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Abstract—In this paper, a multidimensional Walsh transform For simplicity, we restrict to the binary case. It is straight-
is used to obtain a characterization of vector-valued bent function forward to generalize the results given in this paper to the
in terms of the _valu? distributions of the translates of the function p-ary case, for any odd prime
by linear functions. The rest of the paper is organized as follows. First we

introduce notation and recall known facts of bent functions
I. INTRODUCTION in Section 1. In_Section I we give a brief_ overview of the
- ) basic methods in component-wise analysis of vector-valued

S-boxes are fundamental building blocks in contemporagy,qiean functions. In Section IV we present the multidimen-
cryptography and typically the only source of nonlinearityiqa \waish transform and prove the equivalent of Parseval’s
in ciphers. Several cryptanalytic methods exploiting linearify,oqrem for it. Then the definition of multi-bent function is
properties have been developed, most prominently d'ﬁere@i/en in Section V and its equivalence with the definitions of

tial and linear cryptanalysis and their variations. Therefoig, i 4nq perfect nonlinear functions are given in the next two
research on nonlinearity criteria of S-boxes is an importagf tions. In Section VIl we conclude

area of contemporary cryptology.
When analyzed mathematically, S-boxes are considered as Il. BOOLEAN FUNCTIONS

vector-valued functions the components of which are Boolean et y, be a positive integer. We denote By the vector space
functions. The nonlinearity criteria of S-boxes have beg@rmed by binary vectors = (&1,&,. .. ,&,) of n coordinates
investigated by means of the nonlinearity properties of their {0,1},i=1,...,n. A function f : V,, — V; is called a
Boolean components. For example, a vector-valued functionggolean function. Given two vectogs= (€1,&2,...,&n) € Vi
called bent if all its components (non-zero linear combinatioRg,d ,, — (uy,ug, ... uy) € V, we denoteu - & = uy - & +
of its coordinate functions) are bent. Similarly, a vectory, . ¢, + . 4, -¢, mod 2 € V;. The Walsh transform of

valued function is perfect nonlinear is all its components areevaluated ab € V,, is denoted asF(f)(0). It is an integer
perfect nonlinear [1]. When studying correlation with lineagefined as

functions, autocorrelation properties, propagation characteris-

tics and value distributions of Boolean functions, the Walsh F(N)0) = Z (_1)f(£)’

transform is a fundamental tool. In particular it is very effective £EVn

in handling interaction between different nonlinearity criterigvhere the sum is taken in the set of integers. A Boolean
see for example [2], [3], [4]. function is balanced itF(f)(0) = 0. Given f : V,, — V;

In this paper, for the first time to our knowledge, wénd w € V,, we denote byf + w the Boolean function
investigate nonlinearity criteria for vector-valued Booleafif +w)(§) = f(§) +w- €& mod 2. The Walsh transfornd ( f)
functions without making use of properties of component8f / can then be given using
We introduce, for this purpose, a tool w.hich' we call mglti- F(f)(w) = F(f +w), for w € V. 1)
Walsh transform. This tool is very effective in computation
and analysis of value distributions of vector-valued Booledp@rseval's theorem states that
functions. One area of application of multi-Walsh transform Z F2(f +w) =22, )
is in linear cryptanalysis when multiple linear approximations wev,

are used simultaneously. In this paper, we focus on vect{ggolean functionf : V,, — V4 is called bent ilF(f+w)| =
valued bent functions and show that for a bent function, the: 5 a1 w € V,.. Hence bent functions exist only if is

maximum variance of the value distribution of the sum of thg e, A Boolean function is called perfect nonlinear, if for all
function and a linear function is the least possible, where t}&e6 Vi, a # 0, the functionD f : € — f(£ +a) + f(€) is

maximum is taken over all linear functions. balanced. It is known since the invention of bent functions by
1This paper is a slightly revised version of the paper published in th@_scar Rothaus [5] that a Boolean function is bent if and only
proceedings of ITW 2007. it is perfect nonlinear.



I1l. VECTOR-VALUED BOOLEAN FUNCTIONS wherec, is an odd integer. Theh, = ¢, + 2% is an integer

Let f : V,, — Vj, be a vector-valued Boolean function@S bent Boolean functions exist only for evenand it is odd.
We denote its coordinate functions by, ¢ = 1,2,...,m. _ _ u
Givenu € V,,, u # 0, the Boolean function: - f defined One corollary of Theorem 1 is that bent functions fréi
asu- f(€) = uifi(€) + ... umfm(€) is called a (non-zero) t0 Vin exist only whenm < 3.
component off.

We begin by recalling a fundamental fact about the value IV. MULTIDIMENSIONAL WALSH TRANSFORM
distribution of f. Let f : V;, — V,,, be a vector-valued Boolean

. . X Various types of Fourier transforms are known to exist.
function andn € V,,,. We make the following notation yp

In cryptography and coding, the discrete Fourier transform,
an(f) =#{E € VL |f(&) =n}. see for example [6], is commonly used. The transform to be
introduced in this paper is different from the discrete Fourier
transform and particularly suitable for analysis of vector-
valued Boolean functions.

Lemma l:Let f : V, — V,, be a vector-valued Boolean
function. Then

an(f)=2""3 " > (—1)wS@ren, ©) Let n and m be positive integers and let : V,, — V,,
UEV,m EEV,, be a vector valued Boolean function ofvariables. Thei*!
Proof: coordinate function off is denoted byf;. Then we define
> X e
eV CeT W) (@) = W), zm) = Y [[29 @
Z Z u-(f(€)+n) €€V, i=1
&F(&)=nuEVm where the sum is taken in the s@&[zi,...,2,,]/(2? —
+ z Z £)+n) 1,...,22, — 1) of multivariate polynomials over integers,
€.f (O uEV. where the indeterminates; satisfyz? = 1,i = 1,...,m
The transform that map$ to the mapping:
=2™ .
ity M WS + M) (a), MV,
[ |
is balanced ifa, (f) = 2"~™, for all € V,,. By Lemma 1 andz; = —1, we get the usual Walsh transform for Boolean
we have the following known fact. functions (1).

Corollary 1: A vector-valued Boolean functiof : V,, —  The value of the multi-Walsh transform gftaken atM =
V., is balanced if and only if the Boolean functions f are 0 is denoted byW(f)(z) in (4). It is a polynomial ofm

balanced, for alk # 0. indeterminates and with non-negative integer coefficients and
We recall the following definitions from [1]. gives the value distribution of. Indeed, we can write
Definition 1: A vector-valued Boolean functioif : V,, — m

V. is bent if its components - f are bent, for allu # 0. W)=Y ay[] =},
Definition 2: A vector-valued Boolean functioif : V,, — nEVy  i=1

V,. is perfect nonlinear if the function
P wherea, = a,(f) for n = (n,n2,...,0m) € V. If [ :

Dy : &= f(E+a)+ f(E) Vy, — Vi, is uniformly distributed, thenn < n, and

is balanced, for allk € V,,, a # 0.
By Corollary 1 a vector-valued Boolean function is perfectV(f)(z) = 2"um(x), whereu,,(z) = 27" H (1 + ).
nonlinear if and only if its non-zero components are perfect
nonlinear. Hence a vector-valued Boolean function is bent if For multi-Walsh transform the uniform distribution plays
and only if it is perfect nonlinear, and this fact is proved byhe same role as zero for the onedimensional Walsh transform

means of the components of the function. with 1 = —1. In particular, for any normalized distribution
To conclude this survey of vector-valued bent functions wé,,(z) of values inV,,, we haveu,,(z)d,(x) = un,(z). In
recall the following result from [1] and give a new short proofvhat follows we identify them-tuple M = (M, ..., M,,)
of it based on Lemma 1. of vectorsM; € V, and the linear functionVf : V,, — V,,,,
Theorem 1:If f:V, — V,, is bent them,(f) = b,22 "™ M¢ = (M, - £,..., M, - £) and denote the set of sudh
whereb,, is odd, for alln € V,,,. by V" . Next we state a multidimensional form of Parseval’s
Proof: Using (3) theorem. We omit the proof as it is a special case of the proof
—m of Theorem 5 witha = 0.
an(f) =2 Z Flu-f+u-n) Theorem 2:For any vector-valued Boolean functiof :
HEVm V,, — V,,, the following holds:
=27 (F(0) +22 > _sign(F(u- f+u-n)))
o ST WA+ M) (@) = 20D (14 (27 — g (2)).

=2"TM 422 ey, Mevir



V. MULTI-BENT FUNCTIONS Proof:

Analogous to the one-dimensional definition of bent func- LA
tions we define thenulti-bentfunctions as functions for which > WAF A+ M) () [ [ o™
the squared distribution8V(f + M) are equal, for allM € Mev,m i=1
v, U
n _ a-M; fi(§)+M;-€
Definition 3: A vector-valued Boolean functioif : V,, — - Z Hxi Z H
V., is multi-bent if Mevri=1 §EVn i=1
m
fi(y)+M;-
W2(f + M)(z) = 2°(1 + (2" — 1)um(2)), ) x Y [Lal
YEV, =1
for all linear functionsM € V™.
. " . . fi(€&)+fi (atE+
The following property of multi-bent functions follows Z Z Hf © (W)H Z 33 "
directly from the definition when we observe that the constant £EVn vEVn i=1 =1 M€V
term of the polynomialV?(f + M)(z) is the sum of the _ r fi©+fi(+a)gnm
squares of the frequencies(f + M). =2 H“Tz
Theorem 3:For f : V,, — V,,, and M € V" we denote L€V =1
an(f+M)=#{ € Vo |f(&)+ME=n}. If fis multi-bent 4 Z Z H Z M- (a+E+y)+fi (€)+fi(y)
then
EEV, vivEé+ai=1 M;EV,
D ay(f+ M) =2"(1+ (2" —1)27") and = 2""W(Do f)(x) 4+ 27(2" — 1)2" "ty (1)
n€Vm
Z (an(f + M) _ 2n—m)2 —9n _gn—m [ ]
nEVin If f is multi-bent, thenW?(f + M)(z) = 2"(1 + (2" —
1Dun, (x). By substituting this to the left hand side of Eq. (6)
forall M e V'™, . —on i
n givesW(D,, f)(x) = 2"u,,(z), for all a # 0 as desired.

To summarize, the least maximum of quadratic deviation
of the distributions off + M from the uniform distribution,
where the maximum is taken ovadr € V., is achieved by VIlI. BENT IS MULTI-BENT
multi-bent functions, and for multi-bent funct|ons the quadratic ]
deviations are equally small for al/ € V/ The following theorem completes the proof of Theorem 4.

The main result of this paper is a proof of the fact that Theorem 6:If a vector-valued Boolean function is bent then
a vector-valued Boolean function is bent if and only if it idt IS multi-bent.

multi-bent. We state the following theorem. Proof. Let f : V,, — V,, be a function andV =

Theorem 4:Let f : V,, — V,, be a vector-valued Boolean (M1, ..., My,) anm-tuple of vectors in,. We start by using
function. Then the following are equivalent: Lemma 1 and writing

(i) f is multi-bent; WF -+ M)(x

(i) f is perfect nonlinear; and (f @) m

(iii) f is bent. =Y ay(f+ M) []F

The equivalence of (ii) and (iii) is known, see Section Ill. In nEVim -1
the next section, a relation between the multi-Walsh transform
of f and the multi-Walsh transform d,, (f) is proved. Using =y 27 Y Y (—ywiE@FMEm) me
this relation we obtain the implication from (i) to (ii). Finally, NEVim UEV,y, EEV, i=1
in Section VII we prove that (iii) implies (i).

p (iii) implies (i) Then
VI. MULTI-BENT IS PERFECTNONLINEAR 22mW2(f + M)(x)
, . . L +Me+n)+uv: + M+

The result stated in the title of this section is a corollary Z Z Z 1) OFMEFD o (M)

of the following theorem which gives the general relationship 1,CEVm u,0€Vin £,7EVn

between the multidimensional auto-correlation property and y ﬁxmﬂi
the multi-Walsh transform. d
Theorem 5:Let M = (My,...,M,,) € V;™. Then

> WA+ M) (@) [J ¢ ™ = ©6)

Mev;m i=1 where
"MW (D f) () + 2D (27 — 1)u,, (),

S = Z (—1)wntv< ﬁx?wci.

for all o € V,,. 1,CEVim i=1



Substitutingn by n + ¢ we obtain

S = Z (_1)(u+v)-4 Z

CEVm nEVm
{ 2m Zne\/m (_1)u'77 H
W2(f + M)(x)

0, if u # v.
=2 3 P (74 M) Y

m
(-1 Lat
ueVy, NEVm i=1

_ 2—m22n Z ﬁx;h 4 g—mon Z Z (_1)u-77 ﬁx:h
i=1

nNEVm 1=1 u#0NEV,,

_ 22"um(a¢) 4 gn—m Z ﬁx:h Z(_l)u-n

NEVi, i=1 uz0

m
= 2" () + 272" =14 Y [P (-1
n#0i=1 u7#0
= 2%y, (1) 4+ 2772 — 2™, (7))

=2"(1+ (2" — Dum(2)),

m [1]
(-1 Lt
=1

m ni
i=1%i

7 7

(2]

if u=nw,

[3]
Then
[4]

(5]

as desired.
We conlude by giving a small example.
Example. Let n = 4 andm = 2. We set

f1(&1,&2,€3,64) §1862 + 838
f2(&1, 62,83, &) &3 + (&1 + &3)&.

Thenf = (f1, f2) is bent. The value distributions of the func-
tions f+ M are either (7,3,3,3) or (1,5,5,5) (in various orders).
Their variance is 76. Absolute values of the differences from
the uniform distribution are (3,1,1,1) (where the order varies)
and the quadratic sum of the differences is equal to 12.
These distributions follow the pattern that one value is taken
2% 4+(2™m—1) times and the othe™ —1 values are takeR? F
1 times each. Fon > 2m, these frequencies are multiplied
by 22~™ as shown in Theorem 1. Do other patterns exist?
A second interesting question is what is the smallest pos-
sible maximum variance of the distributions @¢f+ M for
n < 2m and how to identify such functions.

VIII. CONCLUSION

We have introduced a multidimensional Walsh transform to
be used in the analysis of value distribution. In particular, we
proved that the maximum variance of the value distribution of
a vector-valued bent function, and all its translates by a linear
function, is the smallest possible.
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