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Abstract—We derive an exponentially decaying upper-bound
on the unnormalized amount of information leaked to the wire-
tapper in Wyner’s wire-tap channel setting. We characterize the
exponent of the bound as a function of the randomness used
by the encoder. This exponent matches that of the recent work
of Hayashi [12] which is, to the best of our knowledge, the
best exponent that exists in the literature. Our proof (like those
of [16], [17]) is exclusively based on an i.i.d. random coding
construction while that of [12], in addition, requires the use of
random universal hash functions.

I. I NTRODUCTION

Wyner [1] introduced the notion of the wire-tap channel
(Fig. 1) in 1975: Alice wants to communicate a message
W ∈ {1, . . . ,M} to Bob through a communication channel
V : X → Y. Eve also has access to what Alice transmits via a
wire-tapper’s channelW : X → Z and the aim of Alice is to
keep the message hidden from her while maximizing the rate
of information transmitted to Bob,R , 1

n
logM .

W Alice’s Encoder

V : X → Y

W : X → Z

Bob’s Decoder

Eve

Ŵ
X

Y

Z

Fig. 1. The Wire-Tap Channel

To this end, Alice encodesW as a codewordX ∈ Xn and
sends it vian consecutive uses of the channel. Bob observes
the output sequence ofV, Y ∈ Yn, and estimatesW given
Y. On the other side, Eve has access toZ ∈ Zn (the output
sequence ofW), and attempts to make an inference aboutW .

Wyner (in case whenW is degraded with respect toV) [1]
and later Csiszár and Körner (in a more general context ofV

being more capable thanW) [2] showed that, given any input
distributionPX , Alice can communicate reliably to Bob at any
rateR up to

I(X ;Y )− I(X ;Z), (1)

(when (X,Y ) ∼ PX(x)V(y|x) and (X,Z) ∼ PX(x)W(z|x))
while keeping the rate of information leaked to Eve aboutW
as small as desired; i.e., guaranteeing

1

n
I(W ;Z) ≤ ǫ, (2)

for any ǫ > 0, using sufficiently largen.
Wyner’s measure of secrecy allows one to investigate the

trade-off between the message rate and the information leakage
rate but is too weak from the security point of view; even if
the amount of information Eve learns about the messageW

normalized to the number of channel uses vanishes asymp-
totically, the amount itself can grow unboundedly as the
block-length increases. Therefore, it is natural to removethe
normalization factor in (2) and ask forstrong secrecy:

I(W ;Z) ≤ ǫ. (3)

Maurer and Wolf showed that the highest achievable rate (1)
understrong secrecyrequirement does not change [3].

Classical achievability constructions [1], [4] are based on
associating each messagew ∈ {1, . . . ,M} with a sub-code
of sizeM ′ = exp(nR′) and transmitting a randomly chosen
codeword from that sub-code to communicatew. The relia-
bility of the code is ensured by keeping the total rateR′ +R
below I(X ;Y ). Furthermore, by varying the rateR′ from 0
to I(X ;Z), the upper-bound on the information leakage rate,
1
n
I(W ;Z), is controlled. Particularly, by choosing the rateR′

just belowI(X ;Z), weak secrecy is established.
An alternative way to approach the secrecy problem is to

establish secrecy throughchannel resolvability[5]–[7]. Given
an input distributionPX that induces the distributionPZ at
the output of a channelW : X → Z, a code of rateI(X ;Z)
or larger chosen from the i.i.d.PX random coding ensemble
will, with high probability, induce an output distributionthat
approximatesPn

Z when the index of the transmitted codeword
is chosen uniformly at random. [6], [8]–[11].

For any fixed messagew ∈ {1, . . . ,M} the output of Eve’s
channel has distributionPZ|W=w. It is not difficult to see that
the secrecy is guaranteed ifPZ|W=w ‘well approximates’ the
product distributionPn

Z by setting the sub-codes’ rateR′ just
aboveI(X ;Z). In particular, if we measure the quality of
approximation by asking the unnormalized Kullback-Leibler
divergence betweenPZ|W=w andPn

Z to be small,strong se-
crecywill be established. Indeed, in [6], [7] it has been shown
that the information leakage,I(W ;Z) will be exponentially
small inn provided thatR′ is aboveI(X ;Z).

Definition 1. GivenR, R′ andW, a numberE is asecrecy ex-
ponentfor the wire-tapper channelW, if there exist a sequence
of reliable coding schemes of rateR, requiring the entropy rate
R′ at the encoder, for whichlim inf

n→∞
− 1

n
log[I(W ;Z)] ≥ E.

In [6], [7] the secrecy exponent is derived using i.i.d.
random coding ensemble. More specifically, each message
w ∈ {1, . . . ,M} is associated with a sub-code whose code-
words are independently (and independent of the codewords
of the other sub-codes) sampled from the i.i.d. random coding
ensemble. The exponent is derived by upper-bounding the
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ensemble-expectation ofD(PZ|W ‖Pn
Z |PW ) and then conclud-

ing that there exists a sequence of codes in the ensemble
using which the information leakage decays at least as fast
asE[D(PZ|W ‖Pn

Z |PW )] does. The secrecy exponent of Hou
and Kramer in [7] is derived based on their resolvability proof
of [8, Section III-A] which is simple but results in a small
exponent. However, by applying the method described in [8,
Section III-B] to the wire-tap channel setting a larger exponent
can be obtained which is equal to that of Hayashi in [6].

In [12], Hayashi usesprivacy amplification to improve
the secrecy exponent based on a different construction than
those of [6]–[8]. In addition to a code of sizeMM ′, whose
codewords are sampled independently from the i.i.d. random
coding ensemble, a hash function is sampled from the en-
semble of universal hash functions from{1, . . . ,MM ′} to
{1, . . . ,M} and revealed to Alice, Bob, and Eve. A message
m ∈ {1, . . . ,M} is communicated by sending a randomly
chosen codeword from the code and, then, mapping the index
of the sent codeword, using the hash function, to an element
of {1, . . . ,M}. The expected information leakage (where
the expectation is taken over both i.i.d. random codingand
universal hash functions ensembles) is then upper-boundedto
show that the exponent of the bound is a secrecy exponent.

In this paper, we derive an exponentially decaying upper-
bound onE[D(PZ|W=w‖P

n
Z )], where the expectation is taken

over the i.i.d. random coding ensemble (i.e., the construction
used in [6]–[8]), by analyzing the deviations ofPZ|W=w

from its mean. It then follows (by standard expurgation
arguments) that for∀ǫ > 0, there exist a code of essentially
the same rateR, using which maxwD(PZ|W=w‖P

n
Z ) ≤

(1 + ǫ)E[D(PZ|W=w‖P
n
Z )]. As already noted in [7], this is a

worst-casemeasure of secrecy in contrast toI(W ;Z) which
is an average-case measure of secrecy. In addition, this shows
that our lower-bound onlimn→∞ − 1

n
logE[D(PZ|W=w‖P

n
Z )]

is a secrecy exponent. This exponent matches that of [12]
which is larger than those of [6]–[8].

II. N OTATION

We use uppercase letters (likeX) to denote a random vari-
able and corresponding lowercase version (x) for a realization
of that random variable. The boldface letters denote sequences
of lengthn. The i-th element of a sequencex is denoted as
xi. We denote finite sets by script-style uppercase letters like
S. The cardinality of setS is denoted by|S|. For a positive
integerm, [[m]] , {1, 2, . . . ,m}. R denotes the set of real
numbers and̄R = R ∪ {−∞,+∞} is the set ofextended
real numbers. We writef(n)

.
= g(n) (resp.f(n) ≤̇ g(n)) if

limn→∞
1
n
log f(n)

g(n) = 0 (resp.≤ 0).
We denote the set of distributions on alphabetX asP(X ).

If P ∈ P(X ), Pn ∈ P(Xn) denotes the product distribution
Pn(x) ,

∏n
i=1 P (xi). Likewise, if V : X → Y is a con-

ditional distributionVn : Xn → Yn denotes the conditional
distributionVn(y|x) =

∏n
i=1 V(yi|xi).

We denote thetypeof a sequencex ∈ Xn by P̂x ∈ P(X )
and theconditional typeof y ∈ Yn given x ∈ Xn by V̂y|x :
X → Y (see [13, Chapter 2] for formal definitions).

A distribution P̂ ∈ P(X ) is an n-type if nP̂ (x) ∈ N≥0

for ∀x ∈ X . We denote the set ofn-types on X as
P̂n(X ) ( P(X ) and use the fact that|P̂n(X )| = O(n|X |)
[13, Lemma 2.2] repeatedly.

If P̂ ∈ P̂n(X ), we denote the set of all sequences of type
P̂ as T

P̂
⊂ Xn. If V̂ : X → Y is a conditional distribution,

the V̂-shell of x ∈ Xn, is denoted asT
V̂
(x) ⊂ Yn.

III. R ESULT

In the rest of the paper(X,Z) ∈ X × Z denotes the pair
of random variables whose joint distribution isPX,Z(x, z) =
PX(x)W(z|x) where PX is a fixed input distribution. For
simplicity (and with no essential loss of generality) we assume
the supp(PX) = X andsupp(PZ) = Z.1

Following [4] we consider the following random code
construction: for every messagew ∈ [[M ]], a codebook of size
M ′ , exp(nR′), denoted byCw, is constructed by sampling
M ′ codewords,Xw,w′ , w′ ∈ [[M ′]] independently from the
product distributionPn

X . In order to communicate the message
w, Alice picksw′ ∈ [[M ′]] uniformly at random and transmits
Xw,w′. Given such a construction, for everyw ∈ [[M ]] and
z ∈ Zn, the conditional output distribution ofW is

PZ|W (z|w) =
1

M ′

M ′
∑

w′=1

Wn
(
z|Xw,w′

)
, (4)

which is an average of i.i.d. random variables and

E
[
PZ|W (z|w)

]
= Pn

Z (z), ∀w ∈ [[M ]]. (5)

Theorem 1. Using the aforementioned construction, for∀w ∈
[[M ]],

E
[
D(PZ|W=w‖P

n
Z )
]
≤̇ exp[−nEs(PX ,W, R′)].

with

Es(PX ,W, R′) = max
0≤λ≤1

{
λR′ − F0(PX ,W, λ)

}
, (6)

where

F0(PX ,W, λ) , log

[
∑

z∈Z

PZ(z)
∑

x∈X

PX|Z(x|z)
1+λPX(x)−λ

]

.

Remark.F0(PX ,W, λ) is a convex function ofλ (cf. Ap-
pendix E-B) passing through the origin with the slope

∂

∂λ
F0(PX ,W, λ)

∣
∣
∣
λ=0

= I(X ;Z).

HenceEs(PX ,W, R′) ≥ 0 with equality iff R′ ≤ I(X ;Z).

The only random quantity involved in the divergence
D(PZ|W=w‖P

n
Z ) is the conditional distributionPZ|W=w

whose expectation isPn
Z as shown in (5). To prove Theorem 1

we shall analyze the deviations of the random variables
PZ|W (z|w) from their mean,Pn

Z (z).
As an immediate corollary to Theorem 1 we have:

1The second assumption follows from the first together with the assumption
that for∀z ∈ Z there exist at least onex such thatW(z|x) > 0.



Corollary 2. For any input distributionPX and a pair of rates
R andR′, there exists a reliable code of rateR using which,
for any message distributionPW ,

Pe ≤̇ exp[−nEr(PX ,V, R+R′)],

I(W ;Z) ≤̇ exp[−nEs(PX ,W, R′)],

wherePe denotes the decoding error probability of Bob and
Er is Gallager’s random coding exponent [14, Chapter 5].
Hence, for(R,R′) such thatR + R′ < I(X ;Y ), theEs in
Theorem 1 is a secrecy exponent.

Corollary 2 is proved in Appendix B.

IV. PROOF OFTHEOREM 1

For ∀w ∈ [[M ]] and∀z ∈ Zn let

Un(z|w) ,
PZ|W (z|w)

Pn
Z (z)

. (7)

Using (5), it is easy to see thatE[Un(z|w)] = 1.
Using the linearity of expectation, we have:

E
[
D(PZ|W=w‖P

n
Z )
]

=
∑

z∈Zn

E
[

PZ|W (z|w) log
(PZ|W (z|w)

Pn
Z (z)

)]

=
∑

z∈Zn

Pn
Z (z)E

[
Un(z|w) log

(
Un(z|w)

)]

=
∑

P̂∈P̂n(Z)

∑

z∈T
P̂

Pn
Z (z)E

[
Un(z|w) log

(
Un(z|w)

)]
. (8)

To prove Theorem 1, we shall use the following result.

Lemma 3. For P ∈ P(Z), let

G0(PX,Z , P, λ)

,
∑

z∈Z

P (z) log
[∑

x∈X

PX|Z(x|z)
1+λPX(x)−λ

]

, (9)

and

Et(PX,Z , R
′, P ) , max

0≤λ≤1

{
λR′ −G0(PX,Z , P, λ)

}
. (10)

Then, for everyw ∈ [[M ]],

E
[
Un(z|w) log

(
Un(z|w)

)]

≤̇ exp[−nEt(PX,Z , R
′, P̂z)]. (11)

Having proved Lemma 3, Theorem 1 follows by using (11)
in (8) and [13, Lemma 2.6] to conclude

E
[
D(PZ|W=w‖P

n
Z )
]
≤̇ exp

[
−nEs(PX ,W, R′)

]
,

where

Es(PX ,W, R′)

, min
P∈P(Z)

{D(P‖PZ) + Et(PX,Z , R
′, P )}. (12)

Using (10), the equivalence of (12) and (6) is shown in
Appendix D. This completes the proof of Theorem 1.

Proof of Lemma 3: Pick any P̂ ∈ P̂n(Z) and observe
that for z ∈ T

P̂
,

Wn(z|x)

Pn
Z (z)

= exp
[
n
(
D(V̂x|z‖PX |P̂ )−D(V̂x|z‖PX|Z |P̂ )

)
].

For everyP ∈ P(Z) and stochastic matrixQ : Z → X define

AX,Z(P ;Q) , D(Q‖PX |P )−D(Q‖PX|Z |P ). (13)

Thus, using (4),

Un(z|w) =
1

M ′

M ′
∑

w′=1

exp
[
nAX,Z(P̂ ; V̂Xw,w′ |z)

]
(14)

Let

Ã ,
{
AX,Z(P̂ ; Q̂) for all conditional typeŝQ

}
⊂ R̄, (15)

and observe that|Ã| = O(n|X ||Z|). SetA , {a ∈ Ã : a >
−∞} and for eacha ∈ A define

Ta(z) ,
⋃

Q̂:AX,Z(P̂ ;Q)=a

T
Q̂
(z) ⊆ Xn, (16)

where T
Q̂
(z) is the Q̂-shell of z and the union is over

conditional typesQ̂ : Z → X (thus containsO(n|X ||Z|)
shells). Now we can rewrite (14) as2

Un , Un(z|w) =
1

M ′

∑

a∈A

Na exp(na), (17)

with Na , |{w′ : Xw,w′ ∈ Ta(z)}| denotes the number of
codewords ofCw in Ta(z). Since the codewords are indepen-
dent,Na is aBinomial(M ′, pa) random variable where,

pa = Pn
X

(
Ta(z)

)
=

∑

Q̂:AX,Z (P̂ ;Q̂)=a

Pn
X

(
T
Q̂
(z)
)

.
= exp

[

−n min
Q̂:AX,Z(P̂ ;Q̂)=a

D(Q̂‖PX |P̂ )
]

. (18)

In the above, the second equality follows sinceQ̂-shells are
disjoint, the third equality follows from [13, Lemma 2.6] (a
similar approach is used in [15] to express a quantity of interest
as a weighted sum of Binomial random variables).

In Appendix C-A we compute the value of

Eb(PX,Z , P, a) , min
Q̂:AX,Z (P ;Q̂)=a

D(Q̂‖PX |P ) (19)

and, in particular, show that

Eb(PX,Z , P, a) ≥ a, (20)

with equality iff a = D(PX|Z‖PX |P ).
PartitionA = A1 ∪A2 as

A1 = {a ∈ A : a ≤ R′}, A2 = {a ∈ A : a > R′},

2Since z andw are assumed to be fixed throughout the proof, we drop
them from the argument ofUn for the sake of brevity.
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Sn ln(Sn)

s

ψ(s)

(s− Sn)
2/Sn + Sn ln(Sn)

(s− Sn)
2/Sn

Fig. 2. The functionψ(s) defined in (24) and the upper-bound in (25). In
the figureSn , E[Sn].

and split (17) as

Un =
1

M ′

∑

a∈A1

Na exp(na)

︸ ︷︷ ︸

,Sn

+
1

M ′

∑

a∈A2

Na exp(na)

︸ ︷︷ ︸

,Tn

.

For non-negatives and t andu , s+ t we have

u ln(u) = s ln(u) + t ln(u)

= s ln(s) + s ln(1 + t/s) + t ln(u)

≤ s ln(s) + t(1 + ln(u))

where the inequality follows sinceln(1 + t/s) ≤ t/s. Hence,

E[Un log(Un)]
.
= E[Un ln(Un)]

≤ E[Sn ln(Sn)] + E
[
Tn
(
1 + ln(Un)

)]
. (21)

Moreover, sinceUn ≤ 1/Pn
Z (z), we have

ln(Un) ≤ ln
(
1/Pn

Z (z)
)
≤ n ln(1/p0)

wherep0 , minz∈Z PZ(z) > 0. Thus, from (21) we have

E
[
Un ln(Un)

]
≤ E[Sn ln(Sn)] + (n ln(1/p0) + 1)E[Tn]
.
= E[Sn ln(Sn)] + E[Tn]. (22)

We now upper-bound each of the above expectations to
complete the proof.

First we note that for any constantc ∈ R,

E[Sn ln(Sn)] = E
[
Sn ln(Sn) + c(Sn − E[Sn])

]
. (23)

In particular,
E[Sn ln(Sn)] = E[ψ(Sn)]

where

ψ(s) , s ln(s)−
(
ln
(
E[Sn]

)
+1
)
(s− E[Sn]). (24)

One can check that (see Fig. 2)

ψ(s) ≤
(s− E[Sn])

2

E[Sn]
+ E[Sn] ln(E[Sn]) ≤

(s− E[Sn])
2

E[Sn]
,

(25)
where the last inequality follows sinceE[Sn] = 1−E[Tn] ≤ 1
asSn andTn are both non-negative random variables.

Using (25) in (23) we conclude that

E[Sn ln(Sn)] ≤
var(Sn)

E[Sn]
. (26)

We now have,

E[Sn] =
∑

a∈A1

pa exp(na)

.
= exp

[

−n min
a∈A1

{
Eb(PX,Z , P̂ , a)− a

}]

, (27)

where the last equality follows since|A1| = O(n|X ||Z|).
Furthermore,

var(Sn) =
1

M ′2

∑

(a,a′)∈A2

1

exp[n(a+ a′)] cov(Na, Na′)

(a)
≤

1

M ′2

∑

(a,a′)∈A2

1

exp[n(a+ a′)]
√

var(Na)
√

var(Na′)

=
1

M ′2

(
∑

a∈A1

exp[na]
√

var(Na)

)2

(b).
=

1

M ′2

(

max
a∈A1

{

exp[na]
√

var(Na)
})2

= max
a∈A1

{ 1

M ′2
exp[2na] var(Na)

}

(c)
≤ max

a∈A1

{ 1

M ′
exp[2na]pa

}

.
= exp

[

−n min
a∈A1

{
R′ + Eb(PX,Z , P̂ , a)− 2a

}]

. (28)

In the above,

(a) follows by Cauchy–Schwarz inequality,
(b) follows since|A1| = O(n|X ||Z|),
(c) follows sincevar(Na) =M ′pa(1− pa) ≤M ′pa,

and finally (28) follows from (18) and (19).
Similar to (27),

E[Tn]
.
= exp

[

−n min
a∈A2

{
Eb(PX,Z , P̂ , a)− a

}]

. (29)

Putting (27) and (28) in (26) together with (29) in (22) we
conclude that

Et(PX,Z , R
′, P̂ ) =min{E1(PX,Z , R

′, P̂ )− Ē2(PX,Z , R
′, P̂ ),

E2(PX,Z , R
′, P̂ )}, (30)

where

E1(PX,Z , R
′, P̂ ) , min

a≤R′

{
R′ + Eb(PX,Z , P̂ , a)− 2a

}
, (31)

E2(PX,Z , R
′, P̂ ) , min

a>R′

{
Eb(PX,Z , P, a)− a

}
, (32)

Ē2(PX,Z , R
′, P̂ ) , min

a≤R′

{
Eb(PX,Z , P, a)− a

}
. (33)

We now observe that:

i. lower-boundingR′ by a in (31) showsE1(PX,Z , R
′, P̂ )−

Ē2(PX,Z , R
′, P̂ ) ≥ 0.

ii. by (20), one and only one ofE2(PX,Z , R
′, P̂ ) or

Ē2(PX,Z , R
′, P̂ ) is zero.

Thus (30) simplifies to

Et(PX,Z , R
′, P̂ ) = min

{
E1(PX,Z , R

′, P̂ ), E2(PX,Z , R
′, P̂ )

}

(34)



In Appendix C-B we show that

E1(PX,Z , R
′, P̂ ) = max

λ≤1

{
λR′ −G0(PX,Z , P̂ , λ)

}
, (35a)

E2(PX,Z , R
′, P̂ ) = max

λ≥0

{
λR′ −G0(PX,Z , P̂ , λ)

}
. (35b)

Using the above in (34) concludes the proof.

V. D ISCUSSION

We derived a lower-bound on the secrecy exponent of the
wire-tap channel using i.i.d. random codes. Comparing (6)
with [12, Equation (12)], we see that our exponent is equal
to that of [12] which is the best lower-bound on the secrecy
exponent among those reported in [6], [7], [12]. However, our
proof is based on a pure i.i.d. random coding construction and
does not require the ensemble of universal hash functions asan
additional tool. While this manuscript was in review, it came
to our attention that in [16], [17] also alternative derivations of
the same lower-bound are given based on pure i.i.d. random
coding constructions.

Our proof is a generalization of that of [8, Section III-A];
instead of partitioning the set of output sequencesZn into
two classes of typical and atypical sequences, we partition
it into O(n|Z|) type-classes to upper-bound the expected
unnormalized Kullback-Leibler divergence between the output
distribution and the desired product distributionPn

Z . In addi-
tion, in Lemma 3, we bound the point-wise difference between
those distributions at eachz ∈ Zn.

Furthermore, we believe that the method described here has
merit in showing the doubly exponential nature of the concen-
tration of the output distribution; as we see in (4), the output
distribution PZ|W (z|w) is an average ofM ′ i.i.d. random
variables. If the distribution of the summands was independent
of M ′, the average would have concentrated around its mean
exponentially fast inM ′, that isdoubly exponentially fastin n.
Although this is not the case, we see in the proof of Lemma 3
that among polynomially many summands in (17), only the
one corresponding toa = D(PX|Z‖PX |P̂z) has a significant
contribution to the mean ofUn(z|w) (which is a normalized
version ofPZ|W (z|w)); the rest all have exponentially small
means. Applying the Chernoff bound to this particular term,
we see that ifR′ > D(PX|Z‖PX |P̂z) the dominant term
concentrates around its mean doubly exponentially fast inn.
In particular, there exists a class of wire-tapper channelsfor
which Un(z|w) consists only of this dominant term.3

The achievability constructions of [6]–[8], [12], [16], [17]
are based on i.i.d. random codes. It is an open question
whether random constant-composition codes [13] will lead
to a better secrecy exponent. We believe that our method is
easily adaptable to other types of random coding (some ideas
presented in [18] can also be useful in this direction). Another
important subject in the context of wire-tap channel is to derive
non-trivial upper-bounds on the secrecy exponent.

The performance of a wire-tap code is measured via two
quantities, the error probability and the information leakage,

3This happens if for∀z ∈ Z, for every x ∈ X either W(z|x) = 0 or
W(z|x) = ǫz for some constantǫz < 1 independent ofx.

which are both shown to be exponentially decaying as a
function of the block-lengthn. The trade-off between these
exponents has been recently studied in [19].

We conclude our discussion by remarking that, as shown in
[2], for general channelsV andW, any message rate up to

I(V ;Y )− I(V ;Z),

whereV⊸−−X⊸−−(Y, Z) form a Markov chain, is achievable.
Our results (and also those of others cited) are straightfor-
wardly extensible to the case when the channels are prefixed
with a channelPX|V and auxiliary random variableV is used.
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APPENDIX A
PROOF OF(5)

The right-hand-side of (4) is the average of identically
distributed random variables. The mean of each of them is

E

[ n∏

i=1

W (zi|Xi)

]

=
n∏

i=1

EX∼PX
[W (zi|X)]

=

n∏

i=1

[∑

x∈X

PX(x)W(zi|x)
]

=

n∏

i=1

PZ(zi)

In the above, the first equality follows since the codewords are
sampled from the product distributionPn

X .

APPENDIX B
PROOF OFCOROLLARY 2

Let M , exp(nR) and construct2M i.i.d. codebooks
of sizeM ′ , exp(nR′), Cw, w ∈ [[2M ]] by sampling each
codeword independently from the product distributionPn

X . As
we already described, in order to communicatew ∈ [[2M ]],
Alice picks w′ ∈ [[M ′]] uniformly at random and transmits
Xw,w′ over the channel. The union of this codebooksC ,
⋃

w∈[[2M ]] Cw is a random i.i.d. codebook of rateR′+R+ log(2)
n

.
Hence, using this ensemble for communicating overV, for
eachw ∈ [[2M ]], the expected decoding error probability is
upper-bounded as

E
[
Pr[Ŵ 6=W |W = w]

]

≤ E
[
Pr[{Ŵ 6=W} ∪ {Ŵ ′ 6=W ′}|W = w

]

≤ exp
[
−nEr

(
PX ,V, R+R′ + o(1)

)]
, (36)

due to [14, Theorem 5.6.2]. In the above,Ŵ andŴ ′ denote,
respectively, the maximum likelihood estimations ofW and
W ′ givenY, the output sequence ofV. Consequently,

E
[ 1

2M

2M∑

w=1

Pr[Ŵ 6= w|W = w]
]

≤̇ exp[−nEr(PX ,V, R +R′)]. (37)

Likewise, Theorem 1 implies

E
[ 1

2M

2M∑

w=1

D(PZ|W=w‖P
n
Z )
]

≤̇ exp[−nEs(PX ,W, R′)]. (38)

Therefore, there exists a codeC∗ =
⋃

w∈[[2M ]] C
∗
w in the

ensemble using which we simultaneously have4:

1

2M

2M∑

w=1

Pr[Ŵ 6= w|W = w]

≤̇ exp[−nEr(PX ,V, R+R′)]. (39)

1

2M

2M∑

w=1

D(PZ|W=w‖P
n
Z )

≤̇ exp[−nEs(PX ,W, R′)]. (40)

Since each of the summands in (39) is positive, there exist
a subsetW1 ⊂ {1, . . . , 2M} of cardinality |W1| ≥

3
2M such

that, for∀w ∈ W1,

Pr[Ŵ 6= w|W = w] ≤̇ 4 exp[−nEr(PX ,V, R+R′)]. (41)

Similarly since the summands in (40) are positive, there exists
a subsetW2 ⊂ {1, . . . , 2M} of cardinality |W2| ≥

3
2M such

that, for∀w ∈ W2,

D(PZ|W=w‖P
n
Z ) ≤̇ 4 exp[−nEs(PX ,W, R′)]. (42)

Since |W1 ∩W2| ≥ M there exist a subsetW ⊆ W1 ∩
W2 of cardinality |W| = M . The sub-code defined by the
messages inW ,

⋃

w∈W C∗
w has rateR and, using that, for any

message distributionPW on W , we have:

Pe =
∑

w∈W

PW (w) Pr[Ŵ 6= w|W = w]

≤̇ exp[−nEr(PX ,V, R+R′)],

due to (41), and

I(W ;Z) = D(PZ|W ‖Pn
Z |PW )−D(PZ‖P

n
Z )

≤
∑

w∈W

PW (w)D
(
PZ|W=w‖P

n
Z

)

≤̇ exp[−nEs(R
′, PX ,W)],

due to (42).

APPENDIX C
DERIVATION OF EXPONENTS FORTHE PROOF OFLEMMA 3

A. Derivation ofEb and It’s Properties

Proposition 4. LetEb(PX,Z , P, a) be defined as in(19). Then,

Eb(PX,Z , P, a) = a+max
ρ∈R̄

{
ρa−G0(PX,Z , P, ρ)

}
, (43)

whereG0 is defined in(9).

4Markov inequality implies for at least2
3

of the codes in the ensemble,

1

2M

2M
∑

w=1

Pr[Ŵ 6= w|W = w] ≤ 3E
[ 1

2M

2M
∑

w=1

Pr[Ŵ 6= w|W = w]
]

.

Similarly for at least2
3

of the codes in the ensemble,

1

2M

2M
∑

w=1

D(PZ|W=w‖Pn

Z
) ≤ 3E

[ 1

2M

2M
∑

w=1

D(PZ|W=w‖Pn

Z
)
]

.

Therefore, for at least1
3

of the codes in the ensemble both (39) and (40) hold
simultaneously.

http://arxiv.org/abs/1202.1332


Proof: Let

ιX,Z(x, z) , log

(
PX,Z(x, z)

PX(x)PZ (z)

)

, ∀(x, z) ∈ X × Z,

denote the information density function for the joint distribu-
tion PX,Z for the sake of brevity.

Using (13),

min
Q̂:AX,Z (P ;Q̂)=a

D(Q̂‖PX |P )

= a+ min
Q̂:AX,Z(P ;Q̂)=a

D(Q̂‖PX|Z |P ) (44)

Now, we have

min
Q̂:AX,Z(P ;Q̂)=a

D(Q̂‖PX|Z |P )

= min
Q̂

{

D(Q̂‖PX|Z |P ) + max
ρ∈R̄

ρ
(
a−AX,Z(P ; Q̂)

)}

= min
Q̂

max
ρ∈R̄

{

D(Q̂‖PX|Z |P ) + ρ
(
a−AX,Z(P ; Q̂)

)}

(∗)
= max

ρ∈R̄

{

min
Q̂

{
D(Q̂‖PX|Z |P )− ρAX,Z(P ; Q̂)

}
+ ρa

}

where (*) follows sinceD(Q̂‖PX|Z |P ) is a convex function
of Q̂ andAX,Z(P ; Q̂) is a linear function ofQ̂. Therefore,
D(Q̂‖PX|Z |P ) − ρAX,Z(P ; Q̂) is also a convex function of
Q̂ and we can swap themin and themax. Now,

D(Q̂‖PX|Z |P )− ρAX,Z(P̂ ; Q̂)

=
∑

z∈Z

P (z)
∑

x∈X

Q̂(x|z) log
(

Q̂(x|z)

PX|Z(x|z) exp[ριX,Z(x, z)]

)

≥
∑

z∈Z

P (z) log

(
1

∑

x∈X PX|Z(x|z) exp[ριX,Z(x, z)]

)

with equality iff Q̂(x|z) ∝ PX|Z(x|z) exp[ριX,Z(x, z)] (using
the concavity of logarithm). Therefore,

min
Q̂

{
D(Q̂‖PX|Z |P )− ρAX,Z(P ; Q̂)

}
+ ρa = ρa

−
∑

z∈Z

P (z) log
(∑

x∈X

PX|Z(x|z) exp[ριX,Z(x, z)]
)

.

Remark. It is easy to verify thatEb(PX,Z , P, a) is a convex
function of a. Furthermore, (44) impliesEb(PX,Z , P, a) ≥ a
with equality ata = D(PX|Z‖PX |P ).

B. Derivation ofE1 andE2

Proof of (35a): Using (31),

E1(PX,Z , R
′, P ) = min

a≤R′

{
R′ + Eb(PX,Z , P, a)− 2a

}

= min
a∈R̄

{

R′ + Eb(PX,Z , P, a)− 2a+max
λ≤0

λ(R′ − a)
}

= min
a∈R̄

max
λ≤0

{

(1 + λ)R′ + Eb(PX,Z , P, a)− (2 + λ)a
}

= min
a∈R̄

max
λ≤1

{

λR′ + Eb(PX,Z , P, a)− (1 + λ)a
}

(∗)
= max

λ≤1

{

λR′ +min
a∈R̄

{
Eb(PX,Z , P, a)− (1 + λ)a

}}

, (45)

where (*) follows sinceEb(PX,Z , P, a) is convex ina. Using
(43) we have

min
a∈R̄

{
Eb(PX,Z , P, a)− (1 + λ)a

}

= min
a∈R̄

{

max
ρ∈R̄

{
ρa−G0(PX,Z , P, ρ)

}
− λa

}

= min
a∈R̄

max
ρ∈R̄

{
(ρ− λ)a−G0(PX,Z , P, ρ)

}

(∗)
= max

ρ∈R̄

{

min
a∈R̄

{
(ρ− λ)a

}
−G0(PX,Z , P, ρ)

}

, (46)

where again (*) follows sinceG0(PX,Z , P, ρ) is convex inρ
(cf. Appendix E-A). We then note that the minimum of the
linear term(ρ−λ)a over the choices ofa is −∞ unlessρ = λ.
Therefore, the result of (46) is

min
a∈R̄

{
Eb(PX,Z , P, a)− (1 + λ)a

}
= −G0(PX,Z , P, λ) (47)

Plugging the above into (45) completes the proof.
Proof of (35b): Similarly, using (32),

E2(PX,Z , R
′, P ) = min

a>R′

{
Eb(PX,Z , P, a)− a

}

= min
a∈R̄

{

Eb(PX,Z , P, a)− a+max
λ≥0

λ(R′ − a)
}

= min
a∈R̄

max
λ≥0

{

λR′ + Eb(PX,Z , P, a)− (1 + λ)a
}

(∗)
= max

λ≥0

{

λR′ +min
a∈R̄

{
Eb(PX,Z , P, a)− (1 + λ)a

}}

, (48)

where (*) follows sinceEb(PX,Z , P, a) is convex ina. Using
(47) in (48) completes the proof.

APPENDIX D
DERIVATION OF Es

Plugging (10) into (12) we have

min
P∈P(Z)

{
Et(PX,Z , P,R

′) +D(P‖PZ)
}

= min
P∈P(Z)

{
max
0≤λ≤1

{λR′ −G0(PX,Z , P, λ)} +D(P‖PZ)
}

(∗)
= max

0≤λ≤1

{
λR′ + min

P∈P(Z)
{D(P‖PZ)−G0(PX,Z , P, λ)}

}

where (*) follows sinceG0, defined in (9) is a linear function
of P while D(P̂‖PZ) is convex inP and we can swap the
min and themax. The claim follows then by observing that

D(P‖PZ)−G0(PX,Z , P, λ)

=
∑

z∈Z

P (z)

[

log

(
P (z)

PZ(z)

)

−

− log
(∑

x∈X

PX|Z(x|z)
1+λPX(x|z)−λ

)
]

≥ log







1
∑

z∈Z

PZ(z)
∑

x∈X

(

PX|Z(x|z)
1+λPX(x)−λ

)






,



with equality if

P (z) ∝ PZ(z)
∑

x∈X

(

PX|Z(x|z)
1+λPX(x)−λ

)

,

using the concavity of logarithm.

APPENDIX E
CONVEXITY PROOFS

Lemma 5. Let ai > 0, and bi ≥ 0, i = 1, . . . , k be arbitrary
real numbers. Then the function

f(s) , log
( k∑

i=1

aib
s
i

)

,

is convex ins for ∀s ∈ R̄.

Proof: Pick s1 < s2 and t ∈ (0, 1). Let t̄ , 1 − t and
s , ts1 + t̄s2. Then, Hölder’s inequality implies

k∑

i=1

aib
s
i =

k∑

i=1

(

atib
ts1
i ×at̄ib

t̄s1
i

)

≤
( k∑

i=1

aib
s1
i

)t(
k∑

i=1

aib
s2
i

)t̄

.

Taking thelog of both sides of the above concludes the proof.

Lemma 6. Supposefi(s), i = 1, 2, . . . , k are convex functions
in s andai > 0, i = 1, 2, . . . , k is a sequence of real numbers.
Then,

(i) f(s) ,
∑k

i=1 aifi(s) is convex ins.

(ii) g(s) , log
(
∑k

i=1 ai exp[fi(s)]
)

is convex ins.

Proof: The convexity off(s) is trivial. To prove the
convexity of g(s), let s1 < s2 and s = ts1 + t̄s2 for some
t ∈ (0, 1) (wheret̄ , 1− t). Then

k∑

i=1

ai exp[fi(s)] ≤

k∑

i=1

ai exp[tfi(s1) + (1− t)fi(s2)]

=

k∑

i=1

(

ati exp[tfi(s1)]× at̄i exp[t̄fi(s2)]
)

≤
( k∑

i=1

ai exp[fi(s1)]
)t(

k∑

i=1

ai exp[fi(s2)]
)t̄

where the second inequality follows by Hölder’s inequality.
Taking the logarithm of both sides of the above proves (ii).

Convexity of the functionsF0 andG0 is established using
the above two lemmas as follows:

A. Convexity ofG0

Set ai = PX|Z(x|z) and bi =
PX|Z (x|z)

PX (x) in Lemma 5 and
then use Lemma 6 part (i).

B. Convexity ofF0

Set ai = PX|Z(x|z) and bi =
PX|Z (x|z)

PX (x) in Lemma 5 and
then use Lemma 6 part (ii).
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