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Abstract— In this paper we examine a correlation attack
against combination generators introduced by Meier et al. in 2006
and extended to a more powerful tool by Naya-Plasencia. The
method has been used in the cryptanalysis of the stream ciphers
Achterbahn and Achterbahn-128/80. No mathematical proofsfor
the method were given. We show that rigorous proofs can be
given in an appropriate model, and that the implications derived
from that model are in accordance with experimental results
obtained from a true combination generator. We generalize the
new correlation attack and, using that generalization, show that
the internal state of Achterbahn-128 can be recovered with
complexity 2

119 using 2
48.54 consecutive keystream bits. In order

to investigate a lower bound for the frame length of Achterbahn-
128 we consider another application of the generalized correlation
attack. This attack has complexity2

136 (higher than brute force)
and requires 2

44.99 keystream bits. Similar results hold for
Achterbahn-80. Due to these findings our new recommendation
for the frame length of Achterbahn-128 and Achterbahn-80 is
2
44 bits.

I. I NTRODUCTION

Consider a keystream generator (KSG) that consists ofn
devices producing binary periodic sequences and a Boolean
combining function which combines these sequences to gen-
erate the keystream. If the input sequences have relatively
short periods—in comparison to the keystream—then a certain
correlation attack comes into play. This heuristic correlation
attack was introduced by Johansson, Meier, and Muller [4]
and later on generalized by Naya-Plasencia [5]. The method
is in the spirit of linear cryptanalysis. No proof has been given
for the method. We shall generalize this correlation attackand
present a rigorous proof for the attack in a simplified model.

We give a brief description of the correlation attack as
introduced in [4]. LetF (x1, . . . , xn) be a balanced Boolean
combining function that is correlation immune of order4, say.
Let L = x1 + x2 + x3 + x4 + x5 be a linear approximation to
F , so thatPr(F = L) = 1

2 (1 + ε) with a nonzero correlation
coefficient ε. Let σ1, . . . , σn be the input sequences toF
and let ζ = (zi)

∞
i=0 be the keystream. SinceF and L are

correlated, the sequencesζ andσ = σ1+σ2+σ3+σ4+σ5 are
correlated. Letpj be the least period ofσj , 1 ≤ j ≤ 5, and let
T : (bi)

∞
i=0 → (bi+1)

∞
i=0 be the shift operator, defined on the

vector space of all binary sequences under termwise operations
on sequences. The polynomialg(x) =

∏5
j=1(x

pj − 1) is a
characteristic polynomial ofσ, so that g(T )σ = 0. Since
the polynomialg(x) has 32 terms, g(T )[ζ + σ] = g(T )ζ
is the termwise sum of32 sequences. It has been assumed

in the heuristic method that the sequenceg(T )ζ reflects the
probability distributionPr(Y = 0) = 1

2 (1 + ε32).

II. T HE SIMPLIFIED KEYSTREAM GENERATORMODEL

Instead of working with a true combination generator in
which the sequences to be combined are, e.g., shift register
sequences, we shall work in a simplified model. In this model
the input sequences to the Boolean combiner are replaced by
periodic sequences of binary-valued random variables which
are assumed to be independent and symmetrically distributed.

We shall use the following notation. IfM is a set, then|M |
denotes the cardinality ofM . If D is a subset of the set of
integersZ andn is a nonnegative integer, thenDmodn is the
corresponding subset ofZ/nZ consisting of the elements of
D reduced modulon.

Theorem 1:Let F be a balanced Boolean function ofn ≥ 1
variables having order of correlation immunityc with 0 ≤ c ≤
n − 1. Let p1, . . . , pn be n distinct nonnegative integers. For
eachk = 1, . . . , n, let

Xk = (Xki)
∞
i=0 = (Xk,0, Xk,1, . . . , Xk,pk−1)

∞ (1)

be a periodic sequence of binary-valued balanced random
variables of least periodpk such that the random variables
Xki, 1 ≤ k ≤ n, 0 ≤ i ≤ pk −1, are statistically independent.
Let Z = (Zi)

∞
i=0 be the sequence of binary-valued random

variables defined by

Zi = F (X1,i, X2,i, . . . , Xn,i) for i = 0, 1, . . . .

Let
L = xi1 + xi2 + · · · + xim

+ a (2)

be an affine Boolean function ofm variables,1 ≤ m ≤ n.
Select an integerh with 1 ≤ h ≤ m and decompose the
set M = {i1, i2, . . . , im} into h mutually disjoint subsets
M1, . . . , Mh. Compute the least common multiples

qj = lcm(pi : i ∈ Mj), 1 ≤ j ≤ h.

Choose nonnegative integerst1, . . . , th, and setrj = tjqj for
1 ≤ j ≤ h. Consider the binary polynomial

g(x) =

h
∏

j=1

(xrj − 1) =
∑

d∈D

xd.

The linear operatorg(T ) and the sequenceZ = (Zi)
∞
i=0 define

a new sequenceY = g(T )Z with termsYi =
∑

d∈D Zi+d.



If m ≤ c + 1 and |Dmod pj
| = 2h for all 1 ≤ j ≤ n with

j /∈ M , then

Pr(Yi = 0) =
1

2

(

1 + ε2
h)

for i = 0, 1, . . . , (3)

whereε is the correlation coefficient betweenF and L, that
is, ε = 2 Pr(F = L) − 1.

The special casem = c + 1 and tj = 1 for 1 ≤ j ≤ h
corresponds to the method of Naya-Plasencia suggested in [5,
page 5]. The special casem = c + 1, h = m, and tj = 1
for 1 ≤ j ≤ m, corresponds to the method of Meier et al.
described in [4, page 10].

Formula (3) need not hold if the stated assumptions in
Theorem 1 are not fulfilled.

Example 1.The Boolean FunctionF (x1, x2, x3) = x1x2 +
x1x3 + x2x3 is balanced and correlation immune of order
c = 0. The linear functionL = x1 + x2 is uncorrelated to
F , that is ε = 0. We havem = 2, so that the assumption
m ≤ c + 1 is not fulfilled. Letg(x) = (xp1 − 1)(xp2 − 1) and
D = {0, p1, p2, p1 + p2}. Assume that|Dmod p3

| = 4. One
readily checks that the random variableY0 satisfiesPr(Y0 =
0) = 9/16. This result clearly contradicts formula (3).

Example 2.Let F be the Boolean function from Exam-
ple 1. We use the linear approximationL = x1. We have
Pr(F = L) = 3/4 so thatε = 1/2. Assume that the periods
p1, p2, p3 are distinct withp3 dividing p1. Let g(x) = xp1 −1.
Then D = {0, p1} and Dmod p3

= {0}, so that the second
assumption in Theorem 1 is not fulfilled. In fact, we find for
Y0 = F (X10, X20, X30) + F (X10, X2p1

, X30) that Pr(Y0 =
0) = 3/4. This again contradicts formula (3).

For the proof of Theorem 1 we need some auxiliary results.
The proof of the next lemma is straightforward and can be
skipped.

Lemma 1:Let Rij , 1 ≤ i ≤ k, 1 ≤ j ≤ n, be a
collection of k × n statistically independent binary-valued
random variables, and letF be an arbitrary Boolean function
of n variables. Then thek random variablesS1, . . . , Sk defined
by

Si = F (Ri1, Ri2, . . . , Rin) for 1 ≤ i ≤ k

are statistically independent.
Lemma 2:Let F be a balanced Boolean function of

n variables. Forj ∈ {1, . . . , n}, let Gj(x1, . . . , xn) =
F (x1, . . . , xn) + xj . Then

Pr(Gj = e|xj = 0) = Pr(Gj = e|xj = 1) = Pr(Gj = e)

for e ∈ {0, 1} and1 ≤ j ≤ n.
Proof: It suffices to treat the casej = 1. For ease of

notation we writeG instead ofG1. Let

U ={x = (0, x2, . . . , xn) : x2, . . . , xn ∈ {0, 1}},

V ={x = (1, x2, . . . , xn) : x2, . . . , xn ∈ {0, 1}}.

Consider the following subsets ofU :

U0 ={x ∈ U : G(x) = 0} = {x ∈ U : F (x) = 0},

U1 ={x ∈ U : G(x) = 1} = {x ∈ U : F (x) = 1},

and similar subsets ofV :

V0 ={x ∈ V : G(x) = 0} = {x ∈ V : F (x) = 1},

V1 ={x ∈ V : G(x) = 1} = {x ∈ V : F (x) = 0}.

It suffices to show thatPr(G = 0|x1 = 0) = Pr(G = 0|x1 =
1). Equivalently, that|U0| = |V0|. SinceF is balanced,

|U0| + |V1| = 2n−1.

We trivially have |V0| + |V1| = |V | = 2n−1. Hence,|U0| =
2n−1 − |V1| = 2n−1 − (2n−1 − |V0|) = |V0|.

Lemma 3:Let the Boolean functionF (x1, . . . , xn) be bal-
anced and correlation immune of orderc. For 1 ≤ k ≤ c + 1
and 1 ≤ j1 < · · · < jk ≤ n, consider the Boolean function
G(x1, . . . , xn) = F (x1, . . . , xn) + xj1 + · · · + xjk

. Then

Pr(G = e|xj1 = e1, . . . , xjk
= ek) = Pr(G = e)

for all e ∈ {0, 1} and (ej1 , . . . , ejk
) ∈ {0, 1}k.

Proof: It suffices to proof the assertion for

G(x1, . . . , xn) = F (x1, . . . , xn) + x1 + · · · + xc+1.

SinceF is balanced and correlation immune of orderc, any
subfunction ofF obtained by replacing arbitraryc variables
of F with arbitrary binary constants is balanced. It follows
(compare the proof of Lemma 2) that

Pr(F = 0|x1 = e1, . . . , xc+1 = ec+1)

=

{

a/b if e1 + · · · + ec+1 = 0

(b − a)/b if e1 + · · · + ec+1 = 1

with b = 2n−c−1, for somea ∈ {0, 1, . . . , b}, and for all
(e1, . . . , ec+1) ∈ {0, 1}c+1. It follows that

Pr(G = 0|x1 = e1, . . . , xc+1 = ec+1) = a/b

for all (e1, . . . , ec+1) ∈ {0, 1}c+1.
We are now ready for the proof of Theorem 1.

Proof: All random variables of the sequence(Yi)
∞
i=0 =

g(T )(Zi)
∞
i=0 have the same probability distribution. It there-

fore suffices to examine one of those random variables, say
Y0. Let us denoteY0 by Y . Thus,Y =

∑

d∈D Zd.
The casem = n is trivial. Because in this case the

assumptionm ≤ c+1 together withc+1 ≤ n implies thatF is
affine. It follows thatY is the zero sequence. SincePr(F = L)
is either1 or 0, the correlation coefficientε is either1 or −1.
Formula (3) holds in both cases. We shall assume in the rest
of the proof thatm < n.

Without loss of generality we may assume that the function
L in (2) is linear and has the formL = x1 + · · · + xm.
Again, without loss of generality, we can assume that the
decomposition of the setM = {1, . . . , m} into h pairwise
disjoint nonempty subsetsM1, . . . , Mh is of the form

Mj = {cj, cj + 1, . . . , nj}, 1 ≤ j ≤ h,

with integersnj satisfying 1 < n1 < · · · < nh = m, and
integerscj defined byc1 = 1 andcj = nj−1+1 for 2 ≤ j ≤ h.



Because of the periodicity properties, the random variables
Zd, d ∈ D, have the form

Z0 = F (X1,0, . . . , Xn1,0, . . . , Xch,0, . . . , Xm,0, . . . , Xn,0),

Zr1
= F (X1,0, . . . , Xn1,0, . . . , Xch,r1

, . . . , Xm,r1
, . . . , Xn,r1

),

...

Zrh
= F (X1,rh

, . . . , Xn1,rh
, . . . , Xch,0, . . . , Xm,0, . . . , Xn,rh

),

...

Zs = F (X1,s1
, . . . , Xn1,s1

, . . . , Xch,sh
, . . . , Xm,sh

, . . . , Xn,s),

wheres = r1 + · · · + rh andsj = s − rj for 1 ≤ j ≤ h.
Notice that each random variableXkd, 1 ≤ k ≤ m, d ∈

D, appears exactly twice in the above system of equations,
whereas each random variableXkd, with m + 1 ≤ k ≤ n,
d ∈ D, appears exactly once. It follows thatY depends on

m|D|

2
+ (n − m)|D| = (2n − m)2h−1

independent symmetrically distributed random variables.
The random variablesZd, d ∈ D, are not statistically inde-

pendent. The idea of our proof is to alter the random variables
Zd in such a way that the modified random variables will be
statistically independent. The modified random variables are:

W0 = Z0 + X1,0 + · · · + Xn1,0 +· · ·+ Xch,0 + · · · + Xm,0,

Wr1
= Zr1

+ X1,0 +· · ·+ Xn1,0 +· · ·+ Xch,r1
+· · ·+ Xm,r1

,

...

Wrh
= Zrh

+ X1,rh
+· · ·+ Xn1,rh

+· · ·+ Xch,0 +· · ·+ Xm,0,

...

Ws = Zs + X1,s1
+· · ·+ Xn1,s1

+· · ·+ Xch,sh
+· · ·+ Xm,sh

.

We have
∑

d∈D

Wd =
∑

d∈D

Zd = Y.

Furthermore,

Pr(Wd = 0) = Pr(F = L) =
1

2

(

1 + ε
)

for all d ∈ D.

Since the random variablesWd, d ∈ D, are statistically
independent, the piling-up lemma can be applied to them. This
yields

Pr(Y = 0) =
1

2

(

1 + ε|D|
)

=
1

2

(

1 + ε2
h)

.

It remains to show that the random variablesWd are indeed
statistically independent. That is, we have to verify that any
nonempty subset{V1, . . . , Vk} of the set{Wd : d ∈ D}
satisfies

Pr(V1 = e1, . . . , Vk = ek) =

k
∏

j=1

Pr(Vj = ej)

for all (e1, . . . , ek) ∈ {0, 1}k.
We shall carry out the details of the proof only for the

largest such subset, i.e., for the set{Wd : d ∈ D}. The proofs
for the other subsets are similar and somewhat simpler. For
convenience, let us rename the elements of the set{Wd : d ∈
D} by W1, W2, . . . , Wt with t = |D| = 2h. Let us denote the
u = m2h−1 random variables that appear twice in the above
system of equations byA1, A2, . . . , Au.

Using the formula for thetotal probability, we get

Pr(W1 = e1, . . . , Wt = et) =
∑

(a1,...,au)∈{0,1}u

Pr(W1 = e1, . . . , Wt = et|A1 = a1, . . . , Au = au)
1

2u
.

By Lemma 1, the sum is equal to

1

2u

∑

(a1,...,au)∈{0,1}u

t
∏

i=1

Pr(Wi = ei |A1 = a1, . . . , Au = au).

Each Wi depends only onm random variables of the set
{A1, . . . , Au}. Therefore, Lemma 3 implies that

Pr(Wi = ei |A1 = a1, . . . , Au = au) = Pr(Wi = ei)

for 1 ≤ i ≤ t and for all (a1, . . . , au) ∈ {0, 1}u. It follows
that

Pr(W1 = e1, . . . , Wt = et)

=
1

2u

∑

(a1,...,au)∈{0,1}u

t
∏

i=1

Pr(Wi = ei)

=

t
∏

i=1

Pr(Wi = ei).

III. T HE COIN TOSSINGMODEL

In preparation for the subsequent sections we discuss a
problem in the simplest of all probabilistic models, the coin
tossing model.

Consider a collection ofS coins. One coin is biased. All
other coins are fair. Identify head with0 and tail with1. The
biased coin falls head, i.e., shows0, with probabilityp > 1/2.
The value ofp is known, but the coin that is biased is not. To
distinguish the biased coin from the fair coins we toss each
coin n times recording the number of observed zeros for each
coin.

Theorem 2:Toss each of theS coinsn0 times where

n0 =

⌈

log2 S

1 + p log2 p + (1 − p) log2(1 − p)

⌉

. (4)

Then, the probability that the biased coin shows at leastbp n0c
zeros is greater than1/2. The probability that each fair coin
shows less thanbp n0c zeros is also greater than1/2.

We omit the proof. Problems of this kind are typically
investigated in the framework of hypothesis testing. (Notice
that the denominator of the above fraction is the relative
entropy—or Kullback-Leibler distance—between a symmet-
rically distributed Bernoulli random variable and a Bernoulli
random variable with parameterp.)



IV. CRYPTANALYSIS OF ACHTERBAHN-128 USING 248.54

KEYSTREAM BITS

The KSG of Achterbahn-128 consists of13 binary nonsin-
gular nonlinear feedback shift registersAk of lengthsNk =
k + 21, 0 ≤ k ≤ 12. The shift registers areprimitive.
This means that the shift registerAk will output a sequence
σk = (s

(k)
n )∞n=0 of least periodpk = 2Nk − 1 for every

nonzero initial state. The produced sequencesσ0, . . . , σ12 are
then combined by a balanced Boolean combining function
F (x0, . . . , x12) to produce the keystreamζ = (zn)∞n=0. Thus,

zn = F (s(0)
n , . . . , s(12)

n ) for n = 0, 1, . . . .

Using a more compact notation, we also writeζ =
F (σ0, . . . , σ12). The functionF is correlation immune of or-
der8 and has nonlinearity3584. See [2] for more information
on this stream cipher.

The frame length of a stream cipher defines the maximum
amount of keystream that can be used before resynchronization
or re-keying becomes necessary. The initial frame length
recommendation for Achterbahn-128 was264 bits (see [2,
page 2]). However, Naya-Plasencia [5] found an attack with
complexity280 that requires only260.26 keystream bits. In [6],
she describes an attack of complexity2104 requiring 255.61

keystream bits. The following attack with complexity2119

requires248.54 keystream bits.
We start our attack in the simplified KSG model. Recall that

in this model the shift register sequencesσk are replaced by the
sequencesXk introduced in (1). The keystreamζ is replaced
by Z = F (X0, . . . ,X12). We use the linear approximation

L = x0 + x1 + x2 + x3 + x4 + x7 + x9 + x10 + x12.

SinceF is balanced and correlation immune of order8, the
functionF ′ = F + x4 + x9 + x10 is balanced and correlation
immune of order5. Furthermore, the linear function

L′ = x0 + x1 + x2 + x3 + x7 + x12

approximatesF ′. We havePr(F ′ = L′) = Pr(F = L) =
1
2 (1 + ε) with ε = 2−3. Defineq1 = lcm(p0, p7) ' 242, q2 =
lcm(p1, p12) ' 244, and q3 = lcm(p2, p3) ' 247. Consider
the family of polynomials

gij(x) = (xiq1 − 1)(xjq2 − 1)(xq3 − 1),

1 ≤ i ≤ 38, 1 ≤ j ≤ 10. Let D(ij) be the set

{0, iq1, jq2, q3, iq1 + jq2, iq1 + q3, jq2 + q3, iq1 + jq2 + q3}.

Then |D
(ij)
mod pk

| = 8 for 1 ≤ i ≤ 38, 1 ≤ j ≤ 10, and
k = 4, 5, 6, 8, 9, 10, 11. Consider

Y = gij(T )[Z + T a
X4 + T b

X9 + T c
X10] (5)

with 0 ≤ a ≤ p4 − 1, 0 ≤ b ≤ p9 − 1, 0 ≤ c ≤ p10 − 1.
If a = b = c = 0 (this corresponds to the correct guess),

then Y = gij(T )Z′, whereZ
′ = Z + X4 + X9 + X10 =

F ′(X0, . . . ,X12). Applying Theorem 1 toF ′, L′, andZ
′, we

conclude that the terms of the sequenceY = (Yn)∞n=0 are
identically distributed with

Pr(Yn = 0) = p =
1

2

(

1 + 2−24
)

for n = 0, 1, . . . .

For a + b + c > 0 (this corresponds to a wrong guess), the
Yn are balanced, that isPr(Yn = 0) = 1/2. (This too can be
rigorously proved in the simplified KSG model. However, we
omit the proof for lack of space.)

We now change from the simplified KSG model to the true
KSG. The equivalents of the sequences in (5) are

η = gij(T )[ζ + α + β + γ], (6)

whereα, β, and γ are output sequences of the three target
shift registersA4, A9, andA10. It is a consequence of the key-
loading algorithm of Achterbahn-128/80 that from the2Nk −1
nonzero output sequences of the shift registerAk only 2Nk−1

are actually used (see Step 5 on page 21 in [2]). It follows
that there are283 possibilities for the triple(α, β, γ). The
sequencesα, β, andγ can, of course, be represented by their
initial states which are row vectors of lengthsN4, N9, and
N10, respectively.

We impose another simplification. We treat the sequencesη
in (6) as if they were realizations of sequences ofindependent
and identically distributed Bernoulli random variables. Notice
that even in the simplified KSG model this is not true: The
terms of the sequencesY in (5) are statistically dependent.

This simplification allows us to invoke Theorem 2. The
correct triple (α, β, γ) = (σ4, σ9, σ10) corresponds to the
biased coin. Wrong triples correspond to fair coins. Using
formula (4) with S = 283 and p = 1

2 (1 + 2−24), we get
n0 = 32 387 195 359 857 782 < 254.847.

By applying all380 linear operatorsgij(T ) to a segment of
the sequenceζ + α + β + γ consisting of248.54 bits, we gain

38
∑

i=1

10
∑

j=1

(

248.54 − deg(gij)
)

> 254.847

samplesyi. The triple(α, β, γ) producing the greatest number
of zeros is the primary candidate for the correct initial states
of the three registersA4, A9, A10. Once we know the initial
states of the three registers, the initial states of the remaining
ten registers can be computed. This task is computationally
less expensive.

V. GUESSING THEINITIAL STATES OFFOUR REGISTERS

In the above attack we guessed the initial states of three
shift registers. Any attack against Achterbahn-128 that guesses
more than three shift registers has complexity greater than2128

and, therefore, does not make sense. Nonetheless, we consider
such an “attack” to get an idea for a secure frame length
recommendation. The complexity of the following “attack” is
about2136. We use the linear approximation

L = x0 + x1 + x3 + x4 + x5 + x6 + x7 + x10 + x12.



The correlation coefficient betweenF andL is againε = 1/8.
We guess the registersA3, A4, A5, and A6. There are298

possibilities for the initial states. Consider the polynomials

gk(x) = (xq1 − 1)(xq2 − 1)(xkp10 − 1)

for 1 ≤ k ≤ 10 000. Let D(k) be the corresponding set of
exponents. Then|D(k)

mod pj
| = 8 for all 1 ≤ k ≤ 10 000

with k 6= 4098 and for j = 2, 3, 4, 5, 6, 8, 9, 11, whereas
|D

(4098)
mod p11

| = 6. Using (4) withS = 298 andp = 1
2 (1+2−24),

we obtainn0 < 255.086. Let f be the minimum amount of
keystream needed to collect255.086 samples using the linear
operatorsgk(T ). We make the Ansatz

255.086 =

t+1
∑∗

k=1

[f − deg(gk)],

where the asterisk indicates that the sum is extended only over
valuesk 6= 4098. It follows that

255.086 = [f − q1 − q2] t − p10

[

(t + 2)(t + 1)

2
− 4098

]

.

Equivalently,

f(t) =
255.086 − 4097p10

t
+

1

2
p10t + q1 + q2 +

3

2
p10.

Solvingf ′(t) = 0 for t, we find as the nearest integer solution
t = 5967. Since the second derivative is positive,f has a local
minimum neart = 5967. Therefore, the best strategy is to use
the5967 linear operatorsgk(T ), 1 ≤ k ≤ 5968 with k 6= 4098
on a keystream segment of lengthf(5967) ' 244.99.

VI. T HEORY VERSUSEXPERIMENT

We need to check whether we are still in touch with
reality. We want to know whether the results derived from
the simplified KSG model and the coin tossing model are
in accordance with experimental results obtained from a true
KSG. To this end we consider a combination generator similar
to the KSG of Achterbahn but with smaller design parameters
so that a guess and determine attack can be simulated on the
computer. This KSG consists of eight primitive nonlinear shift
registers of lengthsNj = j + 14, 1 ≤ j ≤ 8. The periods
are pj = 2Nj − 1. The combining functionF (x1, . . . , x8) is
balanced, correlation immune of order3, and has nonlinearity
64.

F (x1, . . . , x8) = x1 + x3 + x5 + x8 + x1x7 + x1x8 + x2x4

+ x2x6 + x2x7 + x2x8 + x3x6 + x4x8 + x5x6 + x6x7

+ x1x4x7 + x1x4x8 + x1x6x7 + x1x6x8 + x2x4x6

+ x2x4x7 + x2x4x8 + x2x6x7 + x2x6x8 + x4x6x8

+ x1x4x6x7 + x1x4x6x8 + x2x4x6x7 + x2x4x6x8

The best linear approximation toF is L = x1 +x2 +x7 +x8.
We havePr(F = L) = 3/4 so thatε = 1/2. We guess the
initial state of the second shift register of lengthN2 = 16
considering all216 − 1 nonzero initial states. We make use of
the following1024 polynomials:

gk(x) = (xkp1 − 1)(xp7 − 1)(xp8 − 1),

k ∈ K = {1, 2, . . . , 1030} \ {8, 20, 62, 64, 126, 188}. The
assumption|D(k)

mod pj
| = 8 is fulfilled for 2 ≤ j ≤ 6 and

for all k ∈ K. Let ζ be the keystream andβ any nonzero
output sequence of the target shift register. For eachk ∈ K
we compute the first212 terms of the sequencegk(T )[ζ + β].
Let ηk denote the sequence consisting of those212 terms.
We piece together the sequencesηk to create a sequence
η = (η1|η2| · · · |η1030) of r = 222 terms. Associate withη =
(yi)

r−1
i=0 the sequenceγ = (cn)r−1

n=0 whose terms are defined
by cn = 1

n
|{i : 0 ≤ i ≤ n − 1, yi = 0}|. In this manner each

nonzero initial state of the target shift register gives rise to a
sequenceγ. We plotted the graphs of six of those sequences—
among them the sequence corresponding to the correct initial
state—over the interval216 ≤ n ≤ 222 − 1. See Figure 1.
The graphs of all216 − 1 sequences lie within the colored
envelope. The graph of the sequence that corresponds to the
correct initial state leaves the envelope about atn = 220.65.
Using Theorem 1, we findp = 1

2 (1+2−8) = 257/512. Using
Theorem 2 withS = 216 − 1 and p = 257/512, we get
n0 = 220.47. Thus, the theoretically predicted result comes
close to the true result.
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Fig. 1. Simulation of a guess and determine attack

REFERENCES
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[2] B. M. Gammel, R. Göttfert, and O. Kniffler: Achterbahn-128/80,
eSTREAM, ECRYPT Stream Cipher Project, 30 June 2006.
http : //www.ecrypt.eu.org/stream/p2ciphers/achterbahn/
achterbahn p2.pdf
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