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Abstract—In this paper we examine a correlation attack in the heuristic method that the sequeng@’)( reflects the
against combination generators introduced by Meier et al.n 2006  probability distributionPr(Y = 0) = %(1 +€32).
and extended to a more powerful tool by Naya-Plasencia. The
method has been used in the cryptanalysis of the stream cipte Il. THE SIMPLIFIED KEYSTREAM GENERATORMODEL

Achterbahn and Achterbahn-128/80. No mathematical proofgor . - A .
the method were given. We show that rigorous proo?s can be I.nstead of working with a true _Comblnatlon gengrator n
given in an appropriate model, and that the implications deived Which the sequences to be combined are, e.g., shift register

from that model are in accordance with experimental results Sequences, we shall work in a simplified model. In this model
obtained from a true combination generator. We generalize ie  the input sequences to the Boolean combiner are replaced by
new correlation attack and, using that generalization, sha that periodic sequences of binary-valued random variables twhic

the internal state of Achterbahn-128 can be recovered with . . .
complexity 2'1° using 253 consecutive keystream bits. In order '€ assumed to be independent and symmetrically distdbute

to investigate a lower bound for the frame length of Achterban- We shall use th_e fqllowing notati_on. N7 is a set, thenM |
128 we consider another application of the generalized coefation ~denotes the cardinality ab/. If D is a subset of the set of
attack. This attack has complexity2'*® (higher than brute force) integersZ andn is a nonnegative integer, théby,oq,, is the

and requires 2% keystream bits. Similar results hold for corresponding subset &/nZ consisting of the elements of
Achterbahn-80. Due to these findings our new recommendation D reduced modula:

for the frame length of Achterbahn-128 and Achterbahn-80 is .
244 pits. g Theorem 1:Let F' be a balanced Boolean functionof> 1

variables having order of correlation immunityvith 0 < ¢ <
. INTRODUCTION n — 1. Letpy,...,p, ben distinct nonnegative integers. For

Consider a keystream generator (KSG) that consists oféachk =1,...,n, let
devicg; producing bingry perioqlic sequences and a Boolean Xp = (Xei) 20 = (Xnos Xets - s Xppoo1)™ (1)
combining function which combines these sequences to gen-
erate the keystream. If the input sequences have relativBf @ periodic sequence of binary-valued balanced random
short periods—in comparison to the keystream—then a certygriables of least periogh, such that the random variables
correlation attack comes into play. This heuristic cotieta Xi» 1 <k <n, 0 <i < p,—1, are statistically independent.
attack was introduced by Johansson, Meier, and Muller [4ft Z = (Z;){2, be the sequence of binary-valued random
and later on generalized by Naya-Plasencia [5]. The meth¥@fiables defined by
is in the spirit of linear cryptanaly;is. N.o proof ha_ls beeregi Zi= F(X1.5, Xoir .. Xp)  fori=o,1,....
for the method. We shall generalize this correlation attawt ' ' '
present a rigorous proof for the attack in a simplified modeket

We give a brief description of the correlation attack as L=wy +ai,+- -+, +a (2)

introduced in [4]. LetF(z4,...,z,) be a balanced Booleanbe an affine Boolean function of. variables,1 < m < n.
combining function that is correlation immune of ordersay. Select an integeh with 1 < h < m and decampoge the
Let L = x1 + x2 + x5 + x4 + x5 be a linear approximation to set M = {i1,is,...,im} into h mutually disjoint subsets

_ _ 1 H H
F, so FhatPr(F =L)=5(1+¢) Wlth.a nonzero correlation M, ..., M,. Compute the least common multiples
coefficiente. Let oy,...,0, be the input sequences tB

and let¢ = (z)2, be the keystream. Sincg and L are qj =lem(p; i€ My), 1<j<h
correlated, the sequencésando = o1 +09+03+04+05 are Lo o,
correlated. Lep; be the least peri(_)d of;, 1 <j< 5, and let ilhgo;)sge ;'Oggigﬁdtgretgegﬁy'béf;h:r?]?afevj = tjq; for
T:(b;)2, — (bit1)32, be the shift operator, defined on the
vector space of all binary sequences under termwise opesati . 4
on sequences. The polynomiglz) = []_, (2% — 1) is a g(@) = [[@7 —1) =3 2.

characteristic polynomial ofr, so thatg(T)oc = 0. Since =1 deD

the polynomialg(z) has 32 terms, g(T)[¢ + o] = ¢g(T')¢ The linear operatoy(7') and the sequence = (Z;)°,, define
is the termwise sum 082 sequences. It has been assumea new sequencd’” = g(7')Z with termsY; = >, Ziya.

h



If m < c+1and|Duyodp,| = 2" for all 1 < j < n with and similar subsets df:
J ¢ M, then Vo={xeV:Gx)=0}={xeV:F(x) =1},
Pr(n:()):%(ue?”) for i=0,1,..., (3) Vi={xeV:Gkx) =1} ={xeV:F(x)=0}

It suffices to show thaPr(G = 0|z; = 0) = Pr(G = 0|z, =

wheree is the correlation coefficient betwedn and L, that 1). Equivalently, thatls| = [Va|. SinceF is balanced,

is,e=2Pr(F=1L)-1.
The special casen = ¢+ 1 andt; = 1 for1 < j < h |Uo| + |Va| =271
corresponds to the method of Naya-Plasencia suggested
page 5]. The special case = ¢+ 1, h = m, andt; =1
for 1 < 5 < m, corresponds to the method of Meier et al
described in [4, page 10].
Formula (3) need not hold
Theorem 1 are not fulfilled.
Example 1The Boolean Functiod'(x1, x2,x3) = x122 +

i -
n\);?e trivially have |Vp| + |Vi| = |V| = 2"~ 1. Hence,|Uy| =
ol |V =27 — (21— Vo)) = |Val. =
Lemma 3:Let the Boolean functiod (x4, ..., z,) be bal-
if the stated assumptions ﬁpced anq correlatlorl immune of.orderForl <k<c+ 1
and1 < j; < --- < jr < n, consider the Boolean function
G(z1,...,xzn) = F(x1,...,2,) + 25, + -+ ;.. Then

123 + T2x3 _is balance_d and correlatio_n immune of order Pr(G =elz;,=e1,...,7j, = ex) = Pr(G =e)
¢ = 0. The linear functionL = z1 + x» is uncorrelated to

F, that ise = 0. We havem = 2, so that the assumptionfor all e € {0,1} and (e;,,...,e;,) € {0, 1}%.

m < ¢+ 1 is not fulfilled. Letg(z) = (P — 1)(«P> — 1) and Proof: It suffices to proof the assertion for

D = {0,p1,p2,p1 + p2}. Assume thaiD.,oa,,| = 4. One
readily checks that the random variatig satisfiesPr(Y;, =

0) = 9/16. This result clearly contradicts formula (3). Since F' is balanced and correlation immune of orderny
Example 2.Let ' be the Boolean function from Exam-g pfunction of  obtained by replacing arbitrary variables
ple 1. We use the linear approximatidn = 1. We have of i with arbitrary binary constants is balanced. It follows

Pr(F = L) = 3/4 so thate = 1/2. Assume that the periods compare the proof of Lemma 2) that

p1, pe2, p3 are distinct withps dividing p;. Let g(x) = 2P —1.

Then D = {0,p1} and Dyoap, = {0}, so that the second Pr(F =0|zy =e1,...,Zeq1 = €cq1)

assumption in Theorem 1 is not fulfilled. In fact, we find for a/b if ex 4 +eerr =0
Yo = F(Xi0, X20, X30) + F'(X10, X2p, , X30) that Pr(Yyp = = (b—a)/b if er 4 +eops =1
0) = 3/4. This again contradicts formula (3). ! et

G, . xn) =F(z1,...,2n) + 21+ + Teyr.

For the proof of Theorem 1 we need some auxiliary resultgith p = 271, for somea € {0,1,...,b}, and for all
The proof of the next lemma is straightforward and can ke, . ¢ .)€ {0,1}°. It follows that
skipped.

Lemma l:iLet R;;, 1 < i < k, 1 < j < n, be a Pr(G =0lz1=e1,...,Tcy1=€ct1) = a/b

collection of & x n statistically independent binary—valuedfor all
random variables, and Iét be an arbitrary Boolean function
of n variables. Then thé random variables, .. ., S, defined

by

(61,...,€c+1)€ {0,1}C+1. |
We are now ready for the proof of Theorem 1.
Proof: All random variables of the sequen¢¥;)2, =
9(T)(Z;)2,, have the same probability distribution. It there-

;= i P2y ; <1< ! . .
Si=F(Rip, Rig, . Rin) - for 1< <k fore suffices to examine one of those random variables, say

are statistically independent. Yp. Let us denote&} by Y. Thus,Y =3, Za.
Lemma 2:Let F be a balanced Boolean function of The casem = n is trivial. Because in this case the
n variables. Forj € {1,...,n}, let Gj(zy,...,z,) = assumptiom < c+1 together withc+1 < n implies that#" is
F(z1,...,2,) + x;. Then affine. It follows thatY is the zero sequence. Sinee(F' = L)
is either1 or 0, the correlation coefficientis either1 or —1.
Pr(Gj = e|z; =0) =Pr(G; = elr; =1) =Pr(G; =€) Formula (3) holds in both cases. We shall assume in the rest

of the proof thatm < n.

Without loss of generality we may assume that the function
L in (2) is linear and has the fornh, = z1 + -+ + a,,.
Again, without loss of generality, we can assume that the

foree {0,1} and1 < j <mn.
Proof: It suffices to treat the casg = 1. For ease of
notation we writeGG instead ofG;. Let

U={x=(0,22,...,2n) 1 T2,...,zn € {0,1}}, decomposition of the set/ = {1,...,m} into h pairwise
V={x=1,22,...,2,) : 22,..., 2, € {0,1}}. disjoint nonempty subset¥/;, . .., M}, is of the form
Consider the following subsets &f: M; ={cj,c;+1,...,n;}, 1<j<h,
Up={x€U:G(x) =0} ={xeU:F(x) =0}, with integersn; satisfyingl < n; < --- < nj, = m, and
U={xeU:Gx)=1}={xeU: F(x)=1}, integersc; defined bye; = 1 ande; = n;_1+1for2 < j <h.



Because of the periodicity properties, the random vargbltor all (e1, ..., ex) € {0, 1}
Z4, d € D, have the form We shall carry out the details of the proof only for the
largest such subset, i.e., for the $&t,; : d € D}. The proofs
Zo = F(X1,00 s Xny 0005 Xep 0503 Xm0y 05 X)), for the other subsets are similar and somewhat simpler. For
Zpy=F(X1,0,- -+, X000 Xeprar oo s Xmyras -5 Xnim ), CONvenience, let us rename the elements of thg8ét: d €
D} by Wy, W, ..., W; with t = | D| = 2". Let us denote the
' u = m2"~! random variables that appear twice in the above
Zry=F(X15o s Xy s o3 Xen05 o5 Xm0, s Xy ), System of equations byl;, Ao, ..., A,,.
. Using the formula for theotal probability, we get

Pr(Wi=e1,..., Wy =¢;) =
1
ZPr(le e, ... Wi=e|Ai=aq,..., Ay= au)2—u.
(alv"'aaU)e{Ovl}u
By Lemma 1, the sum is equal to

Zs=F (X155 s XnysiseoosXensnseoorXmosnye--sXn,s)s

wheres =r; +---+ry ands; =s—r; for 1 < j < h.

Notice that each random variablg,;, 1 < &k < m, d €
D, appears exactly twice in the above system of equations]
whereas each random variab¥,;, with m +1 < k < n, u
d € D, appears exactly once. It follows th&t depends on

t
Z HPr(Wizei|A1=a1,...,Au:au).

(ai,...,an)€{0,1}# 1=1
Each W; depends only onn random variables of the set

m|D| + (n—m)|D| = (2n — m)2"! {44,..., A, }. Therefore, Lemma 3 implies that
2

. . - . Pr(Wi=e;|A1=as,...,Ay=a,) =Pr(W, =¢;
independent symmetrically distributed random variables. i cildi=a @) K i)

The random variableg,, d € D, are not statistically inde- for 1 < i < ¢ and for all (a1, ...,a,) € {0,1}*. It follows
pendent. The idea of our proof is to alter the random vargbléhat
Za in such a way that the modified random variables will be Pr(Wy =eq,..., W, =)
statistically independent. The modified random variables a ) ‘
Wo=Zo+ X104+ Xny0+ 4 Xep o+ - + Xmyo, :27( 2):{01} _HlPr(Wizei)

A1,...,Qq)€E10,1}% 2=
WT1:ZT1+X1,O+"'+X77,1,O+"'+Xch,r1 +"'+Xm,r1, . 1
: = HPI‘(Wl = ei).
=1

th: Zrh+ Xl,rh""' et an,rh +-- -+ Xch,O +--+ Xm,Oa ]

IIl. THE COIN TOSSINGMODEL

Ws=Zs+ X156+ +Xn1 sy ++ Xeposp -+ Xonsy, - In preparation for the subsequent sections we discuss a
problem in the simplest of all probabilistic models, thercoi
tossing model.

We have Consider a collection of coins. One coin is biased. All
Z Wy = Z Zg=Y. other coins are fair. Identify head withand tail with1. The
deD deD biased coin falls head, i.e., sho@swith probabilityp > 1/2.

The value ofp is known, but the coin that is biased is not. To

Furthermore, L . . . !
distinguish the biased coin from the fair coins we toss each
Pr(Wy=0)=Pr(F=1) = 1(1 +¢) forall deD. coinn times recording the number of observed zeros for each
coin.
Since the random variable®’y, d € D, are statistically = Theorem 2:Toss each of th& coinsn, times where
independent, the piling-up lemma can be applied to thens Thi log, S 4
yields T {1+plog2p+ (1 —p)logy(1 —p)w SRR
Pr(Y = 0) = 1(1 Pl = 1(1 LM, Then, the probability that the biased coin shows at Igast)
2 2 zeros is greater than/2. The probability that each fair coin

It remains to show that the random variabl&s are indeed shows less thafpno| zeros is also greater than'2.
statistically independent. That is, we have to verify thay a We omit the proof. Problems of this kind are typically
nonempty subse{Vi,...,V;} of the set{W,; : d € D} investigated in the framework of hypothesis testing. (bt
satisfies that the denominator of the above fraction is the relative

k entropy—or Kullback-Leibler distance—between a symmet-
Pr(Vi=e1,..., Vi =€) = HPr(Vj =e¢j) rically distributed Bernoulli random variable and a Berltiou
j=1 random variable with parametgr)



IV. CRYPTANALYSIS OF ACHTERBAHN-128USING 2854 conclude that the terms of the sequefe= (Y,,)°, are
KEYSTREAM BITS identically distributed with

The KSG of Achterbahn-128 consists bf binary nonsin- Pr(Y. = 0) = p— 1 _o4 ¢ B
gular nonlinear feedback shift registefs, of lengths N, = 1(Yon=0)=p= 3 (1+27%) forn=0,1,....
k+ 21, 0 < k < 12. The shift registers argrimitive.

: : : - For a 4+ b+ ¢ > 0 (this corresponds to a wrong guess), the
This means that the shift registdr, will output a sequence )
(k) g i P q Y,, are balanced, that Br(Y,, = 0) = 1/2. (This too can be

" - - — oNk _
Cr:f)nzerg)s?nit)iglzgt;:eIe‘?r?; preortlnloudé);d se 2ue ; foir ev:rrg rigorously proved in the simplified KSG model. However, we
_ p quUentgs. ., 012 omit the proof for lack of space.)

then combined by a balanced Boolean combining functlonWe now change from the simplified KSG model to the true

F to produce the keystreath= (z,)22,. Thus, . .
(%0, 212) 1o produ y 0= (zn)ao . KSG. The equivalents of the sequences in (5) are
zn:F(sle),...,SS}Q)) forn=0,1,....

n= 95T +a+p+7], (6)
Using a more compact notation, we also write =
F(00,...,012). The functionF is correlation immune of or- wherea, (3, andy are output sequences of the three target
der8 and has nonlinearitg584. See [2] for more information Shift registersiy, Ao, and 4. Itis a consequence of the key-
on this stream cipher. loading algorithm of Achterbahn-128/80 that from th& —1

The frame length of a stream cipher defines the maximu#@NZero output sequences of the shift registgronly 2%~
amount of keystream that can be used before resynchramiza'® actually used (see Step 5 on page 21 in [2]). It follows
or re-keying becomes necessary. The initial frame lengfft there are2™ possibilities for the triple(a, 5,7). The
recommendation for Achterbahn-128 wa¥' bits (see [2, Seduences, j, andy can, of course, be represented by their
page 2]). However, Naya-Plasencia [5] found an attack wifiitial states which are row vectors of lengthé§,, Ny, and
complexity2%0 that requires onl®0-26 keystream bits. In [6], V10, respectively.

she describes an attack of complex#ii’* requiring 25561 We impose another simplification. We treat the sequences
keystream bits. The following attack with complexigy}'® in (6) as if they were realizations of sequenceiadependent
requires2*8-54 keystream bits. and identically distributed Bernoulli random variablestide

We start our attack in the simplified KSG model. Recall thdfat even in the simplified KSG model this is not true: The
in this model the shift register sequenegsare replaced by the €rms of the sequences in (5) are statistically dependent.
sequenceX, introduced in (1). The keystreatis replaced This simplification allows us to invoke Theorem 2. The

by Z = F(Xo,...,X12). We use the linear approximation correct triple (a, 5,7) = (04,09,010) corresponds to the
biased coin. Wrong triples correspond to fair coins. Using
L=xo+ 21 +2o+ 23+ 24 + 27+ 29+ 210 + T10. formula (4) with S = 2% andp = 1(1 + 27%%), we get

no = 32 387195 359 857 782 < 254-847,
By applying all380 linear operatorg;; (1) to a segment of
the sequence + a + 3+~ consisting 0f248-54 bits, we gain

Since F' is balanced and correlation immune of orderthe
function I’ = F + x4 + z9 + x19 is balanced and correlation
immune of order5. Furthermore, the linear function

38 10
L'=zxg+21+22+23+27+212 Z Z (248.54 o deg(gij)) < 954.847

approximatest”. We havePr(F’ = L') = Pr(F = L) = e

%(1 + ¢) with € = 273, Defineq; = lem(po, p7) ~ 2*2, G2 = samplegy;. The triple(«, 5, v) producing the greatest number
lem(p1, p12) =~ 2%, andgs = lem(p2,p3) ~ 2%7. Consider of zeros is the primary candidate for the correct initiatesta

the family of polynomials of the three registerdy, Ay, A1p. Once we know the initial
i o 0 states of the three registers, the initial states of the i
gij(x) = (& = 1) (@7 = 1)(z® — 1), ten registers can be computed. This task is computationally
1<i<38,1<j<10. Let D) be the set less expensive.

{0,iq1, 592, 93,1q1 + jqe, iq1 + 43, Jq2 + q3,1q1 + 792 + q3}- V. GUESSING THEINITIAL STATES OFFOUR REGISTERS

Then |D$'Z>)d J=8for1<i<381<; < 10, and In the_ above attack we gu_essed the initial states of three
k=4,5,6,8.9,10,11. Consider shift registers. Any.attacll< against Achterbahn-lZStha’sgas
more than three shift registers has complexity greater 2h&n
Y =g;;(T)Z+TXy + T°X g 4 TX 1] (5) and, therefore, does not make sense. Nonetheless, we eonsid
_ such an “attack” to get an idea for a secure frame length
with 0<a<ps—1,0<b<pg—1,0<c<pp—1 recommendation. The complexity of the following “attack” i

If '@ = b= c= 0 (this corresponds to the correct guesshhoyt2136. We use the linear approximation
thenY = g;;(T)Z', whereZ' = Z + X4 + Xg + Xy9 =
F'(Xg,...,X;12). Applying Theorem 1 taF”, L', andZ’, we L=x9+x1+23+ 24+ x5+ 26+ 27+ 210 + T12.



The correlation coefficient betwednand L is againe = 1/8.
We guess the registetds, A4, As, and Ag. There are2”®

ke K = {1,2,...,1030} \ {8,20,62,64,126,188}. The
assumptlon|foC))d | = 8 is fulfilled for 2 < j < 6 and
possibilities for the initial states. Consider the polynais for all & € K. Let ¢ be the keystream and any nonzero
@ a2 kpio output sequence of the target shift register. For dach K
gr(@) = (@ = 1)(x —DE™ 1) we compute the firs2!? terms of the sequenagg.(T)[¢ + f].
for 1 < k < 10000. Let D®) be the corresponding set ofLet 1, denote the sequence consisting of tha@sé terms.
exponents. Theder’fgd | 8 for all 1 < k < 10000 We piece together the sequences to create a sequence
with k& # 4098 and for j = 2,3,4,5,6,8,9,11, whereas n = (m|n2| - |noso) of r = 222 terms. Associate withy =
(y:)i—y the sequence = (c,)"—; whose terms are defined

DY) | — 6 Using (4) withS = 998 andp = 3(1+2724),
=21[{i:0<i<n-—1, y; =0} In this manner each

mod
we ob%llnno < 255086 et f be the minimum amount of by ¢,
keystream needed to collegt?-056 samples using the linear nonzero initial state of the target shift register givee tis a
operatorsy, (7). We make the Ansatz sequence. We plotted the graphs of six of those sequences—
among them the sequence corresponding to the correct initia

t+1
955.086 _ Z*[f—deg(gk)] state—over the interva®!® < n < 222 — 1. See Figure 1.
Pt ’ The graphs of alR'é — 1 sequences lie within the colored

where the asterisk indicates that the sum is extended omely Ognvelotp_e._tj'rlle tgrtaplh of thet:hsequenlce thaé Cotrlr;:%‘;g‘_‘gf to the
valuesk # 4098. It follows that correct initial state leaves the envelope abou :

Using Theorem 1, we fing = (1 +27%) = 257/512. Using
55.086 _ ¢ _ _ eorem 2 wi = —landp = , we ge
2 =[f—a —alt—puo E+2E+D  yoeg] . Th 2 withs = 2! — 1 and 257/512 t
2 no = 22047, Thus, the theoretically predicted result comes
Equivalently, close to the true result.
255-086 _ 4097 1 3 T T 1 1 1
f) = L0 it + 1+ @2 + Spio-
Solving f/(t) = 0 for ¢, we find as the nearest integer solutior®-3%°[, ]
t = 5967. Since the second derivative is positiyehas a local W
minimum near = 5967. Therefore, the best strategy is to us: \
the 5967 linear operatorgy (T), 1 < k < 5968 with k& # 4098 M W
on a keystream segment of lengff5967) ~ 24499, 0.500 W o
VI. THEORY VERSUSEXPERIMENT
o wrong guess |
We need to check whether we are still in touch witl T ung e,
reality. We want to know whether the results derived fror0 4951 _ Wrong guess | |
the simplified KSG model and the coin tossing model ar™ wrong guess
in accordance with experimental results obtained from a tr 1 1 1 1 7(1*W)
KSG. To this end we consider a combination generator simil e 17 518 19 520 21 22

to the KSG of Achterbahn but with smaller design parameters
so that a guess and determine attack can be simulated on the
computer. This KSG consists of eight primitive nonlineaiftsh

Fig. 1. Simulation of a guess and determine attack

registers of lengthsV; = j + 14, 1 < j < 8. The periods
arep; = 2Ni — 1. The combining functionF(z1, ..., zs) is
balanced, correlation immune of ordgrand has nonlinearity
64.

F(xl,...,

+ XoTg + T2T7 + T2xg + T3xg + T4xs + T5X6 + TeX7

(1]

xg) = x1 + X3 + T5 + s + 107 + T128 + ToXy

(2]

+ 212427 + T12478 + X1T6T7 + T1TeX8 + T2T4T6 3]

+ ToXTgT7 + T2X4X8 + T2XgX7 + T2TT] + T4TeXY

+ T1T4TT7 + T1X4T6X] + T2X4Xe X7 + T2X4TeLS

[4]
The best linear approximation t6 is L = x1 + z2 + x7 + 3.

We havePr(F = L) = 3/4 so thate = 1/2. We guess the [5]
initial state of the second shift register of lengiy =
considering al2'® — 1 nonzero initial states. We make use of g
the following 1024 polynomials:

gr(@) = (27 = 1) (2P — 1)(a?* - 1),
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