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Abstract—We derive an exponentially decaying upper-bound normalized to the number of channel uses vanishes asymp-
on the unnormalized amount of information leaked to the wire totically, the amount itself can grow unboundedly as the
tapper in Wyner's wire-tap channel setting. We characteriz the 1,0k Jength increases. Therefore, it is natural to remibee

exponent of the bound as a function of the randomness used lization factor in[{2 d ask fst
by the encoder. This exponent matches that of the recent work normalization factor in[(2) and as rong secrecy

of Hayashi [12] which is, to the best of our knowledge, the

best exponent that exists in the literature. Our proof (like those I(W:Z) <e. 3)

of [16], [17]) is exclusively based on an i.i.d. random codip

construction while that of [12], in addition, requires the use of Maurer and Wolf showed that the highest achievable fdte (1)

random universal hash functions. understrong secrecyequirement does not change [3].
Classical achievability constructions| [1],][4] are based o
associating each messagee {1,..., M} with a sub-code
Wyner [1] introduced the notion of the wire-tap channedf size M’ = exp(nR’) and transmitting a randomly chosen
(Fig. ) in 1975: Alice wants to communicate a messagmdeword from that sub-code to communicate The relia-
W e {1,...,M} to Bob through a communication channebility of the code is ensured by keeping the total r&e+ R
V: X — ). Eve also has access to what Alice transmits vialglow I(X;Y). Furthermore, by varying the rate’ from 0
wire-tappefs channelW : X — Z and the aim of Alice is to to I(X; Z), the upper-bound on the information leakage rate,
keep the message hidden from her while maximizing the ratd (W; Z), is controlled. Particularly, by choosing the raté
of information transmitted to Bobiz £ L log M. justbelowI(X; Z), weak secrecy is established.
An alternative way to approach the secrecy problem is to

[v N y] Y [Bob,s Deco dei—» W establish secrecy througthannel resolvability5]-[[7]. Given

I. INTRODUCTION

W __ an input distributionPy that induces the distributio®, at
Z kv the output of a channéV : X — Z, a code of ratd/ (X; Z)

or larger chosen from the i.i.d?y random coding ensemble
Fig. 1. The Wire-Tap Channel will, with high probability, induce an output distributicthat

approximates”; when the index of the transmitted codeword
To this end, Alice encodel’ as a codeworK € X™ and s chosen uniformly at randond.|[6],1[8I=[11].

sends it vian consecutive uses of the channel. Bob observesgor any fixed message {1,..., M} the output of Eve’s
the output sequence of, Y € ", and estimatesV’ given  channel has distributiofz—,.. It is not difficult to see that
Y. On the other Side, Eve has acces¥ia Z™ (the 0utput the secrecy is guaranteed}?&lwzw ‘well approximates’ the
sequence ofV), and attempts to make an inference abldut product distributionPy by setting the sub-codes’ rafé/ just
Wyner (in case wheiV is degraded with respect ¥) [1]  above I(X; Z). In particular, if we measure the quality of
and later Csiszar and Korner (in a more general conteXt ofapproximation by asking the unnormalized Kullback-Leible
being more capable thaw) [2] showed that, given any input divergence betweefy—,, and P} to be smallstrong se-
distribution Px, Alice can communicate reliably to Bob at anyerecywill be established. Indeed, ihl[6].][7] it has been shown
rate 2 up to that the information leakagd,(W; Z) will be exponentially
I(X;Y)-I1(X;2), (1) small inn provided thatR’ is abovel (X; Z).

(when(X,Y) ~ Px(x)V(ylz) and (X, Z) ~ Px(x)W(z|z)) Definition 1. GivenR, R’ andW, a numberF is asecrecy ex-
while keeping the rate of information leaked to Eve abdut ponentfor the wire-tapper chann&, if there exist a sequence
as small as desired; i.e., guaranteeing of reliable coding schemes of rak& requiring the entropy rate

1 R’ at the encoder, for whictim inf — L log[I(W;Z)] > E.
—I(W;Z) <, ) e
n In [6], [7] the secrecy exponent is derived using i.i.d.
for any e > 0, using sufficiently largea. random coding ensemble. More specifically, each message
Wyner's measure of secrecy allows one to investigate thee {1,..., M} is associated with a sub-code whose code-

trade-off between the message rate and the informatioadgakwords are independently (and independent of the codewords
rate but is too weak from the security point of view; even ibf the other sub-codes) sampled from the i.i.d. random gpdin
the amount of information Eve learns about the mesd&ge ensemble. The exponent is derived by upper-bounding the
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ensemble-expectation @ ( Pz || Py |Pw ) and then conclud- A distribution P e P(X) is ann-typeif nP(z) € Nxg
ing that there exists a sequence of codes in the ensenfole Vv € X. We denote the set oh-types on X as
using which the information leakage decays at least as fa&t(X) C P(X) and use the fact thdP,(X)| = O(n¥)
asE[D(Pgw| Pz |Pw)] does. The secrecy exponent of Hoyl3, Lemma 2.2] repeatedly.
and Kramer in[[¥] is derived based on their resolvabilitygiro If P € P,(X), we denote the set of all sequences of type
of [8, Section IlI-A] which is simple but results in a smallP asTp C X" |If V: X — Y is a conditional distribution,
exponent. However, by applying the method describedin [he V- sheII of x € X", is denoted agy,(x) C V™.
Section IlI-B] to the wire-tap channel setting a larger exgat
can be obtained which is equal to that of Hayashi in [6]. . REsuULT
In [12], Hayashi usesprivacy amplificationto improve In the rest of the papeiX, Z) € X x Z denotes the pair
the secrecy exponent based on a different construction thgfrrandom variables whose joint distribution £ z(x, z) =
those of [6]-[8]. In addition to a code of siz&/ M’, whose Py (x)W(z|z) where Px is a fixed input distribution. For
codewords are sampled independently from the i.i.d. rand@implicity (and with no essential loss of generality) welass
coding ensemble, a hash function is sampled from the &he supp(Px) = X andsupp(Pz) = Z[
semble of universal hash functions frofd,..., MM’} to Following [4] we consider the following random code
{1,..., M} and revealed to Alice, Bob, and Eve. A messageonstruction: for every messagec [M], a codebook of size
m € {1,...,M} is communicated by sending a randomly/’ £ exp(nR’), denoted byC,, is constructed by sampling
chosen codeword from the code and, then, mapping the indgX codewords,X,, ..,,w’ € [M’] independently from the
of the sent codeword, using the hash function, to an elemgmbduct distributionP%. In order to communicate the message
of {1,...,M}. The expected information leakage (where, Alice picksw’ € [M’] uniformly at random and transmits
the expectation is taken over both i.i.d. random codamgl X, ,.. Given such a construction, for every € [M] and
universal hash functions ensembles) is then upper-bouteded ¢ z™, the conditional output distribution otV is
show that the exponent of the bound is a secrecy exponent.
In this paper, we derive an exponentially decaying upper-
bound onE[D(Pzjw—.||P7)], where the expectation is taken
over the i.i.d. random coding ensemble (i.e., the consbmct N )
used in [6][8]), by analyzing the deviations d?zu —., which is an average of i.i.d. random variables and
from its mean. It then follows (by standard expurgation _ pn
arguments) that foke > 0, there exist a code of essentially E[PZ‘W(ZW)] = Pz (@), vw € [M], ®)
the same rateR, using which max,, D(Pzw=.|Py7) < Theorem 1. Using the aforementioned construction, fap €
(14 e)E[D(Pzw-.w|Pz)]. As already noted in_[7], this is a [M],
worst-casemeasure of secrecy in contrast ¥0i/; Z) which
is an average-case measure of secrecy. In addition, thigssho
that our lower-bound otim,,—,oc =2 1og E[D(Pzjw—w|PZ)]  with
is a secrecy exponent. This exponent matches that of [12]
which is larger than those ofI[6]=[8]. E.(Px,W,R') = Ofg&gl{)\R/ — Fo(Px,W,\)}, (6)

M
1
Pgw(zlw) = Vi Z W (2| X0 ), 4)
w’'=1

E[D(Pzjw—ul||P%)] < exp[-nEy(Px, W, R').

Il. NOTATION where

We use uppercase letters (liR€) to denote a random vari-
able and corresponding lowercase versionfér a realization Fo(Px;W. ) £ lo {Z Py(2) Y Px|z(x|2)" " Px (z) =
of that random variable. The boldface letters denote sempsen z€Z TEX
of lengthn. Thei-th element of a sequenceis denoted as Remark. Fy(Px,W, \) is a convex function of\ (cf. Ap-

x;. We denote finite sets by script-style uppercase lettees lisendix[E-B) passing through the origin with the slope
S. The cardinality of setS is denoted byS|. For a positive

integerm, [m] £ {1,2,...,m}. R denotes the set of real —

numbers andR = R U {—o0, +00} is the set ofextended OA

real numbers. We writgf (n) = g(n) (resp.f(n) < g(n)) if HenceE (Px,W,R') > 0 with equality iff R’ < I(X; Z).

limy, o0 + log - g;—o (resp.< 0). The only random quantity involved in the divergence
We denote the set of distributions on alphahedsP(X). D(Pzw-.|P%) is the conditional distributionPgzy —,

If P eP(X), P" € P(X") denotes the product distributionwhose expectation i&% as shown in[(6). To prove Theorémh 1

Pr(x) £ [[i_, P(x;). Likewise, if V : X — Y is a con- we shall analyze the deviations of the random variables

ditional distributionV™ : X" — Y™ denotes the conditional Py, (z|w) from their meanPz(z).

Fo(Px,W, )| =1(X:2).

distribution V™ (y|x) = [T\, V(ys|z:)- X As an immediate corollary to Theordmh 1 we have:
We denote thaype of a sequenca € X" by Px € P(X)
and theconditional typeOf y € V" givenx € &A™ by Vylx : 1The second assumption follows from the first together withasumption

X — Y (see[[13, Chapter 2] for formal definitions). that forVz € Z there exist at least one such thatw/(z|z) > 0.



Corollary 2. For any input distributionPx and a pair of rates
R and R’, there exists a reliable code of rafe using which,

for any message distributioRyy,

P, < exp[-nE:(Px,V,R+ R,
I(W7 Z) S eXp[_nES (PXa Wa R/)]v

where P, denotes the decoding error probability of Bob and
E. is Gallager's random coding exponerit |14, Chapter 5].

Hence, for(R, R') such thatR + R’ < I(X;Y), the E5 in
Theoren ]l is a secrecy exponent.

Corollary[2 is proved in Appendix]B.
IV. PROOF OFTHEOREMI[
ForVw € [M] andvz € Z™ let

Pgzw (z|w)
Py(z)

Using [8), it is easy to see th&{U, (z|w)] = 1.
Using the linearity of expectation, we have:

E[D(Pgzyw=wllP2)]
-3 IE{PZ‘W(ZW) log(

zZEZ"

:ZPZ

zZEZ"

2 Z%

peﬁn(z) z€Tp

Uy, (zlw) £ @)

Pz (z|w)
)]

Un(2|w))]

Un(z|w) log (U (z|w))].

(z|w) log

(8)

To prove Theorerf]1, we shall use the following result.

Lemma 3. For P € P(Z), let

Go(Px,z, P, \)
23" P)log| Y Pxiz(alz) P Px(@) ], (9)
zEZ reX
and

Et(PX7z,R/,P) éo@??l{/\R/_GO(PX’Z’P’ /\)} (10)

Then, for everyw € [M],

E Uy (z|w)log(Un(z|w))]

< exp[-nFEi(Px 7z, R, B,)]. (11)

Having proved LemmE&l3, Theordm 1 follows by usihgl (11)

in (@) and [13, Lemma 2.6] to conclude
E[D(Pzjw—-w||P%)] < exp[-nEy(Px,W, R')],
where

ES(PX7 Wv R/)

2 i D(P||P Ei (P R’ P)}.
Pglplnz{ (P||Pz) + Ey(Px,z,R',P)}

(12)

Proof of Lemmd13: Pick any P € P, (Z) and observe
that forz € 7,

W™ (z|x)

Py(a) D (V[ Px 2| P)))-

= exp[n(D(Vy4|| Px|P) —

For everyP € P(Z) and stochastic matri® : Z — X define

Ax,z(P;Q) £ D(Q||Px|P) — D(Q||Pxz|P).  (13)
Thus, using[(}),
1 M’ o
Un(zlw) = 55 D exp[ndxz(PiVx, ,12)]  (14)

w’'=1

Let
A2 {Ax 7(P;Q) for all conditional typesQ} c R, (15)

and observe thatd| = O(n!*IIZ]). SetA £ {a € A:a >
—oo} and for eachu € A define

T.z)= |

Q:Ax,z(P;Q)=a

To(z) C A", (16)

where Ta(z) is the Q-shell of z and the union is over
conditional typesQ : £ — X (thus containsO(n!¥!12])
shells). Now we can rewrité (1.4) s
1
Un = Un(Z|U)) = M Z Na eXp(na)v (17)
acA

with N, £ [{w' : Xy . € To(2z)}| denotes the number of
codewords of’,, in 7,(z). Since the codewords are indepen-
dent, N, is a Binomial(M’, p,) random variable where,

Pa=Py(Ta(2) = Y. Pi(Ty(2)
Q:Ax, z(P;Q)=a
DEQ|Px|P)|.  (18)

min

iexp[
Q:Ax,z(P;Q)=a

In the above, the second equality follows sif@eshells are
disjoint, the third equality follows from [13, Lemma 2.6] (a
similar approach is used in [115] to express a quantity ofexe
as a weighted sum of Binomial random variables).

In Appendix[C-A we compute the value of

Ey(Px.z,P,a)2  min  D(Q|Px|P) (19)
Q:Ax,z(P;Q)=a
and, in particular, show that
Eb(PX,Z7 P, CL) Z a, (20)

with equality iff a = D(Px 2| Px|P).
Partition A = A; U As as

A1 ={aeA:a <R}, As={a€e A:a> R},

Usmg @) the equwalence OE(]]-Z) and] (6) is shown in 2Sincez and w are assumed to be fixed throughout the proof, we drop

Appendix[D. This completes the proof of TheorEim 1. m

them from the argument d¥,, for the sake of brevity.



SnIn(Sy) |

Fig. 2. The functiom)(s) defined in [2#) and the upper-bound [0(25). In
the figure S, = E[Sh].

and split [17) as

1 1
U, = Y Z N, exp(na) + Y Z N, exp(na).
a€ Ay a€Az

A

29, AT,

For non-negative andt andu £ s+t we have
uln(u) = sln(u) + t1n(u)
= sln(s) + sln(l1 +t/s) + t1ln(u)
< sln(s) + (1 + In(uw))
where the inequality follows since(1 + ¢/s) < t/s. Hence,
E[U, log(U,)] = E[U, In(U,,)]
< E[S, In(Sy)] + E[T, (1 + In(Uy))]. (21)
Moreover, sincdJ,, < 1/P7(z), we have
In(Uy,) <In(1/P%(z)) < nln(1/po)
wherepy £ min.c z Pz(z) > 0. Thus, from [21) we have
E[U, In(Uy)] < E[S,In(Sy)] + (nIn(1/po) + 1)E[T}]
= E[S, In(S,)] + E[T3,). (22)

We now upper-bound each of the above expectations
complete the proof.
First we note that for any constant R,

In particular,
E[S, In(Sn)] = E[¥(Sy)]
where
P(s) £ sln(s) — (ln(IE[Sn])-i-l) (s —E[S.])- (24)
One can check that (see Figd. 2)
(s — E[S.])? (s — E[Sn])?
P(s) < RS + E[S,] In(E[S,]) < RS,
(25)

where the last inequality follows sind@S,] = 1-E[T,] < 1
as S, andT,, are both non-negative random variables.
Using [25) in [28) we conclude that
var(Sy,)
E[Sn] -

E[S, In(S,,)] < (26)

We now have,

E[S,] = Z Da €xp(na)

ac€ A,

iexp{_nl?elgll{Eb(PX,Zupua) _a}}u (27)

where the last equality follows sincgd;| = O(n!¥IIZl).
Furthermore,

1

var(Sp) = —s Z exp[n(a + a’)] cov(Ng, Ngs)

(a,a’)€A2

Z exp[n(a + a’)]\/var(N,)/var(N,)

(a,a’)€A2
(z
a€A,

(1 {eplna vamﬁu>}>2

{ # exp[2na] var(N,) }

{ 1

— exp

(CY
<

1
12

1
M’?

2
exp[nal var(Na)>

® 1

0\

ac Ay

max
ac Ay

—
N

77 ©pl2nalp. |

= exp [—n mi{l {R' + Ey(Px,z, P, a) — 2a}]
acAy

S max
ac Ay

(28)

In the above,

(a) follows by Cauchy—Schwarz inequality,

(b) follows since|A;| = O(nl*IIZ]),

(c) follows sincevar(N,) = M'p,(1 — ps) < M'pa,

and finally [28) follows from[(1I8) and_(1.9).
Similar to [27),

E[T,] = exp [—n ££{Eb(PX7Z, P.a)— a}}. (29)

Putting [2T) and[(28) in(26) together with {29) [N 122) we

donclude that
Ey(Px.z,R,P) =min{E,(Px z, R, P) — Ex(Px.z, R, P),
Ey(Px.z, R, P)}, (30)
where
Ei(Px.z,R,P) 2 Lfgi}%{R’ + Ey(Px,z, P,a) — 2a}, (31)
. (32)
(33)

E>(Px.z, R, P) £ min{Ey(Px 7, P,a) - a},
_ e B
E2(PX,Z7R7P)_(?SHRP/{EZ)(PX,27P7@) (L}.

We now observe that:
i. lower-boundingR’ by a in 31) showsF, (Px z, R, P)—
Ey(Px.z, R, P) > 0.
ii. by @20), one and only one ofEQ(PXVZ,R’,P) or
Ey(Px.z, R, P) is zero.
Thus [30) simplifies to

E(Px,z, R, P) = min{ E1(Px,7, R, P), B2(Px 7, R, P)}
(34)



In Appendix[C-B we show that which are both shown to be exponentially decaying as a
/By ;o 5 function of the block-length. The trade-off between these
Ev(Pxz, B, P) = rilgi({)\R Go(Px.z, P, N)},  (352) exponents has been recently studied’in [19].
Ey(Pxz, R, P) = max{ AR’ — Go(Px.z, P, N}, (35b) We conclude our discussion by remarking that, as shown in
A0 [2], for general channels andW, any message rate up to

Using the above in(34) concludes the proof. [ | H(V:Y) = I(V: 2),

V. DISCUSSION . .
derived a | bound h ¢ whereV——X ——(Y, Z) form a Markov chain, is achievable.
_We erl\r/1e a lowgr— qu_r:j on ;e secrgcy eéponent 0 tbﬁjr results (and also those of others cited) are straightfor
wire-tap channel using i.i.d. random codes. Comparldg (R)q1y extensible to the case when the channels are prefixed

with [12, Eq’uatiorj (1.2)]' we see that our exponent is equﬂ)ith a channelPx | and auxiliary random variabl€ is used.
to that of [12] which is the best lower-bound on the secrecy

exponent among those reported|in [6], [7].][12]. However, ou ACKNOWLEDGMENT

proof is based on a pure i.i.d. random coding constructiah an The authors would like to thank Prof. Neri Merhav, Prof.

does not require the ensemble of universal hash functioas asyincent Y. F. Tan, and Mohammad Hossein Yassaee for their
additional tool. While this manuscript was in review, it @Mmhe|pful comments on an earlier version of this work.

to our attention that ir [16]/ [17] also alternative derigat of This work was supported by the Swiss NSF under grant
the same lower-bound are given based on pure i.i.d. rand@iimber 200020146832.
coding constructions. -

Our proof is a generalization of that df|[8, Section IlI-A]; REFERENCES
instead of partitioning the set of output sequen&&sinto  [1] A. D. Wyner, “The wire-tap channel,Bell System Technical Journal
two classes of typical and atypical sequences, we partition Vol- 54, no. 8, pp. 1355-1387, 1975.

it into O(mZ t | t b d th t ] I. Csiszar and J. Kdrner, “Broadcast channels with ficemtial mes-
It Into (” ) ype-classes 10 upper-boun € expecte sages,”|IEEE Transactions on Information Theogryol. 24, no. 3, pp.

unnormalized Kullback-Leibler divergence between thepatit 339-348, 1978.

distribution and the desired product distributié¥. In addi-  [3] U- Maurer and S. Wolf, "Information-theoretic key agreent: From

. . . . . weak to strong secrecy for free,” ikdvances in Cyptology — EURO-
tion, in Lemmd_B, we bound the point-wise difference between CRYPT 2000ser. Lecture Notes in Computer Science, B. Preneel, Ed.,

those distributions at eache Z™. vol. 1807. Springer-Verlag, May 2000, pp. 351-368.

Furthermore, we believe that the method described here hié J- L. Massey, "A simplified treatment of wyner's wire-tapannel.” in
it in showina the doubl tial nat fth Proceedings of 21st Annual Allerton Conference on Comratioit,
merit in showing the doubly exponential nature o € concen Control, and ComputingMonticello, IL, Oct. 1983, pp. 268-276.

tration of the output distribution; as we see [ih (4), the atitp [5] M. R. Bloch and J. N. Laneman, “Strong secrecy from chamesolv-
distribution Py (z|w) is an average of\/’ i.i.d. random gg;";yr’ééggEDTranggigons on Information Theoryol. 59, no. 12, pp.
. . . . . — , Dec. .

variables. If the distribution of the summands was mde_pend [6] M. Hayashi, “General nonasymptotic and asymptotic folas in chan-
of M’, the average would have concentrated around its mean nel resolvability and identification capacity and their kgggion to the
exponentially fast inV/’, that isdoubly exponentially fash n. wiretap channel,"IEEE Transactions on Information Theoryol. 52,
Although this is not the case, we see in th f of Lerfiin no. 4, pp. 15621575, Apr. 2006.

g IS . r W In the prootrorLe a 1 J. Hou and G. Kramer, “Effective secrecy: Reliabilitypnfusion and
that among polynomially many summands [inl(17), only the ~ stealth,” in Proceedings of 2014 IEEE International Symposium on

one corresponding ta = D(Px|z||Px|P,) has a significant '”formj?“‘f’” Tht‘?oryl('g'T’)J““ 2014, pp-.BO%TGOS-t —
. . . . ——, “Informational divergence approximations to pr istribu-
contribution to the mean dfn(z|w) (Wh|Ch is a normalized tions,” in Proceedings of 13th Canadian Workshop on Information

version of Pz (z|w)); the rest all have exponentially small Theory (CWIT) Jun. 2013, pp. 76-81.

means. Applying the Chernoff bound to this particular term[e] A. Pblwqurl’zéT?e common info{”;aﬁont_f’f t‘?’;’ dep?”gim “’ﬂmz
. ’ P~ . variaples, ransactions on Information eoQryol. , NO. 2,
we see that ifR" > D(Px|z||Px|P,) the dominant term pp. 163-179, Mar. 1975,

concentrates around its mean doubly exponentially fast.in [10] T. S. Han and S. Verdu, “Approximation theory of outgstatistics,”
In particular, there exists a class of wire-tapper chanfuls IEEE Transactions on Information Theoryol. 39, no. 3, pp. 752-772,

. . . . May 1993.
which U, (Z|w) consists Only of this dominant te'{an' [11] A. J. Pierrot and M. R. Bloch, “Joint channel intrinsiendomness and

The achievability constructions of [[6]2[8]._[12], [16], T1 channel resolvability,” irProceedings of 2013 IEEE Information Theory
are based on i.i.d. random codes. It is an open question Workshop (ITW)Sep. 2013, pp. 1-5.

. . ] M. Hayashi, “Exponential decreasing rate of leakedinfation in uni-
whether random constant-composition codes [13] will Iea{az versal random privacy amplificationlEEE Transactions on Information

to a better secrecy exponent. We believe that our method is Theory vol. 57, no. 6, pp. 3989-4001, Jun. 2011.

easily adaptable to other types of random coding (some idét® | Csiszar and J. Kdrnednformation Theory: Coding Theorems for
Discrete Memoryless Systennd ed. Cambridge University Press,

presented in[18] can also be useful in this direction). Aeot 2011
important subject in the context of wire-tap channel is tove [14] R. G. Gallager/nformation Theory and Reliable CommunicatiotNew
non-trivial upper-bounds on the secrecy exponent. ] Eorl\ljl, NhY, U“SEA: J?hn \évlley &dsons, Inc., 1968. i of o bin ind
A H . . Mernav, Xact random coding error exponents o | DIN INAeX
The_ _performance of a er.e tap code I.S measwed via tVVOB decoding,”IEEE Transactions on Information Theoryol. 60, no. 10,
guantities, the error probability and the information lagé, pp. 6024-6031, Oct. 2014.
[16] T. S. Han, H. Endo, and M. Sasaki, “Reliability and segréunctions
3This happens if fovz € Z, for everyxz € X either W(z|z) = 0 or of the wiretap channel under cost constraifEEE Transactions on

W(z|z) = €. for some constant. < 1 independent of. Information Theoryvol. 60, no. 11, pp. 6819-6843, Nov. 2014.



[17] M. Hayashi and R. Matsumoto, “Secure multiplex codinglTherefore, there exists a cod& = Uwe[[zM]] Ck in the
with dependent and non-uniform multiple messagearXiv e- ; ; ;
prints, vol. abs/1202.1332v5, Apr. 2015. [Online]. Available:ensemble using which we S|multaneously &ave
http://arxiv.org/abs/1202.1332 1 2M

[18] ——, “Universally attainable error and information exgents, and 1 _
equivocation rate for the broadcast channels with confidlemessages,” 2M Z Pr[W 7é w|W w]
in Proceedings of 49th Annual Allerton Conference on Comnatioic, w=1

Control, and Computing (Allerton), 2015ep. 2011, pp. 439-444. g eXP[—nEr(PX, V,R+ R’)], (39)
[19] T.-H. Chou, V. Y. F. Tan, and S. C. Draper, “The sendesitexi secret oM
key agreement model: Capacity, reliability, and secrecpoaeents,” 1 "
IEEE Transactions on Information Theomyol. 61, no. 1, pp. 609-627, m Z D(PZ\W:prz)
Jan. 2015. w=1
< exp[-nEy(Px,W, R')]. (40)
APPENDIXA ) ) - )
PROOF OF(5) Since each of the summands [n](39) is positive, there exist

a subsetV; C {1,...,2M} of cardinality|W;| > 2M such
The right-hand-side of[{4) is the average of identicallyhat, forvw e W,

distributed random variables. The mean of each of them is . .
Pr[W # w|W = w] < 4exp|—nE,(Px,V,R+ R')]. (41)

E [ H w (ZilXi):| = HEXNPX W (2] X)] Similarly since the summands in_(40) are positive, therstexi

= i=1 . a subsetV, C {1,...,2M} of cardinality|[W,| > 2 M such

_ { Z PX(:E)W(zi|x)} _ HPZ(ZZ') that, forvVw € W, |

i=1 zeX i=1 D(Pzyw—ul||Py) < 4exp[—nEs(Px,W, R')]. (42)

In the above, the first equality follows since the codewords a Since [W; N Wh| > M there exist a subsety C W; N
sampled from the product distributiaR. B W, of cardinality |W| = M. The sub-code defined by the
messages iV, | J,,c,y Cs, has ratel? and, using that, for any

APPENDIX B message distributio?,;; on VW, we have:
PROOF OFCOROLLARY [2 .
Po= )" Pw(w)Pr[W # w|W = uw]
Let M £ exp(nR) and construcM i.i.d. codebooks wew
of size M’ £ exp(nR’), C,,,w € [2M] by sampling each < exp[-nE:(Px,V,R+ R)],

codeword independently from the product distributi®f. As
we already described, in order to communicates [2M/], due o (41), and

. . ) , . .
Alice picks w' € [M’] uniformly at randqm and transmits I(W;Z) = D(Pgw || P3| Pw) — D(Pz| Pg)
X, over the channel. The union of this codeboaks N
UweﬂgMﬂ C., is arandomi.i.d. codebook of raté+R+@. = Z PW(w)D(PZ\W:wHPZ)
Hence, using this ensemble for communicating oVerfor | wew ,
eachw € [2M], the expected decoding error probability is < exp[—nE (R, Px,W)],
upper-bounded as due to [4R). n
E[Pr[W # W|W = ] APPENDIXC
< E[Pr[{W £W}U {W/ £ WYW = w] DERIVATION OF EXPONENTS FORTHE PROOF OFLEMMA
< exp[—nEr(PX,V,R—i— R+ 0(1))}7 (36) A. Derivation of F, and It's Properties

X R Proposition 4. Let Ey,(Px, z, P, a) be defined as i@9). Then,
due to [14, Theorem 5.6.2]. In the abow&, and W’ denote,
respectively, the maximum likelihood estimations 16f and Ey(Px,z,P,a) = a+ Ifgg{pa —Go(Px,z,P,p)}, (43)

S
W’ givenY, the output sequence &. Consequently, whereG, is defined in@).

2M
1

E [QM Z Pr[W +# le _ w] 4Markov inequality implies for at Ieasg of the codes in the ensemble,
w=1 | M R ] M R
< exp[-nE,(Px,V, R+ R)]. @7 5 _1Pr[W¢w|W=w] < 3E[5- z_jlpr[w;éww:w]].
Likewise, Theoren]l implies Similarly for at Ieast% of the codes in the ensemble,
oM 2M ] M
1 n — > D(Py |Py) <3E|=— > D(P |P2)
- W=wllt'z)=> Z\W=wllfz)|-
E{2M ;D(PZW_MHPZ)} oM 2 (537 2 ]
. Therefore, for at least of the codes in the ensemble bdthl(39) dnd (40) hold
< exp[—nEs(PX, W, RI)]' (38) simultaneously. S%
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Proof: Let where (*) follows sinceE,(Px,z, P, a) is convex ina. Using
p (43) we have
1x.z(w,2) £ log <7X7Z(I,Z> > V(z,2z) € X x Z,
Px () Pz(2) min{E,(Px,z, P,a) — (1+ X)a}
denote the information density function for the joint distr ack

tion Px z for the sake of brevity. = Hlelﬂgl{mgﬂg{ﬂa — Go(Px,z, P, p } /\a}
Usin , =R
9 (13) A = minmax{(p — N)a — Go(Px,z, P, p)}
min D(Q||Px|P) ac€R peR
Q:Ax 7 (P;Q)= (*)
. = max{min{(p — N)a} — Go(Px,z, P, p (46)
=a+ min D(Q| Px|z|P) (44) pER{aER{ b= Go )}

Q:Ax,z(P;Q)=a . . . .
where again (*) follows sincé&((Px z, P, p) is convex inp

Now, we have (cf. Appendix[E-A). We then note that the minimum of the

~ min D(QHPX|Z|P) linear term(p— A)a over the ch_oices af is —oo unlessp = A.
Q:Ax,z(PiQ)=a Therefore, the result of (46) is
= mgﬂ{D(QHPX|Z|P) + f;lggp(a — Ax z(P; Q>)} min{ E,(Px 7z, P,a) — (1+ Aa} = —Go(Px.z, P, \) (47)
acR

= méﬂ fglgé({D(QHPXMP) +pla— Ax,z(P; Q))} Plugging the above intd (#5) completes the proof.  m
(%) Proof of (358} Similarly, using [32),

= max{mm{D Q||PX‘Z|P) pAx. z(P; Q)} —|—pa}
pER EQ(PX7Z,R/,P): min/{Eb(PX,Z,P,a)—a}

. : : .
where (*) follows S|nceD(Q|\PX|Z|P) is a convex function mm{Eb(PX 4. Pa)—a+t mgx)\( a)}

of Q and Ax z(P;Q) is a linear function ofQ. Therefore, S
D(Q||Pxz|P) — pAx,z(P;Q) is also a convex function of  _ mlnmax{)\R + By(Py.g, Pa) — (1+ )\)a}
Q and we can swap thmin and themax. Now, acR A20
R A A (%) .
D(Q|[Px|z|P) = pAx.2(P; Q) A < max{AR + min{ By(Px,z, P,a) — (1+ Na}}. (48)
=Y P(2) Y Qzl2) log( Qz]2) ) where (*) follows sinceE,(Px z, P, a) is convex ina. Using
2€Z reX Px|z(x|2) explpix,z (@, 2)] (@7) in (48) completes the proof. m
1
> P(z)lo
= Z; ) g(zm sz<x|z>exp[mx,z<x,z>1> APPENDIXD

DERIVATION OF Ej

with equality iff Q(:v|z) o Px|z(z|2) explpLx,z(x, 2)] (using Plugging [10) into[(IR) we have
the concavity of logarithm). Therefore,
min {Et PX Z,P R/) +D(PHP2)}

min{ D(Q||Pxz|P) — pAx,z(P; Q) } + pa = pa PeP(z
Q = min { max {A\R' — Go(Px,z, P,A\)} + D(P||Pz)}
- Z P(z) log(z Px\z(x|z) exppix,z (2, z)]) | PeP(2) "0sa<1
2€Z ceX ® max {AR + nnn {D(P||PZ) Go(Px,z, P,\)}}

. . . 0<X<1
Remark.It is easy to verify thatE, (Px,z, P,a) is a convex

function of a. Furthermore,[(44) implie&,(Px.z, P,a) > a Where (*) follows sinceG, defined in [[®) is a linear function
with equality ata = D(Px 2| Px|P). of P while D(P||Pz) is convex inP and we can swap the

L min and themax. The claim follows then by observing that
B. Derivation of E; and Ey

Proof of 35a) Using [31), D(P|Pz) — Go(Px,z, P, A)
E\(Px,7, R, P) = min {R' + Ey(Px 7. P.a) — 2a} = 3" P(2) flog (If((Z))) _
Z\z
zEZ
_mllg{R + Ey(Px z, P, a)—2a+max)\( )} c
ac —
—10g( Y Pxiz(alz) P (al) )
= min max{(l + AR + Ey(Px,z,P,a) — (2+ )\)a} ex
acR A<0
= mmmax{)\R/ + Ey(Px z,Pa) — (1 + )\)a} 1
a€R A<1 ' > log

> Pr() Y (Prizlal2) P (2) )

©)
= T?X{AR + min{ Ey(Px,z, P,a) — (1 + )\)a}}, (45) ~ =,

a€R



with equality if (i) g(s) =1 g(ZfZl a; exp[fi(s)]) is convex ins.

P(2) x Pz(2) Z(PX|Z(I|Z)1+)\PX($)_>\), Proof: The convexity of f(s) is trivial. To prove the
reX convexity of g(s), let s1 < sy ands = ts; + tso for some
Lo
using the concavity of logarithm. m '€ (0,1) (wheret =1 —¢). Then
APPENDIXE Zal explfi(s)] < Zaz expltfi(s1) + (1 —t)fu(s2)]
CONVEXITY PROOFS =1
Lemma 5. Leta; > 0, andb; > 0,i = 1,...,k be arbitrary k ; _
real numbers. Then the function Z(a exp[tfi(s1)] x a GXP[tfi(S2)])
=1
N k
= (Zal l)’ (Zazeprz 51 ) (Zazeprz 52 )
is convex ins for Vs € R. where the second inequality follows by Holder's inequalit

Taking the logarithm of both sides of the above proves @).
Convexity of the functiongy and Gy is established using
the above two lemmas as follows:

zk: a;b] = i(aﬁbﬁsl Xngfﬂ) < (zk: aibjl)t(i aibfz)g_ A. Convexity o3,
=1 =1 =1 =1

Proof: Pick s; < s, andt € (0,1). Letf £ 1 — ¢ and
s £ ts; +tsy. Then, Holder’s inequality implies

Seta; = Px|z(x|z) andb; = P’gjig)'z) in Lemmal® and
Taking thelog of both sides of the above concludes the proofien use Lemmal6 part (i). u
" 3 Convexity offj
Lemma 6. Supposq‘i(s) i=1,2,...,kare convex functions  getq; — Px|z(x|2) andb; = les‘ji((i)lz) in Lemmal® and
lphigndai >0,i=1,2,...,kisa sequence of real numbersihen use Lemmal6 part (). m

(i) f(s) = ZZ L a; fi(s) is convex ins.
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