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Abstract—In this paper, we present a zero-forcing (ZF) attack
on the physical layer cryptography scheme based on massive
multiple-input multiple-output (MIMO). The scheme uses sin-
gular value decomposition (SVD) precoder. We show that the
eavesdropper can decrypt/decode the information data under the
same condition as the legitimate receiver. We then study the
advantage for decoding by the legitimate user over the eaves-
dropper in a generalized scheme using an arbitrary precoder
at the transmitter. On the negative side, we show that if the
eavesdropper uses a number of receive antennas much larger
than the number of legitimate user antennas, then there is no
advantage, independent of the precoding scheme employed at the
transmitter. On the positive side, for the case where the adversary
is limited to have the same number of antennas as legitimate
users, we give an O

(
n2

)
upper bound on the advantage and show

that this bound can be approached using an inverse precoder.
Index Terms—Physical Layer Cryptography, Massive MIMO,

Zero-Forcing, Singular Value, Precoding.

I. INTRODUCTION

Recently, an interesting new approach for physical security
in massive multiple-input multiple-output (MIMO) communi-
cation systems was introduced by Dean and Goldsmith [1]
and called “Physical layer cryptography”, or a massive MIMO
physical layer cryptosystem (MM− PLC). In this scenario,
the channel state information (CSI) is known at the legitimate
transmitter as well as all the other adversaries and legitimate
receivers. The eavesdropper has also the knowledge of the
CSI between legitimate users. The idea is to replace the
information-theoretic security guarantees of previous physical
layer security methods with the weaker complexity-based
security guarantees used in cryptography. More precisely, the
idea of [1] is to precode the information data at the transmitter,
based on the known CSI between the legitimate users, so that
the decoding of the received vector would be computationally
easy for the legitimate user but computationally hard for the
adversary. The goal of this approach is to trade-off a weaker,
but still practical, complexity-based security guarantee in order
to avoid the less practical additional assumptions required by
existing information-theoretic techniques, such as higher noise
level in [6], [7], [8] and/or less antennas for the adversary
than for legitimate parties in [4], while still retaining the “no
secret key” location-based decryption feature of physical-layer
security methods.

In [1], a MM− PLC is presented that is claimed to achieve
the above goal of the complexity-based approach, using a
singular value decomposition (SVD) precoding technique and
m-PAM constellations at the transmitter. Namely, it is claimed
that, under a certain condition on the number nt of legitimate
sender’s transmit antennas and the noise level β in the adver-
sary’s channel (which we call the hardness condition of [1]),

the message decoding problem for the adversary (eavesdrop-
per), termed the MIMO− Search problem in [1], is as hard to
solve on average as it is to solve a standard conjectured hard
lattice problem in dimension nt in the worst-case, in particu-
lar, the GapSVPpoly(nt) variant of the approximate shortest
vector problem in arbitrary lattices of dimension nt, with
approximation factor polynomial in nt. For these problems,
no polynomial-time algorithm is known, and the best known
algorithms run in time exponential in the number of transmit
antennas nt, which is typically infeasible when nt is in the
range of few hundreds (as in the case of massive MIMO).
Significantly, this computational hardness of MIMO− Search
is claimed to hold even if the adversary is allowed to use a
large number of receive antennas n′r = poly(nt) polynomially
larger than nt and nr used by the legitimate parties, and
with the same noise level as the legitimate receiver (β = α).
Consequently, under the widely believed conjecture that no
polynomial-time algorithms for GapSVPpoly(nt) in dimen-
sion nt exist and the hardness condition of [1], the authors
of [1] conclude that their MM− PLC and the corresponding
MIMO− Search problem is secure against adversaries with
run-time polynomial in nt.

Our Contribution. In this contribution, we further analyse
the complexity-based MM− PLC initiated in [1], to improve
the understanding of its potential and limitations. Our contri-
butions are summarized below:

• We show, using a linear receiver known as zero-forcing
(ZF) [5], an algorithm with run-time polynomial in nt
for the MIMO− Search problem faced by an adversary
against the MM− PLC in [1]. We analyze the decoding
success probability of this algorithm and prove that it
is ≥ 1 − o(1) even if the hardness condition of [1]
is satisfied, if the ratio y′ = n′r/nt exceeds a small
factor at most logarithmic in nt, i.e. y′ = O(log nt).
This contradicts the hardness of the MIMO− Search
problem conjectured in [1] to hold for much larger
polynomial ratios y′ = O(poly(nt)). Moreover, we show
that the decoding success probability of an adversary
against the MM− PLC of [1] using the ZF decoder is
approximately the same (or greater than) as the decoding
success probability of the legitimate receiver if n′r is
approximately greater than or equal to nr, assuming an
equal noise level for adversary and legitimate receivers.
Our first contribution implies that the SVD precoder-
based MM− PLC in [1] still requires for security an
undesirable assumption limiting n′r to be less than that
of the legitimate receiver, similar to previous information-
theoretic techniques.
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• As our second contribution, we investigate the potential
of the general approach of [1] assuming ZF decoding
by the both adversary and legitimate receiver, by study-
ing the generalized scenario where one allows arbitrary
precoding matrices by the legitimate transmitter in place
of the SVD precoder of the scheme in [1]. To do so,
we define a decoding advantage ratio for the legitimate
user over the adversary, which is approximately the ratio
of the maximum noise power tolerated by the legitimate
user’s decoder to the maximum noise power tolerated
by the adversary’s decoder (for the same “high” success
probability). We derive a general upper bound on this
advantage ratio, and show that, even in the general
scenario, the advantage ratio tends to 1 (implying no
advantage), if the ratio n′r/max(nt, nr) exceeds a small
constant factor (≤ 9). Thus a linear limitation (in the
number of legitimate user antennas) on the number of
adversary antennas seems inherent to the security of this
approach. On the positive side, we show that, in the case
when legitimate parties and the adversary all have the
same number of antennas (n′r = nr = nt), the upper
bound on the advantage ratio is quadratic in nt and we
give experimental evidence that this upper bound can be
approximately achieved using an inverse precoder.

Notation. The notation a� b denotes that the real number a
is much greater than b. We let |z| denotes the absolute value
of z. Vectors will be column-wise and denoted by bold small
letters. Let v be a vector, then its j-th entry is represented
by vj . A k1 × k2 matrix X = [x1, . . . ,xk2 ] is formed by
joining the k1-dimensional column vectors x1, . . . ,xk2 . The
superscript t denotes transposition operation. We make use
of the standard Landau notations to classify the growth of
functions. We say that a function F (n) is poly(n) if it is
bounded by a polynomial in n. The notation ω(F (n)) refers
to the set of functions (or an arbitrary function in that set)
growing faster than cF (n) for any constant c > 0. A function
G(n) is said negligible if it is proportional to n−ω(1). If X is
a random variable, P[X = x] denotes the probability of the
event “X = x”. The standard Gaussian distribution on R with
zero mean and variance σ2 is denoted by Nσ2 . We denote by
w ←↩ D the assignment to random variable w a sample from
the probability distribution D.

II. SYSTEM MODEL

We first summarize the notion of real lattices and SVD (of
a matrix) which are essential for the rest of the paper. A
k-dimensional lattice Λ with a basis set {`1, . . . , `k} ⊆ Rd
is the set of all integer linear combinations of basis vectors.
Every matrix Ms×t admits a singular value decomposition
(SVD) M = UΣVt, where the matrices Us×s and Vt×t are
two orthogonal matrices and Σs×t is a rectangular diagonal
matrix with non-negative diagonal elements σ1(M) ≥ · · · ≥
σs(M). By abusing the notation, we denote the Moore–
Penrose pseudo-inverse of M by M−1, that is VΣ−1Ut,
where the pseudo-inverse of Σ is denoted by Σ−1 and can
be obtained by taking the reciprocal of each non-zero entry
on the diagonal of Σ and finally transposing the matrix.

A. Dean-Goldsmith Model

We consider a slow-fading MIMO wiretap channel model.
The nr × nt real-valued MIMO channel from user A to user
B is denoted by H. We also denote the channel from A to the
adversary E by an n′r×nt matrix G. The entries of H and G
are identically and independently distributed (i.i.d.) based on a
Gaussian distribution N1. These channel matrices are assumed
to be constant for long time as we employ precoders at the
transmitter. This model can be written as:{

y = Hx + e,
y′ = Gx + e′.

The entries xi of x ∈ Rnt , for 1 ≤ i ≤ nt, are drawn from
a constellation X = {0, 1, . . . ,m − 1} for an integer m. The
components of the noise vectors e and e′ are i.i.d. based on
Gaussian distributions Nm2α2 and Nm2β2 , respectively. We
assume α = β to evaluate the potential of the Dean-Goldsmith
model to provide security based on computational complexity
assumptions, without a “degraded noise” assumption on the
eavesdropper. In this communication setup, the CSI is available
at all the transmitter and receivers. In fact, users A and B
know the channel matrix H (via some channel identification
process), while adversary E has the knowledge of both channel
matrices G and H. The knowledge of H allows A to perform
a linear precoding to the message before transmission. More
specifically, in [1], to send a message x to B, user A performs
an SVD precoding as follows. Let SVD of H be given as
H = UΣVt. The user A transmits Vx instead of x and B
applies a filter matrix Ut to the received vector y. With this,
the received vectors at B and E are as follows:{

ỹ = Σx + ẽ,
y′ = GVx + e′,

where ẽ = Ute. Note that since Ut and V are both orthogonal
matrices, the vector ẽ and the matrix Gv , GV continue to
be i.i.d. Gaussian vector and matrix, with components of zero
mean and variances m2α2 and 1, respectively.

B. Correctness Condition

Although Dean-Goldsmith do not provide a correctness
analysis, we provide one here for completeness. Since Σ =
diag(σ1(H), . . . , σnt(H)) is diagonal, user B recovers an
estimate x̃i of the i-th coordinate/layer xi of x, by per-
forming two operations dividing and rounding as follows:
x̃i = dỹi/σi(H)c = xi + dẽi/σi(H)c. It is now easy to see
that the decoding process succeeds if |ẽi| < |σi(H)|/2 for
all 1 ≤ i ≤ nt. Since each ẽi is distributed as Nm2α2 , the
decoding error probability, P(B|H) that B incorrectly decodes
x, is, by a union bound, upper bounded by nt times the
probability of decoding error at the worst layer:

P(B|H) ≤ ntPw←↩Nm2α2 (|w| < |σnt(H)|/2)

= ntPw←↩N1
(|w| < |σnt(H)|/(2mα)) (1)

≤ nt exp
(
−|σnt(H)|2/(8m2α2)

)
,

where we have used the bound exp(−x2/2) on the tail of the
standard Gaussian distribution. By choosing parameters such
that m2α2 ≤ |σnt(H)|2/(8 log(nt/ε)), one can ensure that
B’s error probability P(B|H) is less than any ε > 0.



C. Security Condition
Unlike decoding by user B, for decoding by the adversary E,

the authors of [1] claimed that the complexity of a problem
called in [1] the “Search” variant of the “MIMO decoding
problem” (to be called MIMO− Search from here on), namely
recovering x from y′ = Gvx + e′ and Gv , with non-
negligible probability, under certain parameter settings, upon
using massive MIMO systems with large number of transmit
antennas nt, is as hard as solving standard lattice problems in
the worst-case. More precisely, it was claimed in [1] that, upon
considering above conditions, user E will face an exponential
complexity in decoding the message x. The above cryptosys-
tem is called the Massive MIMO Physical Layer Cryptosystem
(MM− PLC), and the above problem of recovering x from
y′ is called in [1] the “Search” variant of the “MIMO de-
coding problem”. For our security analysis, we focus here
for simplicity on this MIMO− Search variant. We say that
the MIMO− Search problem is hard (and the MM− PLC is
secure in the sense of “one-wayness”) if any attack algorithm
against MIMO− Search with run-time poly(nt) has negligible
success probability n

−ω(1)
t . More precisely, in Theorem 1

of [1], a polynomial-time complexity reduction is claimed
from worst-case instances of the GapSVPnt/α problem in
arbitrary lattices of dimension nt, to the MIMO− Search
problem with nt transmit antennas, noise parameter α and
constellation size m, assuming the following minimum noise
level for the equivalent channel in between A and E holds:

mα >
√
nt. (2)

The reduction is quantum when m = poly(nt) and classical
when m = O(2nt), and is claimed to hold for any polynomial
number of receive antennas n′r = poly(nt). We show in the
next Section, however, that in fact for mα < cn′r/

√
log nt

for some constant c, there exists an efficient algorithm for
MIMO− Search. Since (2) is independent of the number of
receive antennas n′r, the condition (2) turns out to be not
sufficient to provide security of the MM− PLC. We will
provide our detailed analysis in the next Section.

III. ZERO-FORCING ATTACK

In this section, we introduce a simple and efficient attack
based on ZF linear receivers [5]. We first introduce the attack
and analyze its components. The eavesdropper E receives
y′ = Gvx + e′. Let Gv = U′Σ′(V′)t be the SVD of the
equivalent channel Gv . Thus, we get y′ = U′Σ′(V′)tx + e′,
where both U′ and V′ are orthogonal matrices and Σ′ equals
diag (σ1(Gv), . . . , σnt(Gv)) = diag (σ1(G), . . . , σnt(G)),
where the last equality holds since the singular values of Gv

and G are the same. Note that E knows Gv and its SVD
from the assumption that (s)he knows the channel between A
and B. At this point, user E performs a ZF attack [5]. S(he)
computes

ỹ′ = (Gv)
−1y′ = x + ẽ′, (3)

where ẽ′ = (Gv)
−1e′ = V′(Σ′)−1(U′)te′. User E is now

able to recover an estimate x̃′i of the i-th coordinate xi of x,
by rounding: x̃′i = dỹ′ic = dxi + ẽ′ic = xi + dẽ′ic.
A. Analysis of ZF Attack

We now investigate the distribution of ẽ′ in (3).

Lemma 1: The components of ẽ′ in (3) are distributed as
Nσ2

E
with σ2

E ≤ (m2α2)/σ2
nt(G).

Proof: Note that (U′)te′ has the same distribution as e′

since (U′)t is orthogonal. Hence, zj , the j-th coordinate of
the vector z = (Σ′)−1(U′)te′ is distributed as Nm2α2/σ2

j (G),
for all 1 ≤ j ≤ nt. We also note that zj’s are independent
with different variances. Now let v′i denotes the i-th row of
V′. We find the distribution of

ti = 〈v′i, z〉 =

nt∑
j=1

v′i,jzj . (4)

Since the linear combination at (4) is distributed as a linear
combination of independent Gaussian distributions, ti is dis-
tributed as

nt∑
j=1

v′i,jNm2α2/σ2
j (G) = N∑nt

j=1 |v′i,j |2m2α2/σ2
j (G) (5)

= Nm2α2
∑nt
j=1 |v′i,j |2/σ2

j (G). (6)

Since σ2
j (G) ≥ σ2

nt(G), for all 1 ≤ j ≤ nt, the random
variable ti is distributed as Nσ2

ti
with

σ2
ti =m2α2

nt∑
j=1

|v′i,j |2

σ2
j (G)

≤ m2α2

σ2
nt(G)

nt∑
j=1

|v′i,j |2 =
m2α2

σ2
nt(G)

, (7)

where the last equality holds because V′ is orthogonal.
The above explained ZF attack succeeds if |ẽ′i| < 1/2 for
all 1 ≤ i ≤ nt. Let PZF(E|G) denotes the decoding error
probability that E incorrectly recovers x using ZF attack.
Based on Lemma 1, we have

PZF(E|G) ≤ ntPw←↩N
σ2
E

(|w| < 1/2)

≤ ntPw←↩N1 (|w| < |σnt(G)|/(2mα)) . (8)

By comparing (1) and (8), we see that the noise conditions
for decoding x by users B and E are the same if both
users have the same number of receive antennas n′r = nr
and the distributions of channels G and H are the same.
This implies that user E is able to decode under the same
constraints/conditions as B. Moreover, if n′r > nr, then the
adversary E is capable of decoding higher noise.

B. Asymptotic Probability of Error for Adversary
Before starting this section, we mention a Theorem from [3]

regarding the least/largest singular value of matrix variate
Gaussian distribution. This theorem relates the least/largest
singular value of a Gaussian matrix to the number of its
columns and rows asymptotically.

Theorem 1 ([3]): Let M be an s × t matrix with i.i.d.
entries distributed as N1. If s and t tend to infinity in such a
way that s/t tends to a limit y ∈ [1,∞], then

σ2
t (M)/s→

(
1−

√
1/y
)2

(9)

and
σ2
1(M)/s→

(
1 +

√
1/y
)2
, (10)

almost surely.
We now analyze the asymptotic probability of error for eaves-
dropper using a ZF linear receiver.



Theorem 2: Fix any real ε, ε′ > 0, and y′ ∈ [1,∞], and
suppose that n′r/nt → y′ as nt →∞. Then, for all sufficiently
large nt, the probability PZF(E) that E incorrectly decodes the
message x using a ZF decoder is upper bounded by ε, if

m2α2 ≤
n′r

(
(1−

√
1/y′)2 − ε′

)
8 log(2nt/ε)

. (11)

Proof: Let G be the set of all channel matrices G such
that σ2

nt(G) ≥ n′r

(
(1−

√
1/y′)2 − ε′

)
. Note that G 6∈ G

with vanishing probability o(1) as nt → ∞, by Theorem 1.
We have:

PZF(E)=PZF(E|G ∈ G)P (G ∈ G)+PZF(E|G /∈ G)P (G /∈ G)

≤ PZF(E|G ∈ G) + P (G /∈ G)

≤ ntPw←↩N1
(|w| < |σnt(G)|/(2mα)) + o(1)

≤ nt exp
(
−σ2

nt(G)/
(
8m2α2

))
+ o(1)

≤ nt exp

(
−n′r((1−

√
1/y′)2 − ε′)

8m2α2

)
+ o(1),

where the first inequality is due the facts that P (G ∈ G) ≤ 1
and PZF(E|G /∈ G)P (G /∈ G) ≤ P (G /∈ G), the second
inequality is true based on (8) and Theorem 1, the third
inequality uses the well-known upper bound exp

(
−x2/2

)
for the tail of a Gaussian distribution and the last inequality
follows from the definition of G. By letting PZF(E) ≤ ε, the
sufficient condition (11) can be obtained.
Comparing conditions (2) and (11), we conclude that if y′
exceeds a small factor at most logarithmic in nt, i.e. y′ =
O(log nt) we can have both conditions satisfied and yet The-
orem 2 shows that MIMO− Search can be efficiently solved,
i.e. this contradicts the hardness of the MIMO− Search prob-
lem conjectured in [1] to hold for much larger polynomial
ratios y′ = O(poly(nt)).

To analytically investigate the advantage of decoding at B
over E, we define the following advantage ratio.

Definition 1: For fixed channel matrices H and G, the
ratio

adv , σ2
nt(H)/σ2

nt(G), (12)

is called the advantage of B over E.
We note from (1) and (8) that adv is the ratio between the
maximum noise power tolerated by B’s ZF decoder to the
maximum noise power tolerated by E’s ZF decoder, for the
same decoding error probability in both cases. First, we study
this advantage ratio asymptotically. We use Theorem 1 to
obtain the following result.

Proposition 1: Let Hnr×nt be the channel between A
and B and Gn′

r×nt be the channel between A and E,
both with i.i.d. elements each with distribution N1. Fix real
y, y′ ∈ [1,∞], and suppose that nr/nt → y and n′r/nt → y′

as nt → ∞. Then, using a SVD precoding technique in
MM− PLC, we have adv→

(√
y − 1

)2
/
(√
y′ − 1

)2
almost

surely as nt →∞.
Proof: Based on Theorem 1 for H and G, we have{

σ2
nt(H)/nr → (1−

√
1/y)2

σ2
nt(G)/n′r → (1−

√
1/y′)2.

Substituting the above two limits into (12) and using nr/n′r =
(nr/nt)/(n

′
r/nt)→ y/y′, the result follows.

Note that adv→ 1 is obtained in the case that y = y′ , which
is equivalent to nr/n

′
r → 1. On the other hand adv → 0, if

y′/y =∞ which is equivalent to n′r/nr →∞.

C. General Precoding Scheme
One may wonder whether a different precoding method

(again, assumed known to E) than used above may provide
a better advantage ratio for B over E. Suppose that instead
of sending x̃ = Vx, user A precodes x̃ = P(H)x, where
P = P(H) is some other precoding matrix that depends
on the channel matrix H. Then, given the channel matri-
ces, the analysis given in Section III shows that using ZF
decoding, B’s decoding error probability will be bounded
as nt exp(−σ2

nt(HP)/(8m2α2)), while E’s decoding error
probability will be bounded as nt exp(−σ2

nt(GP)/(8m2α2)).
Therefore, in this general case, the advantage ratio of maxi-
mum noise power decodable by B to that decodable by E at
a given error probability generalizes from (12) to

adv , σ2
nt(HP)/σ2

nt(GP). (13)

We now give an upper bound on the advantage ratio (13). Let
us first define

advup ,
σ2
1(H)

σ2
nt(G)

.

Proposition 2: Let H and G be as in Proposition 1.
Then we have adv ≤ advup. Furthermore, fix real y, y′ ∈
[1,∞], and suppose that nr/nt → y and n′r/nt → y′

as nt → ∞, so that n′r/nr → y′/y , ρ′. Then, using
a general precoding matrix P(H) in MM− PLC, we have
advup →

(√
y + 1

)
/
(√
y′ − 1

)2
almost surely as nt → ∞.

Hence, in the case n′r = nr and y′ = y → ∞, we have
advup → 1. Moreover, if advup → c for some c ≥ 1, then
min(y′, ρ′) ≤ 9.

Proof: It is easy to see the two inequalities below hold
for every H, G, and P:{

σnt(HP) ≤ σ1(H)σnt(P),
σnt(GP) ≥ σnt(G)σnt(P).

Hence, the advantage ratio (13) can be upper bounded as

adv ≤
σ2
1(H)σ2

nt(P)

σ2
nt(G)σ2

nt(P)
=

σ2
1(H)

σ2
nt(G)

= advup. (14)

Using Theorem 1 for the the numerator and the denominator
of the RHS of (14), respectively, and nr/n′r → y/y′, we get

advup→
y(1 +

√
1/y)2

y′(1−
√

1/y′)2
=

( √
y + 1
√
y′ − 1

)2

.

In the case n′r = nr and y = y′ → ∞, the lat-
ter inequality gives advup → 1. Also, the inequality(√
y + 1

)
/
(√
y′ − 1

)2 ≥ 1 implies (using y = y′/ρ′) that
ρ′ ≤ 1/(1− 2/

√
y′)2, and the RHS of the latter is ≤ 9 for all

y′ ≥ 9, which implies min(y′, ρ′) ≤ 9.

IV. ACHIEVABLE UPPER BOUND ON ADVANTAGE RATIO

The above analysis shows that one cannot hope to achieve
an advantage ratio greater than 1, if the the adversary uses



a number of antennas significantly larger than used by the
legitimate parties (by more than a constant factor). We now
explore what advantage ratio can achieve if we add a new
constraint to MM− PLC, namely the number of adversary
antennas is limited to be the same as the number of legitimate
transmit and receive antennas. That is, we study the advantage
ratio when the channel matrices H and G are square matrices
and not rectangular. We show that under this simple constraint
n = nt = nr = n′r, the advantage ratio is capable of getting
larger than 1 and as big as O

(
n2
)
. We employ the following

result in our analysis.
Theorem 3 ([3]): Let M be a t×t matrix with i.i.d. entries

distributed as N1. The least singular value of M satisfies

lim
t→∞

P
[√

tσt(M) ≥ x
]

= exp
(
−x2/2− x

)
. (15)

We note that for a similar result on the largest singular value
for square matrices, Theorem 1 is enough. Using the above
Theorem along with Theorem 1, one can further upper bound
and estimate the advantage ratio. More precisely, we have

adv ≤ σ2
1(H)/σ2

n(G) (16)
→ 4n/σ2

n(G) = 4n2/
(
nσ2

n(G)
)
, (17)

where (16) is obtained based on (14). As n → ∞, based
on Theorem 3, the denominator of the RHS of (17) is O(1)
except with probability ≤ ε for any fixed ε > 0, and thus adv
is O

(
n2
)

with the same probability. The following proposition
is now outstanding.

Proposition 3: Let ε > 0 be fixed, H and G be n × n
matrices as in Proposition 1 with n = nt = nr = n′r. Using a
general precoder P(H) to send the plain text x, the maximum
possible adv that B can achieve over E, is of order O

(
n2
)
,

except with probability ≤ ε.
The above proposition implies that user B may be able to
decode the message x, with noise power up to n2 times greater
than E is able to handle. Such an advantage was not available
in MM− PLC scheme proposed in [1] due to the lack of
constraint on the number of receive antennas for E and the
use of SVD precoder. We present below experimental evidence
that this upper bound can be approached using an inverse
precoder P(H) = H−1. This inverse precoder may not be
power efficient as it may need a lot of power enhancement
at A, however it gives us a benchmark on the achievable
advantage ratio. In this framework, the equivalent channel
between legitimate users is the identity matrix and the channel
between users A and E is GH−1. In Fig. 1, we have shown
the value of log10 (adv) for 1000 square channel matrices of
size n = 200. For refrence, we also plot the mean value along
with log10

(
2002

)
. Clearly, in most cases the advantage ratio

(12) is within a small factor (compared to n2) of n2.

V. SUMMARY AND DIRECTIONS FOR FUTURE WORK

Our results suggest several natural open problems for
future work. The implied contradiction between our first
contribution and the conjectured hardness of MIMO− Search
in [1] for n′r/nt = O(poly(nt)) implies either a polynomial-
time algorithm for worst-case GapSVPpoly(nt) or that the
complexity reduction of [1] (Theorem 1 of [1]) between
MIMO− Search and GapSVPpoly(nt) does not hold under the
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Fig. 1. The advantage ratio (12) for 1000 square channels of size n = 200
using inverse precoder.

hardness condition of [1]. We believe the second possibility
is the correct one, and that there is a gap in the proof of
Theorem 1 of [1]. We do not yet know if the gap can be filled
to give a worst-case to average-case reduction under a revised
hardness condition. This is left for future work.

Our generalized upper bound on legitimate user to adver-
sary ZF decoding advantage suggests the complexity-based
approach does not remove the needed linear limitation on the
number of adversary antennas versus the number of legitimate
party antennas, that is also suffered by previous information-
theoretic methods. Can a more general complexity-based ap-
proach to physical-layer security avoid this limitation?

Finally, our positive result for the inverse precoder suggests
that if the adversary is limited to have the same number
of antennas as the legitimate parties, the complexity-based
approach may provide practical security. This suggests the
following questions: How secure is this inverse precoding
scheme against more general decoding attacks (other than ZF)?
Can a security reduction from a worst-case standard lattice
problem be given for this case? How does the practicality
of the resulting scheme compare to existing physical-layer
security schemes based on information-theoretic security ar-
guments? Can the efficiency of those schemes be improved
by the complexity-based approach?
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