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Abstract— In this paper, a multidimensional Walsh transform
is used to obtain a characterization of vector-valued bent function
in terms of the value distributions of the translates of the function
by linear functions.1

I. I NTRODUCTION

S-boxes are fundamental building blocks in contemporary
cryptography and typically the only source of nonlinearity
in ciphers. Several cryptanalytic methods exploiting linearity
properties have been developed, most prominently differen-
tial and linear cryptanalysis and their variations. Therefore
research on nonlinearity criteria of S-boxes is an important
area of contemporary cryptology.

When analyzed mathematically, S-boxes are considered as
vector-valued functions the components of which are Boolean
functions. The nonlinearity criteria of S-boxes have been
investigated by means of the nonlinearity properties of their
Boolean components. For example, a vector-valued function is
called bent if all its components (non-zero linear combinations
of its coordinate functions) are bent. Similarly, a vector-
valued function is perfect nonlinear is all its components are
perfect nonlinear [1]. When studying correlation with linear
functions, autocorrelation properties, propagation characteris-
tics and value distributions of Boolean functions, the Walsh
transform is a fundamental tool. In particular it is very effective
in handling interaction between different nonlinearity criteria,
see for example [2], [3], [4].

In this paper, for the first time to our knowledge, we
investigate nonlinearity criteria for vector-valued Boolean
functions without making use of properties of components.
We introduce, for this purpose, a tool which we call multi-
Walsh transform. This tool is very effective in computation
and analysis of value distributions of vector-valued Boolean
functions. One area of application of multi-Walsh transform
is in linear cryptanalysis when multiple linear approximations
are used simultaneously. In this paper, we focus on vector-
valued bent functions and show that for a bent function, the
maximum variance of the value distribution of the sum of the
function and a linear function is the least possible, where the
maximum is taken over all linear functions.

1This paper is a slightly revised version of the paper published in the
proceedings of ITW 2007.

For simplicity, we restrict to the binary case. It is straight-
forward to generalize the results given in this paper to the
p-ary case, for any odd primep.

The rest of the paper is organized as follows. First we
introduce notation and recall known facts of bent functions
in Section II. In Section III we give a brief overview of the
basic methods in component-wise analysis of vector-valued
Boolean functions. In Section IV we present the multidimen-
sional Walsh transform and prove the equivalent of Parseval’s
theorem for it. Then the definition of multi-bent function is
given in Section V and its equivalence with the definitions of
bent and perfect nonlinear functions are given in the next two
sections. In Section VIII we conclude.

II. B OOLEAN FUNCTIONS

Letn be a positive integer. We denote byVn the vector space
formed by binary vectorsξ = (ξ1, ξ2, . . . , ξn) of n coordinates
ξi ∈ {0, 1}, i = 1, . . . , n. A function f : Vn → V1 is called a
Boolean function. Given two vectorsξ = (ξ1, ξ2, . . . , ξn) ∈ Vn
and u = (u1, u2, . . . , un) ∈ Vn we denoteu · ξ = u1 · ξ1 +
u2 · ξ2 + . . . + un · ξn mod 2 ∈ V1. The Walsh transform of
f evaluated at0 ∈ Vn is denoted asF(f)(0). It is an integer
defined as

F(f)(0) =
∑
ξ∈Vn

(−1)f(ξ),

where the sum is taken in the set of integers. A Boolean
function is balanced ifF(f)(0) = 0. Given f : Vn → V1

and w ∈ Vn we denote byf + w the Boolean function
(f +w)(ξ) = f(ξ) +w · ξ mod 2. The Walsh transformF(f)
of f can then be given using

F(f)(w) = F(f + w), for w ∈ Vn. (1)

Parseval’s theorem states that∑
w∈Vn

F2(f + w) = 22n. (2)

A Boolean functionf : Vn → V1 is called bent if|F(f+w)| =
2
n
2 , for all w ∈ Vn. Hence bent functions exist only ifn is

even. A Boolean function is called perfect nonlinear, if for all
α ∈ Vn, α 6= 0, the functionDαf : ξ 7→ f(ξ + α) + f(ξ) is
balanced. It is known since the invention of bent functions by
Oscar Rothaus [5] that a Boolean function is bent if and only
it is perfect nonlinear.



III. V ECTOR-VALUED BOOLEAN FUNCTIONS

Let f : Vn → Vm be a vector-valued Boolean function.
We denote its coordinate functions byfi, i = 1, 2, . . . ,m.
Given u ∈ Vm, u 6= 0, the Boolean functionu · f defined
as u · f(ξ) = u1f1(ξ) + . . . umfm(ξ) is called a (non-zero)
component off .

We begin by recalling a fundamental fact about the value
distribution off . Let f : Vn → Vm be a vector-valued Boolean
function andη ∈ Vm. We make the following notation

aη(f) = #{ξ ∈ Vn |f(ξ) = η}.

Lemma 1:Let f : Vn → Vm be a vector-valued Boolean
function. Then

aη(f) = 2−m
∑
u∈Vm

∑
ξ∈Vn

(−1)u·f(ξ)+u·η. (3)

Proof: ∑
u∈Vm

∑
ξ∈Vn

(−1)u·f(ξ)+u·η

=
∑

ξ;f(ξ)=η

∑
u∈Vm

(−1)u·(f(ξ)+η)

+
∑

ξ;f(ξ) 6=η

∑
u∈Vm

(−1)u·(f(ξ)+η)

= 2maη(f).

We say that a vector-valued Boolean functionf : Vn → Vm
is balanced ifaη(f) = 2n−m, for all η ∈ Vm. By Lemma 1
we have the following known fact.

Corollary 1: A vector-valued Boolean functionf : Vn →
Vm is balanced if and only if the Boolean functionsu · f are
balanced, for allu 6= 0.

We recall the following definitions from [1].
Definition 1: A vector-valued Boolean functionf : Vn →

Vm is bent if its componentsu · f are bent, for allu 6= 0.
Definition 2: A vector-valued Boolean functionf : Vn →

Vm is perfect nonlinear if the function

Dα : ξ 7→ f(ξ + α) + f(ξ)

is balanced, for allα ∈ Vn, α 6= 0.
By Corollary 1 a vector-valued Boolean function is perfect

nonlinear if and only if its non-zero components are perfect
nonlinear. Hence a vector-valued Boolean function is bent if
and only if it is perfect nonlinear, and this fact is proved by
means of the components of the function.

To conclude this survey of vector-valued bent functions we
recall the following result from [1] and give a new short proof
of it based on Lemma 1.

Theorem 1:If f : Vn → Vm is bent thenaη(f) = bη2
n
2−m

wherebη is odd, for allη ∈ Vm.
Proof: Using (3)

aη(f) = 2−m
∑
u∈Vm

F(u · f + u · η)

= 2−m(F(0) + 2
n
2

∑
u 6=0

sign(F(u · f + u · η)))

= 2n−m + 2
n
2−mcη,

wherecη is an odd integer. Thenbη = cη + 2
n
2 is an integer

as bent Boolean functions exist only for evenn, and it is odd.

One corollary of Theorem 1 is that bent functions fromVn
to Vm exist only whenm ≤ n

2 .

IV. M ULTIDIMENSIONAL WALSH TRANSFORM

Various types of Fourier transforms are known to exist.
In cryptography and coding, the discrete Fourier transform,
see for example [6], is commonly used. The transform to be
introduced in this paper is different from the discrete Fourier
transform and particularly suitable for analysis of vector-
valued Boolean functions.

Let n andm be positive integers and letf : Vn → Vm
be a vector valued Boolean function ofn variables. Theith

coordinate function off is denoted byfi. Then we define

W(f)(x) =W(f)(x1, . . . , xm) =
∑
ξ∈Vn

m∏
i=1

x
fi(ξ)
i , (4)

where the sum is taken in the setZZ[x1, . . . , xm]/〈x2
1 −

1, . . . , x2
m − 1〉 of multivariate polynomials over integers,

where the indeterminatesxi satisfy x2
i = 1, i = 1, . . . ,m.

The transform that mapsf to the mapping:

M 7→ W(f +M)(x), M ∈ V mn ,

is called themulti-Walsh transformof f . Clearly, form = 1
andx1 = −1, we get the usual Walsh transform for Boolean
functions (1).

The value of the multi-Walsh transform off taken atM =
0 is denoted byW(f)(x) in (4). It is a polynomial ofm
indeterminates and with non-negative integer coefficients and
gives the value distribution off . Indeed, we can write

W(f)(x) =
∑
η∈Vm

aη

m∏
i=1

xηii ,

where aη = aη(f) for η = (η1, η2, . . . , ηm) ∈ Vm. If f :
Vn → Vm is uniformly distributed, thenm ≤ n, and

W(f)(x) = 2num(x), whereum(x) = 2−m
m∏
i=1

(1 + xi).

For multi-Walsh transform the uniform distribution plays
the same role as zero for the onedimensional Walsh transform
with x1 = −1. In particular, for any normalized distribution
dm(x) of values inVm, we haveum(x)dm(x) = um(x). In
what follows we identify them-tuple M = (M1, . . . ,Mm)
of vectorsMi ∈ Vn and the linear functionM : Vn → Vm,
Mξ = (M1 · ξ, . . . ,Mm · ξ) and denote the set of suchM
by V mn . Next we state a multidimensional form of Parseval’s
theorem. We omit the proof as it is a special case of the proof
of Theorem 5 withα = 0.

Theorem 2:For any vector-valued Boolean functionf :
Vn → Vm the following holds:∑
M∈Vmn

W2(f +M)(x) = 2(m+1)n(1 + (2n − 1)um(x)).



V. M ULTI -BENT FUNCTIONS

Analogous to the one-dimensional definition of bent func-
tions we define themulti-bentfunctions as functions for which
the squared distributionsW(f + M) are equal, for allM ∈
V mn .

Definition 3: A vector-valued Boolean functionf : Vn →
Vm is multi-bent if

W2(f +M)(x) = 2n(1 + (2n − 1)um(x)), (5)

for all linear functionsM ∈ V mn .
The following property of multi-bent functions follows

directly from the definition when we observe that the constant
term of the polynomialW2(f + M)(x) is the sum of the
squares of the frequenciesaη(f +M).

Theorem 3:For f : Vn → Vm andM ∈ V mn we denote
aη(f +M) = #{ξ ∈ Vn |f(ξ) +Mξ = η}. If f is multi-bent
then ∑

η∈Vm

aη(f +M)2 = 2n(1 + (2n − 1)2−m) and∑
η∈Vm

(aη(f +M)− 2n−m)2 = 2n − 2n−m.

for all M ∈ V mn .
To summarize, the least maximum of quadratic deviation

of the distributions off + M from the uniform distribution,
where the maximum is taken overM ∈ V mn , is achieved by
multi-bent functions, and for multi-bent functions the quadratic
deviations are equally small for allM ∈ V mn .

The main result of this paper is a proof of the fact that
a vector-valued Boolean function is bent if and only if it is
multi-bent. We state the following theorem.

Theorem 4:Let f : Vn → Vm be a vector-valued Boolean
function. Then the following are equivalent:

(i) f is multi-bent;
(ii) f is perfect nonlinear; and

(iii) f is bent.
The equivalence of (ii) and (iii) is known, see Section III. In

the next section, a relation between the multi-Walsh transform
of f and the multi-Walsh transform ofDα(f) is proved. Using
this relation we obtain the implication from (i) to (ii). Finally,
in Section VII we prove that (iii) implies (i).

VI. M ULTI -BENT IS PERFECTNONLINEAR

The result stated in the title of this section is a corollary
of the following theorem which gives the general relationship
between the multidimensional auto-correlation property and
the multi-Walsh transform.

Theorem 5:Let M = (M1, . . . ,Mm) ∈ V mn . Then

∑
M∈Vmn

W2(f +M)(x)
m∏
i=1

xα·Mi
i = (6)

2nmW(Dαf)(x) + 2n(m+1)(2n − 1)um(x),

for all α ∈ Vn.

Proof:

∑
M∈Vmn

W2(f +M)(x)
m∏
i=1

xα·Mi
i

=
∑

M∈Vmn

m∏
i=1

xα·Mi
i

∑
ξ∈Vn

m∏
i=1

x
fi(ξ)+Mi·ξ
i

×
∑
γ∈Vn

m∏
i=1

x
fi(γ)+Mi·γ
i

=
∑
ξ∈Vn

∑
γ∈Vn

m∏
i=1

x
fi(ξ)+fi(γ)
i

m∏
i=1

∑
Mi∈Vn

x
Mi·(α+ξ+γ)
i

=
∑
ξ∈Vn

m∏
i=1

x
fi(ξ)+fi(ξ+α)
i 2nm

+
∑
ξ∈Vn

∑
γ;γ 6=ξ+α

m∏
i=1

∑
Mi∈Vn

x
Mi·(α+ξ+γ)+fi(ξ)+fi(γ)
i

= 2nmW(Dαf)(x) + 2n(2n − 1)2nmum(x).

If f is multi-bent, thenW2(f + M)(x) = 2n(1 + (2n −
1)um(x). By substituting this to the left hand side of Eq. (6)
givesW(Dαf)(x) = 2num(x), for all α 6= 0 as desired.

VII. B ENT IS MULTI -BENT

The following theorem completes the proof of Theorem 4.
Theorem 6:If a vector-valued Boolean function is bent then

it is multi-bent.
Proof: Let f : Vn → Vm be a function andM =

(M1, . . . ,Mm) anm-tuple of vectors inVn. We start by using
Lemma 1 and writing

W(f +M)(x)

=
∑
η∈Vm

aη(f +M)
m∏
i=1

xηii

=
∑
η∈Vm

2−m
∑
u∈Vm

∑
ξ∈Vn

(−1)u·(f(ξ)+Mξ+η)
m∏
i=1

xηii .

Then

22mW2(f +M)(x)

=
∑

η,ζ∈Vm

∑
u,v∈Vm

∑
ξ,γ∈Vn

(−1)u·(f(ξ)+Mξ+η)+v·(f(γ)+Mγ+ζ)

×
m∏
i=1

xηi+ζii

=
∑

u,v∈Vm

F(u · (f +M))F(v · (f +M))S,

where

S =
∑

η,ζ∈Vm

(−1)u·η+v·ζ
m∏
i=1

xηi+ζii .



Substitutingη by η + ζ we obtain

S =
∑
ζ∈Vm

(−1)(u+v)·ζ
∑
η∈Vm

(−1)u·η
m∏
i=1

xηii

=
{

2m
∑
η∈Vm(−1)u·η

∏m
i=1 x

ηi
i , if u = v,

0, if u 6= v.

Then

W2(f +M)(x)

= 2−m
∑
u∈Vm

F2(u · (f +M))
∑
η∈Vm

(−1)u·η
m∏
i=1

xηii

= 2−m22n
∑
η∈Vm

m∏
i=1

xηii + 2−m2n
∑
u 6=0

∑
η∈Vm

(−1)u·η
m∏
i=1

xηii

= 22num(x) + 2n−m
∑
η∈Vm

m∏
i=1

xηii
∑
u 6=0

(−1)u·η

= 22num(x) + 2n−m(2m − 1 +
∑
η 6=0

m∏
i=1

xηii
∑
u 6=0

(−1)u·η)

= 22num(x) + 2n−m(2m − 2mum(x))
= 2n(1 + (2n − 1)um(x)),

as desired.
We conlude by giving a small example.

Example. Let n = 4 andm = 2. We set

f1(ξ1, ξ2, ξ3, ξ4) = ξ1ξ2 + ξ3ξ4

f2(ξ1, ξ2, ξ3, ξ4) = ξ2ξ3 + (ξ1 + ξ3)ξ4.

Thenf = (f1, f2) is bent. The value distributions of the func-
tionsf+M are either (7,3,3,3) or (1,5,5,5) (in various orders).
Their variance is 76. Absolute values of the differences from
the uniform distribution are (3,1,1,1) (where the order varies)
and the quadratic sum of the differences is equal to 12.

These distributions follow the pattern that one value is taken
2
n
2 ±(2m−1) times and the other2m−1 values are taken2

n
2 ∓

1 times each. Forn > 2m, these frequencies are multiplied
by 2

n
2−m as shown in Theorem 1. Do other patterns exist?

A second interesting question is what is the smallest pos-
sible maximum variance of the distributions off + M for
n < 2m and how to identify such functions.

VIII. C ONCLUSION

We have introduced a multidimensional Walsh transform to
be used in the analysis of value distribution. In particular, we
proved that the maximum variance of the value distribution of
a vector-valued bent function, and all its translates by a linear
function, is the smallest possible.
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