwI

})

. (122)
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Combining (111), (119) and (122), we obtain for eachwI ∈ A and eachξwI
> 0

sŴT |WTc
(wT |wT c) ≥ 1

ξwI

(

1− γ̄ − PrpXn
I

,Y n|WI=wI

{

n
∏

k=1

pYk|XI,k
(Yk|XI,k)

sYk|XTc,k
(Yk|XT c,k)

≥ ξwI

})

, (123)

which implies that

log

(

1

sŴT |WTc
(wT |wT c)

)

≤ log ξwI
− log

(

1− γ̄ − PrpXn
I

,Y n|WI=wI

{

n
∑

k=1

log

(

pYk|XI,k
(Yk|XI,k)

sYk|XTc,k
(Yk|XT c,k)

)

≥ log ξwI

})

. (124)

For eachwI ∈ A, let

log ξwI
, EpXn

I
,Y n|WI=wI

[

n
∑

k=1

log

(

pYk|XI,k
(Yk|XI,k)

sYk|XTc,k
(Yk|XT c,k)

)

]

+

√

√

√

√

2

1− γ̄
VarpXn

I
,Y n|WI=wI

[

n
∑

k=1

log

(

pYk|XI,k
(Yk|XI,k)

sYk|XTc,k
(Yk|XT c,k)

)

]

. (125)

Using Chebyshev’s inequality, it follows from (125) that for eachwI ∈ A

PrpXn
I

,Y n|WI=wI

{

n
∑

k=1

log

(

pYk|XI,k
(Yk|XI,k)

sYk|XTc,k
(Yk|XT c,k)

)

≥ log ξwI

}

≤ 1− γ̄

2
, (126)

which implies from (124) that

log

(

1

sŴT |WTc
(wT |wT c)

)

≤ log ξwI
+ log

(

2

1− γ̄

)

. (127)

Sincet 7→ log 1
t is convex fort > 0, by Jensen’s inequality

∑

wI∈A
pWI

(wI) log

(

1

sŴT |WTc
(wT |wT c)

)

≥ log

(

1
∑

wI∈A pWI
(wI)sŴT |WTc

(wT |wT c)

)

. (128)

We have
∑

wI∈A
pWI

(wI)sŴT |WTc
(wT |wT c)

(100)
=

1

|A|
∑

wI∈A
sŴT |WTc

(wT |wT c) (129)

(a)
=

1

|A|
∑

wT∈AT

sŴT |WTc
(wT |w∗

T c) (130)

≤ 1

|A|
∑

wT∈WT

sŴT |WTc
(wT |w∗

T c) (131)

=
1

|A| (132)

where (a) follows from the definition ofAT in (11) and the fact stated in Statement (ii) thatwT c = w∗
T c for all

wI ∈ A. Using (128) and (132), we obtain

∑

wI∈A
pWI

(wI) log

(

1

sŴT |WTc
(wT |wT c)

)

≥ log |A|. (133)

Taking expectation with respect topWI
on both sides of (127) and applying (133), we obtain

log |A| ≤
(

∑

wI∈A
pWI

(wI) log ξwI

)

+ log

(

2

1− γ̄

)

. (134)
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E. Simplification of Log-Likelihood Terms

In order to simplify (134), we will simplify the log-likelihood term inlog ξwI
defined in (125). To this end, we

first let xni (wi) , fi(wi) (fi is the encoding function at nodei defined in Definition1) and we also letxi,k(wi)
denote thekth component ofxni (wi) for eachi ∈ I and eachk ∈ {1, 2, . . . n} such that

xni (wi) = (xi,1(wi), xi,2(wi), . . . , xi,n(wi)). (135)

In addition, we let
xI,k(wI) , (x1,k(w1), x2,k(w2), . . . , xN,k(wN )), (136)

and we let
xT c,k(wT c) , (xj,k(wj) | j ∈ T c) (137)

be a subtuple ofxI,k(wI). Similarly, let

xnI(wI) , (xn1 (w1), x
n
2 (w2), . . . , x

n
N (wN )), (138)

and let
xnT c(wT c) , (xnj (wj) | j ∈ T c) (139)

be a subtuple ofxnI(wI). Using the fact thatXn
i is a function ofWi for all i ∈ I and the notations defined above,

we obtain from (125) that

log ξwI
= EpY n|WI=wI,Xn

I
=xn

I
(wI )

[

n
∑

k=1

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)

]

+

√

√

√

√

2

1− γ̄
VarpY n|WI=wI ,Xn

I
=xn

I
(wI )

[

n
∑

k=1

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)

]

, (140)

which implies from (16) that

log ξwI
= E∏

n

k=1 pYk|XI,k=xI,k(wI )

[

n
∑

k=1

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)

]

+

√

√

√

√

2

1− γ̄
Var∏n

k=1 pYk|XI,k=xI,k(wI )

[

n
∑

k=1

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)

]

, (141)

which then implies that

log ξwI
=

n
∑

k=1

EpYk|XI,k=xI,k(wI )

[

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)]

+

√

√

√

√

2

1− γ̄

n
∑

k=1

VarpYk|XI,k=xI,k(wI )

[

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)]

. (142)

Following (142), we use (17), (15) and (108) to obtain

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)

=
1

2
log

(

1 +
∑

i∈T
Pi

)

+
log e

2(1 +
∑

i∈T Pi)

(

−
(

∑

i∈T
Pi

)(

Yk −
∑

i∈I
xi,k(wi)

)2

+ 2

(

∑

i∈T
(xi,k(wi)− EuX̂i,k

[X̂i,k])

)(

Yk −
∑

i∈I
xi,k(wi)

)

+

(

∑

i∈T
(xi,k(wi)− EuX̂i,k

[X̂i,k])

)2)

. (143)
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For eachwI ∈ A and eachk ∈ {1, 2, . . . , n}, it follows from Definition 2 that Yk −
∑

i∈I xi,k(wi) is a standard
normal random variable ifYk is distributed according topYk|XI,k=xI,k(wI), which then implies that

EpYk|XI,k=xI,k(wI )

[

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)]

(143)
=

1

2
log

(

1 +
∑

i∈T
Pi

)

+
log e

2(1 +
∑

i∈T Pi)



−
(

∑

i∈T
Pi

)

+

(

∑

i∈T
(xi,k(wi)− EuX̂i,k

[X̂i,k])

)2


 (144)

and

VarpYk|XI,k=xI,k(wI )

[

log

(

pYk|XI,k
(Yk|xI,k(wI))

sYk|XTc,k
(Yk|xT c,k(wT c))

)]

(143)
=

(

log e

2(1 +
∑

i∈T Pi)

)2

VarpYk|XI,k=xI,k(wI )

[

−
(

∑

i∈T
Pi

)(

Yk −
∑

i∈I
xi,k(wi)

)2

+ 2

(

∑

i∈T
(xi,k(wi)− EuX̂i,k

[X̂i,k])

)(

Yk −
∑

i∈I
xi,k(wi)

)]

(145)

=

(

(
∑

i∈T Pi)
2 + 2

(

∑

i∈T (xi,k(wi)− EuX̂i,k
[X̂i,k])

)2
)

(log e)2

2(1 +
∑

i∈T Pi)2
. (146)

Define

|PT | ,
∑

i∈T
Pi (147)

and

x̄i,k(wi) , xi,k(wi)− EuX̂i,k
[X̂i,k]. (148)

Combining (134), (142), (144), (146), (147) and (148), we obtain for eachwI ∈ A

log |A| ≤ n

2
log (1 + |PT |) +

∑

wI∈A pWI
(wI)

(

−n|PT |+
∑n

k=1

(
∑

i∈T x̄i,k(wi)
)2
)

log e

2(1 + |PT |)

+

∑

wI∈A pWI
(wI)

√

(

n|PT |2 + 2
∑n

k=1

(
∑

i∈T x̄i,k(wi)
)2
)

log e

(1 + |PT |)
√
1− γ̄

+ log

(

2

1− γ̄

)

, (149)

which implies from Jensen’s inequality (t 7→
√
t is concave fort ≥ 0) that

log |A| ≤ n

2
log (1 + |PT |) +

(

−n|PT |+
∑n

k=1

∑

wI∈A pWI
(wI)

(
∑

i∈T x̄i,k(wi)
)2
)

log e

2(1 + |PT |)

+

√

n|PT |2 + 2
∑n

k=1

∑

wI∈A pWI
(wI)

(
∑

i∈T x̄i,k(wi)
)2

log e

(1 + |PT |)
√
1− γ̄

+ log

(

2

1− γ̄

)

. (150)

In the following, we will obtain an upper bound on the crucialterm
∑n

k=1

∑

wI∈A pWI
(wI)

(
∑

i∈T x̄i,k(wi)
)2

which appears in the second and third terms on the right-hand-side of (150).
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F. Introducing the Quantized Input Distribution to Simplify the Upper Bound

Following (150), we consider for eachk ∈ {1, 2, . . . , n}

∑

wI∈A
pWI

(wI)

(

∑

i∈T
x̄i,k(wi)

)2

=
∑

wT∈AT

pWT
(wT )

(

∑

i∈T
x̄i,k(wi)

)2
∑

wTc∈WTc

pWTc |WT
(wT c |wT ) (151)

=
∑

wT∈AT

pWT
(wT )

(

∑

i∈T
x̄i,k(wi)

)2

(152)

≤
∑

wT∈WT

pWT
(wT )

(

∑

i∈T
x̄i,k(wi)

)2

. (153)

SinceXn
i is a function ofWi for eachi ∈ T , it follows from (148) that for eachk ∈ {1, 2, . . . , n}

∑

wT∈WT

pWT
(wT )

(

∑

i∈T
x̄i,k(wi)

)2

=
∑

xT,k∈XT

pXT,k
(xT,k)

(

∑

i∈T

(

xi,k − EuX̂i,k
[X̂i,k]

)

)2

, (154)

which implies from (153) that

∑

wI∈A
pWI

(wI)

(

∑

i∈T
x̄i,k(wi)

)2

≤
∑

xT,k∈XT

pXT,k
(xT,k)

(

∑

i∈T

(

xi,k − EuX̂i,k
[X̂i,k]

)

)2

. (155)

Recalling the definition ofX̂n
T and X̂ n

T in (102) and (103) respectively, we write for eachk ∈ {1, 2, . . . , n}

∑

xT,k∈XT

pXT,k
(xT,k)

(

∑

i∈T

(

xi,k − EuX̂i,k
[X̂i,k]

)

)2

=
∑

xT,k∈XT ,x̂T,k∈X̂T

pXT,k,X̂T,k
(xT,k, x̂T,k)

(

∑

i∈T

(

xi,k − x̂i,k + x̂i,k − EuX̂i,k
[X̂i,k]

)

)2

(156)

=
∑

xT,k∈XT ,x̂T,k∈X̂T

pXT,k,X̂T,k
(xT,k, x̂T,k)

(

∑

i∈T
(xi,k − x̂i,k)

)2

+ 2
∑

xT,k∈XT ,x̂T,k∈X̂T

pXT,k,X̂T,k
(xT,k, x̂T,k)

(

∑

i∈T
(xi,k − x̂i,k)

)(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)

+
∑

x̂T,k∈X̂T

pX̂T,k
(x̂T,k)

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

(157)

≤
∑

xT,k∈XT ,x̂T,k∈X̂T

pXT,k,X̂T,k
(xT,k, x̂T,k)

∣

∣

∣

∣

∣

∑

i∈T
(xi,k − x̂i,k)

∣

∣

∣

∣

∣

2

+ 2
∑

xT,k∈XT ,x̂T,k∈X̂T

pXT,k,X̂T,k
(xT,k, x̂T,k)

∣

∣

∣

∣

∣

∑

i∈T
(xi,k − x̂i,k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

∣

∣

∣

∣

∣

+
∑

x̂T,k∈X̂T

pX̂T,k
(x̂T,k)

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

(158)
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≤
∑

xT,k∈XT ,x̂T,k∈X̂T

pXT,k,X̂T,k
(xT,k, x̂T,k)

(

∑

i∈T
|xi,k − x̂i,k|

)2

+ 2
∑

xT,k∈XT ,x̂T,k∈X̂T

pXT,k,X̂T,k
(xT,k, x̂T,k)

(

∑

i∈T
|xi,k − x̂i,k|

)(

∑

i∈T
(|x̂i,k|+ EuX̂i,k

[|X̂i,k|])
)

+
∑

x̂T,k∈X̂T

pX̂T,k
(x̂T,k)

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

(159)

(a)
≤ |T |2

n2
+

4|T |√
n

(

∑

i∈T

√

Pi

)

+
∑

x̂T,k∈X̂T

pX̂T,k
(x̂T,k)

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

(160)

where (a) follows from the facts below for eachi ∈ T , eachk ∈ {1, 2, . . . , n} and eachxi,k ∈ Xi (recall the
definition of x̂i,k in (102)):

|xi,k − x̂i,k|
(37)
≤ 1

n
(161)

and

|x̂i,k|
(43)
≤ |xi,k|

(12)
≤
√

nPi . (162)

G. Approximating the Quantized Input Distribution by a Product Distribution

In order to bound the last term in (160), we use the bound in (105) for boundingpX̂T,k
(x̂T,k) in terms of

uX̂T,k
(x̂T,k) to obtain

∑

x̂T,k∈X̂T

pX̂T,k
(x̂T,k)

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

≤
∑

x̂T,k∈X̂T

((

1 +

√

log n

n

)

∏

i∈T
uX̂i,k

(x̂i,k) +
1

n4|T |

)(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

(163)

=
∑

x̂T,k∈X̂T

[(

1 +

√

log n

n

)

∏

i∈T
uX̂i,k

(x̂i,k)

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

+
1

n4|T |

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2 ]

(164)

for eachk ∈ {1, 2, . . . , n}. The bound in (164) consists of two distinct terms which we now bound separately.
Consider the following two chains of inequalities for eachk ∈ {1, 2, . . . , n}:

∑

x̂T,k∈X̂T

(

∏

i∈T
uX̂i,k

(x̂i,k)

)(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

=
∑

i∈T
EuX̂i,k

[

(X̂i,k − EuX̂i,k
[X̂i,k])

2
]

(165)

≤
∑

i∈T
EuX̂i,k

[

X̂2
i,k

]

(166)
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and

∑

x̂T,k∈X̂T

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

≤
∑

x̂T,k∈X̂T

(

|T |max
i∈T

{

|x̂i,k − EuX̂i,k
[X̂i,k]|

}

)2

(167)

= |T |2
∑

x̂T,k∈X̂T

max
i∈T

{

(x̂i,k − EuX̂i,k
[X̂i,k])

2
}

(168)

≤ |T |2
∑

x̂T,k∈X̂T

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])
2 (169)

(a)
≤ 2|T |2

∑

x̂T,k∈X̂T

∑

i∈T

(

x̂2i,k + (EuX̂i,k
[X̂i,k])

2
)

(170)

(162)
≤ 2|T |2

∑

x̂T,k∈X̂T

∑

i∈T
2nPi (171)

(b)
≤ 4n|T |2|PT ||X̂T | (172)
(104)
< 4n3|T ||T |2|PT |

∏

i∈T
(2
√

Pi + 3), (173)

where
(a) follows from the fact that(a− b)2 ≤ 2a2 + 2b2 for all real numbersa andb.
(b) follows from the definition of|PT | in (147).

Combining (164), (166) and (173), we obtain for eachk ∈ {1, 2, . . . , n}
∑

x̂T,k∈X̂T

pX̂T,k
(x̂T,k)

(

∑

i∈T
(x̂i,k − EuX̂i,k

[X̂i,k])

)2

≤
(

1 +

√

log n

n

)

∑

i∈T
EuX̂i

[

X̂2
i,k

]

+ 4n−|T ||T |2|PT |
∏

i∈T
(2
√

Pi + 3), (174)

which implies from (155) and (160) that

∑

wI∈A
pWI

(wI)

(

∑

i∈T
x̄i,k(wi)

)2

≤ |T |2
n2

+
4|T |√

n

(

∑

i∈T

√

Pi

)

+

(

1 +

√

log n

n

)

∑

i∈T
EuX̂i

[

X̂2
i,k

]

+ 4n−|T ||T |2|PT |
∏

i∈T
(2
√

Pi + 3). (175)

Using (175) and (53) and recalling that|T | ≥ 1 (becauseT is non-empty), we obtain

n
∑

k=1

∑

wI∈A
pWI

(wI)

(

∑

i∈T
x̄i,k(wi)

)2

≤ n|PT |+
√

n log n|PT |+ 4
√
n|T |

(

∑

i∈T

√

Pi

)

+ 4|T |2|PT |
∏

i∈T
(2
√

Pi + 3) +
|T |2
n

. (176)

To simplify notation, let

κ1 , 4|T |
(

∑

i∈T

√

Pi

)

and κ2 , 4|T |2|PT |
∏

i∈T
(2
√

Pi + 3) (177)
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be two constants that are independent ofn. Then, we combine (150) and (176) to yield

log |A| ≤ n

2
log (1 + |PT |) +

(√
n log n|PT |+

√
nκ1 + κ2 + n−1|T |2

)

log e

2(1 + |PT |)

+

√

n|PT |(|PT |+ 2) + 2
√
n log n|PT |+ 2

√
nκ1 + 2κ2 + 2n−1|T |2 log e

(1 + |PT |)
√
1− γ̄

+ log

(

2

1− γ̄

)

. (178)

Combining (101) and (178), we obtain

(−4|T |(1 + 3γ̄)

1− γ̄

)

√

n log n+ log

(

1− γ̄

2(1 + γ̄)

)

+
∑

i∈T
logM

(n)
i

≤ n

2
log (1 + |PT |) +

(√
n log n|PT |+

√
nκ1 + κ2 + n−1|T |2

)

log e

2(1 + |PT |)

+

√

n|PT |(|PT |+ 2) + 2
√
n log n|PT |+ 2

√
nκ1 + 2κ2 + 2n−1|T |2 log e

(1 + |PT |)
√
1− γ̄

+ log

(

2

1− γ̄

)

. (179)

Dividing both sides of (179) by n and taking limit inferior asn goes to infinity, we obtain from (96) that (97)
holds as desired. This completes the proof of Theorem1.

H. Discussion on the Choices of the Quantizer’s Precision and the Parameters Used in the Wringing Technique
in (69)

Our choice ofδ in (69) has been optimized in the following sense. Ifδ is chosen such thatδ = o

(

√

logn
n

)

,

then the second-order term on the RHS of (179) would beω
(√

n log n
)

(cf. (105) and (163)), which then leads to

an upper bound on
∑

i∈T logM
(n)
i with a looser (larger) second-order termω(

√
n log n); if δ is chosen such that

δ = ω

(

√

logn
n

)

, then the magnitude of the first term on the LHS of (179) would beω
(√

n log n
)

(cf. (101)),

which then leads to an upper bound on
∑

i∈T logM
(n)
i with a looser second-order termω(

√
n log n). Hence our

choice ofδ =
√

logn
n “balances” the rates of growth of the two second-order termsin (179). In this sense, our

choice ofδ is optimal.
We now discuss the choice of the quantizer’s precision∆n = 1/n as shown in (103). Based on this choice of

∆n, we note that any choice ofλ in (69) satisfyingλn3|T |+1 = o(
√
n log n) does not affect the second-order term

of the resultant upper bound on
∑

i∈T logM
(n)
i implied by (179). In particular, the current choiceλ = 1

n4|T | stated
in (69) leads to the rightmost term in (105), which contributes to the fourth constant term in (176) as well as the
constant term on the RHS of (179).

If the quantizer’s precision is chosen to be some other∆′
n, then it can be seen by inspecting (161), the upper

bound obtained at step (a) in the chain of inequalities leading to (160), (176) and (178) that the second-order term
of resultant upper bound on

∑

i∈T logM
(n)
i is Ω

(

max{√n log n,∆′
nn

3/2}
)

. In particular, if∆′
n is chosen such

thatΩ( 1
na ) ≤ ∆′

n ≤ O
(√

logn
n

)

for any fixeda ≥ 1, we can follow similar calculations (with a slight modification

of λ) to conclude that the second-order term of the upper bound on
∑

i∈T logM
(n)
i is proportional to

√
n log n. As

explained in the second remark after Lemma3, as long as∆′
n decays to zero no faster than polynomially inn, then

|X̂T | grows at most polynomially fast inn, which will ensure that the asymptotic rates of the resultant sequence
of subcodes obtained from the wringing step are the same as that of the original sequence of codes. However, if
∆′

n decays to zero exponentially fast (i.e.,∆′
n = O(2−nb) for someb > 0), then|X̂T | will grow exponentially fast

in n and the RHS of (70) will decay exponentially rather than polynomially fast. This in turn causes the asymptotic
rates of the resultant sequence of subcodes to decrease by a positive quantity, thus resulting in a loose first-order
term on the RHS of the final inequality (179) (which does not match the corresponding term in the Cover-Wyner
capacity region). Therefore, with this choice of∆′

n, the strong converse cannot be shown.
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VI. I NTERFERENCECHANNEL UNDER STRONG INTERFERENCEREGIME

The capacity region of a two-source two-destination Gaussian interference channel (IC) under strong interference
was derived by Han and Kobayashi [24] and Sato [25]. Let P1, P2 be the received signal-to-noise ratios and let
I1, I2 be the received interference-to-noise ratios [1, Sec. 6.4]. Under the formulation of the Gaussian IC under
strong interference, it is assumed thatI2 ≥ P1 andI1 ≥ P2. Under this condition, the capacity region was shown
in [24, Th. 5.2] to be the Han-Kobayashi region

RHK-S ,











(R1, R2) ∈ R
2
+

∣

∣

∣

∣

∣

∣

∣

R1 ≤ 1
2 log(1 + P1),

R2 ≤ 1
2 log(1 + P2),

R1 +R2 ≤ min{1
2 log(1 + P1 + I1),

1
2 log(1 + P2 + I2)}











. (180)

By applying Theorem1 to each of the decoders of the two-source two-destination Gaussian IC, we can show that
the corresponding(ε1, ε2)-capacity regionCε1,ε2 is outer bounded as

Cε1,ε2 ⊆ RHK-S (181)

as long asε1+ε2 < 1, whereεi characterizes the asymptotic average probability of destinationi decoding messagei
wrongly. Since the rate pairs inRHK-S are(0, 0)-achievable via simultaneous non-unique decoding [1, Sec. 6.4], we
have

Cε1,ε2 = RHK-S (182)

as long asε1 + ε2 < 1. The strong converse (in fact, the complete second-order asymptotics) for the Gaussian IC
under the more restrictive condition of strictly very strong interference was shown by Le, Tan, and Motani [26]. In
the rest of this section, we will describe the formulation ofthe Gaussian IC under strong interference and present
in SectionVI-B the corresponding strong converse result.

A. Problem Formulation and Main Result

We follow the standard setting of the Gaussian IC under strong interference as given in [24, Sec. V]. The Gaussian
IC under strong interference consists of two sources, denoted bys1 ands2 respectively, and two destinations, denoted
by d1 andd2 respectively. For eachi ∈ {1, 2}, si chooses a messageWi and transmitsXn

i in n time slots, anddi
receivesY n

i in n time slots and declareŝWi to be the transmittedWi. The channel law in each time slotk is
[

Y1,k

Y2,k

]

=

[

1 g12
g21 1

] [

X1,k

X2,k

]

+

[

Z1,k

Z2,k

]

, (183)

whereg21 andg12 are two real constants characterizing the channel gains of the interference links, and{(Z1,k, Z2,k)}nk=1
aren independent copies of a Gaussian random vector denoted by(Z1, Z2) (Z1 andZ2 need not be independent)
such that

E [Z1] = E [Z2] = 0 (184)

and

E
[

Z2
1

]

= E
[

Z2
2

]

= 1. (185)

For eachi ∈ {1, 2}, the codewords transmitted bysi should satisfy the peak power constraint

Pr
{

‖Xn
i ‖2 ≤ nPi

}

= 1 (186)

for somePi > 0. We assume that the IC is under strong interference, i.e.,g212 ≥ 1 andg221 ≥ 1, which implies that

I1 , g212P2 ≥ P2 (187)

and

I2 , g221P1 ≥ P1, (188)

whereI1 and I2 characterize the interference power received atd1 andd2 respectively (cf. (183)). The Gaussian
IC is characterized by some conditional probability density function qY1,Y2|X1,X2

and we define the Gaussian IC in
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a similar way to a Gaussian MAC (cf. Definition2) such that (183), (184) and (185) hold. In addition, we define
a length-n code for the Gaussian IC as follows.

Definition 8: An (n,M
(n)
1 ,M

(n)
2 , P1, P2)-codefor the Gaussian IC consists of the following:

1) A message setWi , {1, 2, . . . ,M (n)
i } at nodei for eachi ∈ {1, 2}, whereWi is uniform onWi.

2) An encoding functionfi : Wi → R
n for eachi ∈ {1, 2}, wherefi is the encoding function at nodei such

thatXn
i = fi(Wi) and‖fi(wi)‖2 ≤ nPi for all wi ∈ Wi.

3) A (possibly stochastic) decoding functionϕi : R
n → Wi for eachi ∈ {1, 2}, whereϕi is used by nodedi to

estimateWi, i.e., Ŵi = ϕi(Y
n
i ).

We define an(n,M (n)
1 ,M

(n)
2 , P1, P2, ε1, ε2)avg-code as follows.

Definition 9: For an(n,M (n)
1 ,M

(n)
2 , P1, P2)-code defined on the Gaussian IC, theaverage probability of decod-

ing error for Wi is defined for eachi ∈ {1, 2} as

Pr
{

Ŵi 6= Wi

}

. (189)

An (n,M
(n)
1 ,M

(n)
2 , P1, P2)-code withPr

{

Ŵ1 6= W1

}

≤ ε1 andPr
{

Ŵ2 6= W2

}

≤ ε2 is called an(n,M (n)
1 ,M

(n)
2 ,

P1, P2, ε1, ε2)avg-code.

For eachε1 ∈ [0, 1) and eachε2 ∈ [0, 1), we define an(ε1, ε2)-achievable rate pair as in Definition4, and we
define the(ε1, ε2)-capacity region, denoted byCε1,ε2, to be the set of(ε1, ε2)-achievable rate pairs. The following
theorem is the main result in this section.

Theorem 2:For eachε1 ∈ [0, 1) and eachε2 ∈ [0, 1) such thatε1 + ε2 < 1,

Cε1,ε2 = RHK-S. (190)

B. Proof of Theorem2

We need the following definitions and lemma before presenting the proof of Theorem2. The definition below
concerning a multicast code differs from Definition8 in the decoding functions only, but we state the whole
definition for clarity. Essentially, a multicast code for the Gaussian IC is the same as a standard code except that
each decoder must output estimates ofboth messages.

Definition 10: An (n,M
(n)
1 ,M

(n)
2 , P1, P2)-multicast codefor the Gaussian IC consists of the following:

1) A message setWi , {1, 2, . . . ,M (n)
i } at nodei for eachi ∈ {1, 2}, whereWi is uniform onWi.

2) An encoding functionfi : Wi → R
n for eachi ∈ {1, 2}, wherefi is the encoding function at nodei such

thatXn
i = fi(Wi) and‖fi(wi)‖2 ≤ nPi for all wi ∈ Wi.

3) A (possibly stochastic) decoding functionϕi : R
n → W1 × W2 for eachi ∈ {1, 2}, whereϕi is used by

nodedi to estimate bothW1 andW2 such that the pair of message estimates is(Ŵ1,di
, Ŵ2,di

) , ϕi(Y
n
i ).

We define an(n,M (n)
1 ,M

(n)
2 , P1, P2, ε1, ε2)avg-multicast code as follows. Note that the multicast code is used

for the Gaussian IC but not a general multicast channel.

Definition 11: For an(n,M (n)
1 ,M

(n)
2 , P1, P2)-multicast code defined on the Gaussian IC, theaverage probability

of decoding error at destinationdi is defined for eachi ∈ {1, 2} as

Pr
{{

Ŵ1,di
6= W1

}

∪
{

Ŵ2,di
6= W2

}}

. (191)

An (n,M
(n)
1 ,M

(n)
2 , P1, P2)-multicast code with average probability of decoding errorat destinationdi no larger

thanεi for eachi ∈ {1, 2} is called an(n,M (n)
1 ,M

(n)
2 , P1, P2, ε1, ε2)avg-code.

The following lemma plays a crucial role in extending our strong converse result for the Gaussian MAC to
the Gaussian IC under strong interference, because it relates the error probabilities for standard codes defined
for the Gaussian IC in Definition9 to the error probabilities for multicast-codes defined for the Gaussian IC in
Definition 11.
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Lemma 6:For each(n,M (n)
1 ,M

(n)
2 , P1, P2, ε1, ε2)avg-code for the Gaussian IC, there exists an(n,M

(n)
1 ,M

(n)
2 ,

P1, P2, ε1 + ε2, ε1 + ε2)avg-multicast code for the Gaussian IC.
Proof: Suppose we are given an(n,M (n)

1 ,M
(n)
2 , P1, P2, ε1, ε2)avg-code whose encoding and stochastic decoding

functions are denoted by(f1, f2) and(ϕ1, ϕ2) respectively (cf. Definition8). Let pW1,W2,Xn
1 ,X

n
2 ,Y

n
1 ,Y n

2 ,Zn
1 ,Z

n
2

be the
probability distribution induced by the(n,M (n)

1 ,M
(n)
2 , P1, P2, ε1, ε2)avg-code. By Definition9, we have for each

i ∈ {1, 2}
PrpWi,Y

n
i
{ϕi(Y

n
i ) 6= Wi} ≤ εi , (192)

which implies from (183) that

PrpW1,W2,Zn
1
{ϕ1(f1(W1) + g12f2(W2) + Zn

1 ) 6= W1} ≤ ε1 (193)

and
PrpW1,W2,Zn

2
{ϕ2(g21f1(W1) + f2(W2) + Zn

2 ) 6= W2} ≤ ε2 . (194)

In the rest of the proof, we construct new stochastic decoding functions atd1 andd2, denoted byϕ′
1 andϕ′

2 respec-
tively, such that(ϕ1, ϕ

′
1) and (ϕ2, ϕ

′
2) can be viewed as the stochastic decoding functions of an(n,M

(n)
1 ,M

(n)
2 ,

P1, P2, ε1+ ε2, ε1+ ε2)avg-multicast code. To this end, we first definẽZn
1 andZ̃2 to ben independent copies of the

standard normal random variable such thatZ̃n
1 , Z̃n

2 and (Xn
1 ,X

n
2 , Y

n
1 , Y n

2 , Zn
1 , Z

n
2 ) are independent. In addition,

there existw∗
1 ∈ W1 andw∗

2 ∈ W2 such that

PrpW1,W2,Y n
2
{ϕ2(Y

n
2 ) 6= W2|W1 = w∗

1} = arg min
w1∈W1

PrpW1,W2,Y n
2
{ϕ2(Y

n
2 ) 6= W2|W1 = w1} (195)

and
PrpW1,W2,Y n

1
{ϕ1(Y

n
1 ) 6= W1|W2 = w∗

2} = arg min
w2∈W2

PrpW1,W2,Y n
1
{ϕ1(Y

n
1 ) 6= W1|W2 = w2} , (196)

which implies from (193) and (194) that

PrpW2,Zn
2
{ϕ2(g21f1(w

∗
1) + f2(W2) + Zn

2 ) 6= W2} ≤ ε2 (197)

and
PrpW1,Zn

1
{ϕ1(f1(W1) + g12f2(w

∗
2) + Zn

1 ) 6= W1} ≤ ε1 . (198)

Then, we define the stochastic decoders

ϕ′
1(Y

n
1 ) , ϕ2

(

g21f1(w
∗
1) +

Y n
1 − f1(ϕ1(Y

n
1 ))

g12
+

√

1− 1

g212
Z̃n
2

)

(199)

and

ϕ′
2(Y

n
2 ) , ϕ1

(

Y n
2 − f2(ϕ2(Y

n
2 ))

g21
+ g12f2(w

∗
2) +

√

1− 1

g221
Z̃n
1

)

, (200)

where the randomness properties of the stochastic functions originate from not onlyϕ1 andϕ2 but alsoZ̃n
1 andZ̃n

2 .
Since

g21f1(w
∗
1) + f2(W2) + Zn

2 (201)

and

g21f1(w
∗
1) +

Y n
1 − f1(W1)

g12
+

√

1− 1

g212
Z̃n
2 (202)

have the same distribution by (183), it follows from (197) and (199) that

PrpW1,W2,Zn
1

,Z̃n
2

{{

ϕ′
1(Y

n
1 ) 6= W2

}

∩ {ϕ1(Y
n
1 ) = W1}

}

≤ PrpW1,W2,Zn
1

,Z̃n
2

{

ϕ2

(

g21f1(w
∗
1) +

Y n
1 − f1(W1)

g12
+

√

1− 1

g212
Z̃n
2

)

6= W2

}

(203)

≤ ε2 . (204)
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Combining (199) and (204), we obtain

PrpW1,W2,Zn
1

,Z̃n
2

{

ϕ1(Y
n
1 ) 6= W1 or ϕ′

1(Y
n
1 ) 6= W2

}

= PrpW1,W2,Zn
1
{ϕ1(Y

n
1 ) 6= W1}+ PrpW1,W2,Zn

1
,Z̃n

2

{{

ϕ′
1(Y

n
1 ) 6= W2

}

∩ {ϕ1(Y
n
1 ) = W1}

}

(205)

≤ ε1 + ε2 . (206)

Following similar procedures for deriving (206), we obtain the following inequality by using (183), (198) and (200):

PrpW1,W2,Zn
1

,Z̃n
1

{

ϕ2(Y
n
2 ) 6= W2 or ϕ′

2(Y
n
2 ) 6= W1

}

≤ ε1 + ε2 . (207)

Replacing the decoding functions of the(n,M (n)
1 ,M

(n)
2 , P1, P2, ε1, ε2)avg-code with (ϕ1, ϕ

′
1) and (ϕ2, ϕ

′
2) and

keeping the encoding functions unchanged, we conclude from(206) and (207) that the resultant code is an
(n,M

(n)
1 ,M

(n)
2 , P1, P2, ε1 + ε2, ε1 + ε2)avg-multicast code.

We are now ready to prove the strong converse theorem for the Gaussian IC under strong interference.

Proof of Theorem2: Fix ε1 > 0 andε2 > 0 such that

ε1 + ε2 < 1. (208)

As discussed at the beginning of SectionVI , it follows from Theorem 5.2 in [24] that C0,0 = RHK-S where the
quantitiesI1 and I2 in RHK-S are defined in (187) and (188) respectively. SinceC0,0 ⊆ Cε1,ε2 for all non-negative
real numbersε1 andε2 by definition,

RHK-S ⊆ Cε1,ε2. (209)

Therefore, it suffices to prove
Cε1,ε2 ⊆ RHK-S. (210)

To this end, fix a rate pair(R1, R2) ∈ Cε1,ε2 . By definition, there exists a sequence of(n,M
(n)
1 ,M

(n)
2 , P1, P2,

ε
(n)
1 , ε

(n)
2 )avg-codes such that

lim inf
n→∞

1

n
logM

(n)
i ≥ Ri (211)

and
lim sup
n→∞

ε
(n)
i ≤ εi (212)

for eachi ∈ {1, 2}. It then following from Lemma6 and (212) that there exists a sequence of(n,M
(n)
1 ,M

(n)
2 ,

P1, P2, ε̃
(n)
1 , ε̃

(n)
2 )avg-multicast codes such that

lim sup
n→∞

ε̃
(n)
i ≤ ε1 + ε2 (213)

for eachi ∈ {1, 2}.
Construct a subnetwork of the Gaussian IC formed by deletingd2 as well as the links connecting to it. By inspec-

tion, the resultant subnetwork is a two-source Gaussian MACand the sequence of(n,M (n)
1 ,M

(n)
2 , P1, P2, ε̃

(n)
1 , ε̃

(n)
2 )avg-

multicast codes for the Gaussian IC induces a sequence of(n,M
(n)
1 ,M

(n)
2 , P1, P2, ε̃

(n)
1 )avg-codes for the two-source

Gaussian MAC. It then follows from (211) and (213) that (R1, R2) is (ε1 + ε2)-achievable for the two-source
Gaussian MAC, which implies from Theorem1, (208) and (183) that

R1 ≤
1

2
log (1 + P1) , (214)

R2 ≤
1

2
log
(

1 + g212P2

)

(215)

and

R1 +R2 ≤
1

2
log
(

1 + P1 + g212P2

)

. (216)
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Similarly, if we repeat the above procedures for the other two-source Gaussian MAC resulting from deletingd1
from the Gaussian IC, we obtain

R1 ≤
1

2
log
(

1 + g221P1

)

, (217)

R2 ≤
1

2
log (1 + P2) (218)

and

R1 +R2 ≤
1

2
log
(

1 + g221P1 + P2

)

. (219)

Combining the bounds in (214), (216), (218), (219), the capacity region in (180), and the strong interference
conditions in (187) and (188), we have(R1, R2) ∈ RHK-S. Consequently, the outer bound in (210) holds, and the
theorem follows from (210) and the inner bound stated in (209).

APPENDIX

Proof of Lemma1: Suppose an(n,M (n)
I , PI , ε)avg-code is given for someε ∈ [0, 1), and let

ewI
, Pr

{

ŴI 6= wI
∣

∣WI = wI
}

(220)

be the probability of decoding error given thatwI is the message tuple transmitted by the sources. Then by choosing
wI one by one in an increasing order ofewI

, we can construct a setD ⊆ WI such that

Pr
{

ŴI 6= wI
∣

∣WI = wI
}

≤ 1 + ε

2
(221)

for all wI ∈ D and

|D| ≥
⌊

(

1− ε

1 + ε

)

∏

i∈I
M

(n)
i

⌋

. (222)

This is essentially an expurgation argument. The bound in (221) means that there exists an
(

n,M
(n)
I , PI ,D,I, 1+ε

2

)

max
-

code such that (222) holds. Fix a nonemptyT ⊆ I. Define

DwTc , {w̃I ∈ D | w̃T c = wT c} (223)

for eachwT c ∈ WT c such that
∑

wTc∈WTc

|DwTc | = |D|. (224)

Since|WT c | =∏i∈T c M
(n)
i , it follows from (222) and (224) that there exists aw∗

T c ∈ WT c such that

|Dw∗
Tc
| ≥

⌊

(

1− ε

1 + ε

)

∏

i∈T
M

(n)
i

⌋

, (225)

or otherwise we would obtain the following chain of inequalities which would eventually contradict (222):

|D| (224)
=

∑

wTc∈WTc

|DwTc | (226)

< |WT c |
⌊

(

1− ε

1 + ε

)

∏

i∈T
M

(n)
i

⌋

(227)

=
∏

i∈T c

M
(n)
i

⌊

(

1− ε

1 + ε

)

∏

i∈T
M

(n)
i

⌋

(228)

≤
⌊

(

1− ε

1 + ε

)

∏

i∈I
M

(n)
i

⌋

, (229)
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which contradicts (222). Due to (225), we can construct an
(

n,M
(n)
I , PI ,Dw∗

Tc
, T, 1+ε

2

)

max
-code based on the

(

n,M
(n)
I , PI ,D,I, 1+ε

2

)

max
-code such that they have the same message sets, encoding functions and decoding

function and differ in only the support set of the message tuple WI (cf. Definition 1). In particular, the second
statement in Definition1 is satisfied because of the following reasons:

1) By construction,WI is uniform onDw∗
Tc

.
2) For allwI ∈ Dw∗

Tc
, we havewT c = w∗

T c by (223).

Let A , Dw∗
Tc

. It remains to show that (30) and (31) hold for the
(

n,M
(n)
I , PI ,A, T, 1+ε

2

)

max
-code. Recalling the

definition ofAT in (11), we obtain from (223) that

|A| = |AT | = |Dw∗
Tc
|, (230)

which implies from (225) that

|A| = |AT | ≥
⌊

(

1− ε

1 + ε

)

∏

i∈T
M

(n)
i

⌋

. (231)

Consequently, (30) follows from (230), (231) and (29). It remains to prove (31). To this end, letpWI,Xn
I ,Y

n,ŴT

denote the probability distribution induced on the Gaussian MAC by the
(

n,M
(n)
I , PI ,A, T, 1+ε

2

)

max
-code, where

pWT
(wT ) =

1

|AT |
(232)

for all wT ∈ AT by Definition 1. Using (232) and (30), we obtain

pWT
(wT ) ≤

1
∏

i∈T M
(n)
i

·
(

2(1 + ε)

1− ε

)

(233)

for eachwT ∈ AT .
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[22] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,”IEEE Trans. on Inf. Theory, vol. 56,

no. 5, pp. 2307–2359, 2010.
[23] L. Wang, R. Colbeck, and R. Renner, “Simple channel coding bounds,” inProc. IEEE Intl. Symp. on Inf. Theory, Seoul, Korea, 2009,

pp. 1804–1808.
[24] T. S. Han and K. Kobayashi, “A new achievable rate regionfor the interference channel,”IEEE Trans. on Inf. Theory, vol. 27, no. 1,

pp. 49–60, 1981.
[25] H. Sato, “On the capacity region of a discrete two-user channel for strong interference,”IEEE Trans. on Inf. Theory, vol. 24, no. 3,

pp. 377–379, 1978.
[26] S.-Q. Le, V. Y. F. Tan, and M. Motani, “A case where interference does not affect the channel dispersion,”IEEE Trans. on Inf. Theory,

vol. 61, no. 5, pp. 2439–2453, 2015.


	I Introduction
	I-A Related Work
	I-B Challenges in Establishing the Strong Converse and Our Strategies to Overcome Them
	I-B1 Blowing-Up Lemma in Dueck's Proof dueck81 Cannot be Directly Extended to Continuous Alphabets
	I-B2 Wringing Technique in Ahlswede's Proof Ahl82 Cannot be Directly Extended to Continuous Alphabets
	I-B3 Remedy – Combining a Quantization Argument with the Wringing Technique
	I-B4 Other Ingredients in Our Proof

	I-C Paper Outline
	I-D Notation

	II Gaussian Multiple Access Channel
	III Main Result
	IV Preliminaries for the Proof of Theorem ??
	IV-A Expurgation of Message Tuples
	IV-B Wringing Technique
	IV-C Binary Hypothesis Testing

	V Proof of Theorem ??
	V-A Expurgation to Obtain a Maximum Error Code
	V-B Lower Bounding the Error Probability using Binary Hypothesis Testing
	V-C Using the DPI to Introduce the Channel Inputs and Output
	V-D Relaxation via Chebyshev's Inequality
	V-E Simplification of Log-Likelihood Terms
	V-F Introducing the Quantized Input Distribution to Simplify the Upper Bound
	V-G Approximating the Quantized Input Distribution by a Product Distribution
	V-H Discussion on the Choices of the Quantizer's Precision and the Parameters Used in the Wringing Technique in (??)

	VI Interference Channel under Strong Interference Regime
	VI-A Problem Formulation and Main Result
	VI-B Proof of Theorem ??

	Appendix
	References

