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Abstract

The problem of error control in random linear network codimgddressed from a matrix perspective
that is closely related to the subspace perspective ofeKatid Kschischang. A large class of constant-
dimension subspace codes is investigated. It is shown tu#scin this class can be easily constructed
from rank-metric codes, while preserving their distanagpprties. Moreover, it is shown that minimum
distance decoding of such subspace codes can be reforthalata generalized decoding problem for
rank-metric codes where partial information about the reiscavailable. This partial information may
be in the form of erasures (knowledge of an error locationrmitits value) andieviations(knowledge
of an error value but not its location). Taking erasures aedations into account (when they occur)
strictly increases the error correction capability of a eoifl ;. erasures and deviations occur, then
errors of rankt can always be corrected provided tRat< d — 1 + .+ §, whered is the minimum rank
distance of the code. For Gabidulin codes, an importantlyaofi maximum rank distance codes, an
efficient decoding algorithm is proposed that can propexjyl@t erasures and deviations. In a network
coding application where packets of lengtid/ overF, are transmitted, the complexity of the decoding

algorithm is given byO(dM) operations in an extension field,».
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. INTRODUCTION

While random linear network coding [1]-[3] is an effectivechnique for information dissemination
in communication networks, it is highly susceptible to esroThe insertion of even a single corrupt
packet has the potential, when linearly combined with iegite packets, to affect all packets gathered
by an information receiver. The problem of error control @mdom network coding is therefore of great
interest.

In this paper, we focus on end-to-end error control codintggne only the source and destination nodes
apply error control techniques. Internal network nodesam®umed to be unaware of the presence of an
outer code; they simply create outgoing packets as randosadicombinations of incoming packets in
the usual manner of random network coding. In addition, veeiae that the source and destination nodes
have no knowledge—or at least make no effort to exploit keolge—of the topology of the network
or of the particular network code used in the network. Thigisontrast to the pioneering approaches
[4]-[6], which have considered the design of a network cosl@art of the error control problem.

In the basic transmission model for end-to-end coding, thece node produces packets, which are
length-\ vectors in a finite fieldF,, and the receiver gatherS packets. Additive packet errors may
occur in any of the links. The channel equation is givenYoy= AX + BZ, where X, Y and Z are
matrices whose rows represent the transmitted, receivedpassibly) corrupting packets, respectively,
and A and B are the (unknown) corresponding transfer matrices indigelihear network coding.

There have been three previous quite different approachediable communication under this model.
In [7], Zhang characterizes the error correction capabilita network code under a brute-force decoding
algorithm. He shows that network codes with good errorexding properties exist if the field size is
sufficiently large. His approach can be applied to randomvaork coding if an extended header is
included in each packet in order to allow for the matHx(as well asA) to be estimated at a sink node.
A drawback of this approach is that the extended header hasgual to the number of network edges,
which may incur excessive overhead. In addition, no effictltoding algorithm is provided for errors
occurring according to an adversarial model.

Jaggi et al. [8] propose a different approach specificaligeted to combat Byzantine adversaries.
They provide rate-optimal end-to-end codes that do not eelyhe specific network code used and that
can be decoded in polynomial time. However, their approachased on probabilistic arguments that
require both the field size and the packet length to be suftigi¢arge.

In contrast, Kotter and Kschischang [9] take a more contbimel approach to the problem, which



provides correction guarantees against adversarialsearmt can be used with any given field and packet
size. Their key observation is that, under the unknown hnensformation applied by random network
coding, the only property of the matriX that is preserved is its row space. Thus, information should
be encoded in the choice of a subspace rather than a specifig.nfde receiver observes a subspace,
given by the row space of, which may be different from the transmitted space when gaekrors
occur. A metric is proposed to account for the discrepantwéden transmitted and received spaces, and
a new coding theory based on this metric is developed. Iricodat, nearly-optimal Reed-Solomon-like
codes are proposed that can be decode@(in) ) operations in an extension fiel,.

Although the approach in [9] seems to be the appropriateradi&in of the error control problem in
random network coding, one inherent difficulty is the abgenfca natural group structure on the set of all
subspaces of the ambient spmﬁl\é. As a consequence, many of the powerful concepts of cldssidang
theory such as group codes and linear codes do not natusdéincbto codes consisting of subspaces.

In this paper, we explore the close relationship betweersgade codes and codes for yet another
distance measure: the rank metric. Codewords of a rank ecnetde aren x m matrices and the rank
distance between two matrices is the rank of their diffeeefihe rank metric was introduced in coding
theory by Delsarte [10]. Codes for the rank metric were lgrgkeveloped by Gabidulin [11] (see also
[10], [12]). An important feature of the coding theory foretlmank metric is that it supports many of
the powerful concepts and techniques of classical codiegrih such as linear and cyclic codes and
corresponding decoding algorithms [11]-[14].

One main contribution of this paper is to show that codesérémk metric can be naturally “lifted” to
subspace codes in such a way that the rank distance betwearotlewords is reflected in the subspace
distance between their lifted images. In particular, neadtimal subspace codes can be obtained directly
from optimal rank-metric codes. Conversely, when liftedk-ametric codes are used, the decoding problem
for random network coding can be reformulated purely in rarétric terms, allowing many of the tools
from the theory of rank-metric codes to be applied to randetwark coding.

In this reformulation, we obtain a generalized decodingofgm for rank-metric codes that involves
not only ordinary rank errors, but also two additional pheeoa that we calérasuresand deviations
Erasures and deviations are dual to each other and cormkgpopartial information about the error
matrix, akin to the role played by symbol erasures in the Haxgmmetric. Here, an erasure corresponds
to the knowledge of an error location but not its value, whildeviation correspond to the knowledge of
an error value but not its location. These concepts gemeralmilar concepts found in the rank-metric

literature under the terminology of “row and column erastifé3], [15]-[18]. Although with a different



terminology, the concept of a deviation (and of a code thata@rect deviations) has appeared before
in [19].

Our second main contribution is an efficient decoding atbarifor rank-metric codes that takes into
account erasures and deviations. Our algorithm is appcabGabidulin codes [11], a class of codes,
analogous to conventional Reed-Solomon codes, that attakimum distance in the rank metric. We
show that our algorithm fully exploits the correction caitigbof Gabidulin codes; namely, it can correct
any pattern ot errors,u erasures and deviations provide@e + 1+ < d—1, whered is the minimum
rank distance of the code. Moreover, the complexity of ogoathm isO(dA/) operations irF -, which
is smaller than that of the algorithm in [9], especially foagtical high-rate codes.

In the course of setting up the problem, we also prove a rékattcan be seen as complementary
to [9]; namely, we relate the performance guarantees of apmade code with more concrete network
parameters such as the maximum number of corrupting patti@tsan be injected in the network. This
result provides a tighter connection between the subspam®ach of [9] and previous approaches that
deal with link errors.

The remainder of this paper is organized as follows. In 8adil, we provide a brief review of rank-
metric codes and subspace codes. In Se€fidn I, we deserimere detail the problem of error control
in random network coding, along with Kdtter and Kschisaiampproach to this problem. In Section 1V,
we present our code construction and show that the resudtirag control problem can be replaced by a
generalized decoding problem for rank-metric codes. At ffaint, we turn our attention entirely to rank-
metric codes. The generalized decoding problem that weduotre is developed in more detail in Section
[Vl wherein the concepts of erasures and deviations areidedcand compared to related concepts in
the rank-metric literature. In Secti@n]VI, we present ancéffit algorithm for decoding Gabidulin codes

in the presence of errors, erasures and deviations. Firggtion VI contains our conclusions.

[I. PRELIMINARIES
A. Notation

Let ¢ > 2 be a power of a prime. In this paper, all vectors and matriee® ltomponents in the finite
field F,, unless otherwise mentioned. We Ugg™ to denote the set of all x m matrices oveif, and
we setIFg = IE‘ZXl. In particular,v € IF;‘ is a column vector and & Iﬁ‘éxm is a row vector.

If v is a vector, then the symbel denotes theth entry ofv. If A is a matrix, then the symbaol;

denotes either théth row or theith column of A; the distinction will always be clear from the way



in which A is defined. In either case, the symb); always refers to the entry in thigh row and;th
column of A.

For clarity, thek x k identity matrix is denoted by ... If we setl = I,,«,, then the notatiord; will
denote theith column ofI. More generally, ift/ C {1,...,n}, thenly = [I;, ¢ € U] will denote the
sub-matrix ofI consisting of the columns indexed by

The linear span of a set of vectars, . .. , vy is denoted by(vy, ..., vx). The row space, the rank and
the number of nonzero rows of a matri are denoted by X), rank X andwt(X), respectively. The

reduced row echelon (RRE) form of a matik is denoted byRRE(X).

B. Properties of Matrix Rank and Subspace Dimension

Let X € IF{;X’”. By definition, rank X = dim (X); however, there are many useful equivalent
characterizations. For examplenk X is the smallest for which there exist matricegl < IF;‘X’” and

B e ngm such thatX = AB, i.e.,

rank X = min T Q)
7, AEF7*" BEF7*m:
X=AB
It is well-known that, for anyX,Y" € Fy*"™, we have
rank (X +Y) <rank X +rank Y 2)
and that, forX € F;*™ and A ¢ Ff]VX”, we have
rank (AX) > rank A + rank X —n. (3)
Recall that ifU andV are subspaces of some fixed vector space, then the sum
U+V={u+v:uelUveV}
is the smallest subspace that contains détand V. Recall also that
dim(U 4+ V) =dimU +dimV —dim(UNV). 4)

We will make extensive use of the fact that

X
< > = (X) + () (5)
Y

and therefore

X
rank =dim((X) + (Y))
Y

=rank X +rank Y —dim ((X) N (Y)). (6)



C. Rank-Metric Codes

A matrix codeis defined as any nonempty subseti®f<™. A matrix code is also commonly known
as anarray codewhen it forms a linear space ovey, [12].

A natural and useful distance measure between elemerit$’dt is given in the following definition.

Definition 1: For X,Y € F;*™, the rank distancebetweenX andY is defined asdy(X,Y’) =
rank (Y — X).

As observed in [11], rank distance is indeecthatric. In particular, the triangle inequality for the rank
metric follows directly from[(R). In the context of the rankeirnic, a matrix code is called @nk-metric

code The minimum (rank) distance of a rank-metric catle: IF;*™ is defined as

dr(C) & min dg(z, ).
x,x' €C

Ttz
Associated with every rank-metric code C Fg‘xm is the transposed code™ C IE‘;“X", whose

codewords are obtained by transposing the codewordsioé.,C* = {x” : x € C}. We havelCT| = |C]|
anddx(CT) = dx(C). Observe the symmetry between rows and columns in the ratricitee distinction
between a code and its transpose is in fact transparent tamelric.

A minimum distance decoder for a rank-metric catl& ngm takes a wordr ¢ Iﬁ‘gxm and returns

a codewordz € C that is closest ta in rank distance, that is,

& = argmin rank(r — x). @)
xeC

Note that ifds(x,r) < dr(C)/2, then a minimum distance decoder is guaranteed to retusne.
Throughout this paper, problel (7) will be referred to asdheventionakank decoding problem.
There is a rich coding theory for rank-metric codes that ial@gous to the classical coding theory in

the Hamming metric. In particular, we mention the existeat@a Singleton bound [10], [11] (see also

[20] [21]), which states that every rank metric cade- Fy*™ with minimum distancel = d(C) must

satisfy
log, |C| < min{n(m —d+ 1), m(n —d + 1)}
= max{n, m}(min{n,m} —d+1). (8)

Codes that achieve this bound are calfedximum-rank-distancBMRD) codes. An extensive class of
MRD codes withn < m was presented by Gabidulin in [11]. By transposition, MRDRIe® withn > m
can also be obtained. Thus, MRD codes exist foma#indm and alld < min{n,m}, irrespectively of

the field sizeg.



D. Subspace Codes

Let P(Fé”) denote the set of all subspacesIRé‘F. We review some concepts of the coding theory for

subspaces developed in [9].
Definition 2: Let V, V' € P(F{IVI). The subspace distandeetweenV andV” is defined as
ds(V, V') & dim(V + V') —dim(V N V")
=2dim(V 4+ V') —dim V — dim V’ 9)

= dim V +dim V' — 2dim (V N V). (10)

It is shown in [9] that the subspace distance is indeed a metriP(IF;’IVf).
A subspace codis defined as a nonempty subsetlb(fF{IVf). The minimum (subspace) distance of a

subspace cod@ C P(IE‘{ZW) is defined as

ds(2) = V%}QQ ds(V, V/)'
VAV

The minimum distance decoding problem for a subspace cote find a subspac& < (2 that is

closest to a given subspatee P(F)), i.e.,

V = argmin dg(V,U). (11)
VeQ

A minimum distance decoder is guaranteed to refidre: V if ds(V,U) < ds(€)/2.

Let P(IE‘{IV[,n) denote the set of alk-dimensional subspaces EfIVf A subspace cod® is called a
constant-dimension code §¢ C P(Ff]”,n). It follows from (9) or [10) that the minimum distance of a
constant-dimension code is always an even number.

Let A,[M,2d,n| be denote the maximum number of codewords in a constantagio® code with
minimum subspace distan@d. Many bounds o4,[M, 2d, n] were developed in [9], in particular the

Singleton-like bound

(12)

A M, 2d,n] <
max{n, M —n}

M—d+1 ]
q

where

[M} s (@ =1 (M 1)
nl, (" —1)--(¢—1)
denotes theGaussian coefficientt is well known that the Gaussian coefficient gives the nambf

distinct n-dimensional subspaces of a-dimensional vector space ovey, i.e., [Zf]q = \P(ny,n)\.



A useful bound on[]‘f]q is given by [9, Lemma 5]
{M } < g M=), (13)
n q
Combining [I2) and{13) gives
Aq [M, 2d, TL] < 4qmax{n,1\/l—n}(min{n,]\/l—n}—d+1). (14)

There exist also bounds oty [M, 2d, n| that are tighter thai_(12), namely the Wang-Xing-SafaviANa
bound [22] and a Johnson-type bound [23].
For future reference, we define tkab-optimalityof a constant-dimension code C P(Fé\/[,n) with

ds(2) = 2d to be
log, A¢[M, 2d,n] —log, ||

A
() = log, Ag[M, 2d, 1]

(15)

I1l. ERRORCONTROL IN RANDOM NETWORK CODING
A. Channel Model

We start by reviewing the basic model for single-source gpimn-based random linear network
coding [2], [3]. Consider a point-to-point communicatioatwork with a single source node and a single
destination node. Each link in the network is assumed tespari, free of errors, a packet 8 symbols
in a finite fieldF,. Links are directed, inciderftom the node transmitting the packet and incidémt
the node receiving the packet. A packet transmitted on aificldent to a given node is said to be an
incoming packefor that node, and similarly a packet transmitted on a linkideant from a given node
is said to be amutgoing packefor that node.

During each transmission generation, the source node fertha information to be transmitted into
packetsXi,..., X, € IF}IXM, which are regarded as incoming packets for the source Mytienever a
node (including the source) has a transmission opportuihiproduces an outgoing packet as a random
IF,-linear combination of all the incoming packets it has uthtén received. The destination node collects
N packetsYy,..., Yy € IF}IXM and tries to recover the original packets, ..., X,,.

Let X be ann x M matrix whose rows are the transmitted pack&ts..., X,, and, similarly, let
Y be anN x M matrix whose rows are the received pack¥ts. .., Yy. Since all packet operations
are linear oveif,, then, regardless of the network topology, the transmii@cketsX and the received
packetsY can be related as

Y = AX, (16)

where A is an N x n matrix corresponding to the overall linear transformatagplied by the network.



Before proceeding, we remark that this model encompassasetyof situations:

« The network may have cycles or delays. Since the overalesyss linear, expressiofi (1L6) will be
true regardless of the network topology.

« The network could be wireless instead of wired. Broadcastsimissions in wireless networks may
be modeled by constraining each intermediate node to seactlgthe same packet on each of its
outgoing links.

« The source node may transmit more than gaeeration(a set ofn packets). In this case, we assume
that each packet carries a label identifying the generdatiorhich it corresponds and that packets
from different generations are processed separately ghiaut the network [2].

« The network topology may be time-varying as nodes join aasideand connections are established
and lost. In this case, we assume that each network link isngtantiation of an actual successful
packet transmission.

« The network may be used for multicast, i.e., there may be rtime one destination node. Again,

expression[(16) applies; however, the matdixnay be different for each destination.

Let us now extend this model to incorporate packet errorbowing [4]—-[6], we consider that packet
errors may occur in any of the links of the network. Supposelitiks in the network are indexed from
1 to ¢, and letZ; denote the error packet applied at linke {1,...,¢}. The application of an error
packet is modeled as follows. We assume that, for eachilirike node transmitting on that link first
creates a prescribed packeéf ; € IE‘;XM following the procedure described above. Then, an errokgtac
Z; € IF;XM is added taF, ; in order to produce the outgoing packet on this link, ily; = P+ Z;.
Note that any arbitrary packét,;; can be formed simply by choosing = Fout; — Pini-

Let Z be an{ x M matrix whose rows are the error packets . .., Z,. By linearity of the network,
we can write

Y = AX + BZ, (17)

whereB is an N x ¢ matrix corresponding to the overall linear transformatpplied toZ;, ..., Z, on
route to the destination. Note that = 0 means that no corrupt packet was injected at finkhus, the
number of nonzero rows of, wt(Z), gives the total number of (potentially) corrupt packeisdted in
the network. Note that it is possible that a nonzero errokeglappens to be in the row spaceXf in
which case it is not really a corrupt packet.

Observe that this model can represent not only the occwsrehcandom link errors, but also the

action of malicious nodes. A malicious node can potenti&ignsmit erroneous packets on all of its
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outgoing links. A malicious node may also want to disguiselftand transmit correct packets on some
of these links, or may simply refuse to transmit some padlet (ransmitting an all-zero packet), which
is represented in the model by settidg= — 1 ;. In any casewt (Z) gives the total number of “packet
interventions” performed by all malicious nodes and thugegia sense of the total adversarial “power”
employed towards jamming the network.

Equation [(I¥) is our basic model of a channel induced by rantloear network coding, and we
will refer to it as therandom linear network coding chann@RLNCC). The channel input and output
alphabets are given bEg‘XM and IE‘{IVXM, respectively. To give a full probabilistic specificatiohtbe
channel, we would need to specify the joint probability rilsttion of A, B and Z given X. We will

not pursue this path in this paper, taking, instead, a monebatatorial approach.

B. Transmission via Subspace Selection

Let Q C P(Ff]”) be a subspace code with maximum dimensiorn the approach in [9], the source
node selects a subspakec 2 and transmits this subspace over the RLNCC as some nﬁtEbng‘XM
such thatl” = (X). The destination node receivésc IE‘{ZVXM and compute$/ = (Y'), from which the
transmitted subspace can be inferred using a minimum distedacoder (11).

In this paper, it will be convenient to view the above apploilom a matrix perspective. In order to
do that, we simply replac@ by an (arbitrarily chosen) matrix code that gener&led/ore precisely, let
[ £ {X e F*M: X = RRE(X), (X) € Q} be a matrix code consisting of all thex M matrices in
RRE form whose row space is . Now, the above setup can be reinterpreted as follows. Theceo
node selects a matriX € [Q] to transmit over the RLNCC. Upon reception Bf the destination node

tries to infer the transmitted matrix using the minimum aste decoding rule

X = argmin ds((X), (Y)). (18)
XeQ]

Note that the decoding is guaranteed to be successid[(X) , (Y)) < ds(2)/2.

C. Performance Guarantees

In this subsection, we wish to relate the performance gueesrof a subspace code with more concrete
network parameters. Still, we would like these parameterbet sufficiently general so that we do not
need to take the whole network topology into account.

We make the following assumptions:

o The column-rank deficiency of the transfer matrixis never greater thap, i.e.,rank A > n — p.
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« The adversarial nodes together can inject at masirrupting packets, i.ewt(2) < t.

The following result characterizes the performance guaemof a subspace code under our assump-

tions.

Theorem 1:Supposeank A > n— p andwt(Z) < t. Then, decoding according tb (18) is guaranteed
to be successful provide2t + p < ds(£2)/2.

In order to prove Theorem 1, we need a few results relating eamal subspace distance.

Proposition 2: Let X, Y € F**. Then

X
rank <rank(Y — X) + min{rank X, rank Y'}.

Y
Proof: We have
X X
rank = rank <rank(Y — X) +rank X
Y Y —
X Y - X
rank = rank <rank(Y — X) +rank Y.
Y Y
|
Corollary 3: Let X, Z € FY*M andY = X + Z. Then
ds((X),(Y)) < 2rank Z — |rank X —rank Y.
Proof: From Propositio 12, we have
X
ds((X),(Y)) = 2rank —rank X —rank Y
Y
< 2rank Z + 2min{rank X, rank Y'}
—rank X —rank Y
= 2rank Z — |rank X —rank Y.
|

We can now give a proof of Theorem 1.

Proof of Theorem]l: From Corollary[8, we have that

ds((AX),(Y)) <2rank BZ < 2rank Z <2wt(Z) < 2t.
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Using [3), we find that
ds((X),(AX)) =rank X —rank AX <n —rank A < p.
Sinceds(+, -) satisfies the triangle inequality, we have

ds((X),(Y)) < ds((X) , (AX)) + ds({AX) , (V)

<p+2

- dS(QQ)

and therefore the decoding is guaranteed to be successful. |

Theorenf1 is analogous to Theorem 2 in [9], which states thainmim subspace distance decoding
is guaranteed to be successful2ifu + ¢) < ds(€2), whereé and p are, respectively, the number of
“insertions” and “deletions” of dimensions that occur iretbhannel [9]. Intuitively, since one corrupted
packet injected at a network min-cut can effectively repladimension of the transmitted subspace, we
see that corrupted packets can causdeletions and insertions of dimensions. Combined with possible
p further deletions caused by a row-rank deficiencydpfwe have that =t andu =t + p. Thus,

5+u<@ = 2t+p<@.

In other words, under the condition that corrupt packets t@ynjected in any of the links in network
(which must be assumed if we do not wish to take the networkltmy into account), the performance
guarantees of a minimum distance decoder are essentiaéy gy Theoreni]1.

It is worth to mention that, according to recent results [2dinimum subspace distance decoding may
not be the optimal decoding rule when the subspacés rave different dimensions. For the remainder
of this paper, however, we focus on the case of a constargrdiion code and therefore we use the
minimum distance decoding rule_{18). Our goal will be to d¢amst constant-dimension subspace codes

with good performance and efficient encoding/decoding ¢uaces.

IV. CODES FOR THERANDOM LINEAR NETWORK CODING CHANNEL BASED ONRANK-METRIC

CODES

In this section, we show how a constant-dimension subspade can be constructed from any rank-
metric code. In particular, this construction will allow ts obtain nearly-optimal subspace codes that

possess efficient encoding and decoding algorithms.
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A. Lifting Construction

From now on, assume that = n + m, wherem > 0. Let I = I,,«,,.

Definition 3: Let Z: F;*™ — P(F,*™), given by x — Z(x) = <[I ;pb The subspac&(x) is
called thelifting of the matrixz. Similarly, if C C IF;W” is a rank-metric code, then the subspace code

Z(C), obtained by lifting each codeword 6f is called thelifting of C.

Definition[3 provides an injective mapping between rankfinatodes and subspace codes. Note that
a subspace code constructed by lifting is always a consdiargnsion code (with codeword dimension

Although the lifting construction is a particular way of aructing subspace codes, it can also be
seen as a generalization of the standard approach to ranetwork coding [2], [3]. In the latter, every
transmitted matrix has the foroY = [I x|, where the payload matrix € [F;*"™ corresponds to the
raw data to be communicated. In our approach, each traeshmitatrix is also of the fornk = [I ],
but the payload matrixz € C is restricted to be a codeword of a rank-metric code rathen tmcoded
data.

Our reasons for choosin@to be a rank-metric code will be made clear from the followpngposition.

Proposition 4: Let C C ngm andz,z’ € C. Then

Proof: Sincedim Z(x) = dim Z(z') = n, we have

ds(Z(x),Z(z")) = 2dim(Z(z) + Z(z")) — 2n

= 2rank —2n

= 2rank —2n
0 ' —=x

= 2rank (2’ — ).
The second statement is immediate. [ ]

Propositio % shows that a subspace code constructed imyg liftherits the distance properties of its
underlying rank-metric code. The question of whether siftédl rank-metric codes are “good” compared

to the whole class of constant-dimension codes is addrésgbe following proposition.
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Proposition 5: Let C C F;*™ be an MRD code withi;(C) = d. Thends(Z(C)) = 2d and
Agln+m,2d,n] < 4|Z(C)| = 4[C|.

Moreover, for any code parameters, the sub-optimalitZ @) in P(F; "™, n) satisfies

4
(n+m)logyq

a(Z(C)) <

Proof: Using [14) and the fact that achieves the Singleton bound for rank-metric codés (8), we

have
Aq [n +m, 2d, n] < 4qmax{n,m}(min{n,m}—d+1)
— 4c|.

Applying this result in[(1b), we obtain
log,, 4
max{n, m}(min{n,m} —d+ 1)

log,, 4

a(Z(0)) <

~ max{n,m}
log,, 4
~ (n+m)/2
B 4
(n+m)logyq
|

Proposition[b shows that, for all practical purposes, diftdRD codes are essentially optimal as
constant-dimension codes. Indeed, the rate loss in usinfjfed MRD code rather than an optimal
constant-dimension code is smaller thgfP, where P = (n + m)log, ¢ is the packet size in bits. In
particular, for packet sizes of 50 bytes or more, the rate issmaller than 1%.

In this context, it is worth mentioning that the nearly-opil Reed-Solomon-like codes proposed in
[9] correspond exactly to the lifting of the class of MRD ced@oposed by Gabidulin [11]. The latter

will be discussed in more detail in Sectibnl VI.

B. Decoding

We now specialize the decoding probldml(18) to the specifie o lifted rank-metric codes. We will
see that it is possible to reformulate such a problem in a Wway resembles the conventional decoding

problem for rank-metric codes, but with additional sidésimation presented to the decoder.
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Let the transmitted matrix be given b¥ = [I x|, wherez € C andC C Fy*™ is a rank-metric
code. Write the received matrix as
YV =[A4 y

where A ¢ IE‘(]ZVX" andy € IE‘{ZVXW. In accordance with the formulation of Section 1l1-B, we @& that
rank Y = N, since any linearly dependent received packets do nottdfieadecoding problem and may

be discarded by the destination node. Now, define
,uén—rankfl and 62 N —rank A.

Here ;. measures the rank deficiency dfwith respect to columns, whil& measures the rank deficiency
of A with respect to rows.

Before examining the general problem, we study the simpézigpcase that arises when= 6 = 0.

Proposition 6: If ;= =0, then

wherer = A~1y.

Proof: Sincey = § = 0, A is invertible. Thus,Y = [I A~-'y] is row equivalent toY, i.e.,

(Y) = (V). Applying Propositiori 4, we get the desired result. [

The above proposition shows that, whenexteis invertible, a solution td{18) can be found by solving

the conventional rank decoding problem. This case is ithtistl by the following example.

Example 1:Letn =4 andq = 5. Let zy,..., x4 denote the rows of a codewostle C. Suppose that

2 4 2 4]
0 0 3 3

A= ,
1 0 4 3
0 4 1 4

T -
B:[4 0 1 0] andZ:[l 2 3 4 z|.Then

1 2 4 0 2x1+4x0+ 2x3+ 4oy + 42
v — 0 0 3 3 3x3 + 324

2 2 2 2 r1 +4xs +3x4 + 2

0 4 1 4 4o + x3 + 4y

ConvertingY to RRE form, we obtain
v=[1 r| (19)
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where
3x9 +2x3 + x4 + 2
3x1 + 2x9 4+ 4as + 214 + 22
4z, + 3x2 + 323+ 24+ 2

r1 + 229 + 323 + 42

Note that, if no errors had occurred, we would expect to find x.

Now, observe that we can write

I 1
X9 2
r= + 4x1+3x2+2x3+w4+z]-
T3 1
T4 4

Thus, rank(r — x) = 1. We can think of this as an error woed= r — x of rank 1 applied tar. This

error can be corrected if;(C) > 3. [ |

Let us now proceed to the general case, whéris not necessarily invertible. We first examine a
relatively straightforward approach that, however, letmdan unattractive decoding problem.

Similarly to the proof of Propositiohl 6, it is possible to shthat
ds((X) ,(Y)) = 2rank(y — Am) + p—
which yields the following decoding problem:
& = argmin rank (y — Ax). (20)

xeC

If we define a new cod€’ = AC = {Ax, = € C}, then a solution to[{20) can be found by first solving

2’ = argmin rank (y — z')
x'eC’

using a conventional rank decoder f6f and then choosing ang € {x | Az = &'} as a solution.
An obvious drawback of this approach is that it requires a wedeC’ to be used at each decoding
instance. This is likely to increase the decoding compjesiince the existence of an efficient algorithm
for C does not imply the existence of an efficient algorithm @r= AC for all A. Moreover, even if
efficient algorithms are known for all’, running a different algorithm for each received matrix niey
impractical or undesirable from an implementation poitiew.

In the following, we seek an expression f((X) , (Y)) where the structure af can be exploited. In

order to motivate our approach, we consider the following #xamples, which generalize Example 1.
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Example 2:Let us return to Examplel 1, but now suppose

S
Il
— N = =

0
3
4
0
1

N e O O N
- O W W w

T
B:40100] andZ =11 2 3 4 z|.Then

4 x4 2x3+ 314 + 42
3 T1 + 310 + 324

0 21 + 4x3

~
I
— [\ [\] — (aw]

3
3
1
0
1

4
0
3 2 x1+4+4r04+3r4+ 2 Z{A y}'
4
2

4 114 19+ 223 + 4y

AIthoughA is not invertible, we can nevertheless convérto RRE form to obtain

_ I r
Y = . (22)
0 F
where ~ ~
211 + 229 + 3x3 + 4wy + 42
41 +4x0 + 203+ 24 + 2

221 + 4xo 4 23 + 3x4 + 32

3r1 4+ o +4x3 + 3r4 + 22
and

~

FE =2x1 4+ 429 + 3 + 324 + 32.

Observe that

T + 229 + 3x3 + 4oy + 42 3
dr1 + 320 + 223+ 14 + 2 21 .
e =T —a = — E
211 + 4dxo + x3 + 314 + 32 1
3x1 + x90 + 4x3 + 224 + 22 4

Thus, we see not only thaink e = 1, but we have also recovered part of its decomposition as & ou

product, namely, the vectdt. [ |
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Example 3:Consider again the parameters of Exaniple 1, but now let

321 1
A=10 4 3 2
2 1 0 4

and suppose that there are no errors. Then

3 2 1 1 3x1+4+2x2+23+ 24
Y=10 4 3 2 4dxy+3x3+ 214 =[A y]
2 1 0 4 201 + xo + 4xy

Once again we cannot invest; however, after convertin to RRE form and inserting an all-zero row

in the third position, we obtain

1 0 4 0 z1+4x3
v 01 2 0 =24 223

0 0 0O 0

0 001 Ty

1 0 4 0 z1+4xs

0 1 2 0 ®2+2x3

0 0 1—-1 0 r3 — I3

0 0 0 1 x4

= |1+ LI} | (22)
where -
4
R 2
L=
—1
0

Once again we see that the error word has rank 1, and that veerbeevered part of its decomposition
as an outer product. Namely, we have

e=r—x = Lzxj

where this timeL is known. m
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Having seen from these two examples how side informationtigbknowledge of the error matrix)
arises at the output of the RLNCC, we address the generalicdale following proposition.

Proposition 7: LetY’,  andd be defined as above. There exist a tupleL, E) € Iﬁ‘gxmxIFZ}X“xIE‘gxm

and a set/ C {1,...,n} satisfying

U = p (23)
Ihr =0 (24)
L= —1I,x, (25)
rank £ = § (26)
such that
I+ LIE

< w " > = (). (27)

0 )
Proof: See the Appendix. |

Propositio ¥ shows that every matrX is row equivalent to a matrix

_ I+ LIE r
Y = “ }

0 E
which is essentially the matriX in reduced row echelon form. Equatiobs](18),](21) (2R)eammples

of matrices in this form. We can think of the matricesL and E and the sei{ as providing a compact
description of the received subspa@é). The setl/ is in fact redundant and can be omitted from the

description, as we show in the next proposition.

Proposition 8: Let (r, L, E) € F2*™ x Fg*" x F&*™ be a tuple and/ C {1,...,n} be a set that

satisfy [23)-H(2B). For ang C {1,...,n}, T € F{** andR € F2*° such that(r, LT, RE) andS satisfy
(23)-[26), we have
I+ﬁTI§ r I+ﬁ[5 T
0 RE o E|/

Proof: See the Appendix. |

Propositio 8 shows that, given a tugle, ﬁ,E) obtained from Proposition] 7, the détcan be found
asany set satisfying[[23)}E(25). Moreover, the matiixcan be multiplied on the right by any nonsingular
matrix (provided that the resulting matrix satisfiés](2@B)(for somel(), and the matrixZ can be
multiplied on the left by any nonsingular matrix; none ofsheperations change the subspace described

by (r, L, E). The notion of a concise description of a subsp@€gis captured in the following definition.
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Definition 4: A tuple (r,L,E) € F™ x Fg™* x FO*™ that satisfies[(23)E27) for sonté C

{1,...,n} is said to be aeductionof the matrixY".

Remark 1:It would be enough to specify, besides the matrjxonly the column space df and the
row space ofF in the definition of a reduction. For simplicity we will, hower, not use this notation

here.

Note that ifY" is a lifting of », then(r, ], []) is a reduction ofy” (where[] denotes an empty matrix).
Thus, reduction can be interpreted as the inverse of lifting

We can now prove the main theorem of this section.

Theorem 9:Let (r, L, F) be a reduction of". Then

L r—=x
ds((X) , (V) = 2rank (o).
0 E

Proof: See the Appendix. |

A consequence of Theore 9 is that, under the lifting consitro, the decoding probleni (118) for
random network coding can be abstracted to a generalizestiohecproblem for rank-metric codes. More
precisely, if we cascade an RLNCC, at the input, with a dethes takese to its lifting X = [[ w]
and, at the output, with a device that také<o its reduction(r, L, F), then the decoding problern (18)

reduces to the following problem:

Generalized Decoding Problem for Rank-Metric Codes: LetC C ngm be a rank-metric code. Given

areceived tuplér, L, E) € F2*™ x g™ x F3*™ with rank L = p andrank E = 4, find

L r—=x
& = argmin rank . . (28)
xzeC 0 FE

The problem above will be referred to as the generalizeddleggoroblem for rank-metric codes, or
generalized rank decoding for short. Note that the conwaatirank decoding probleriil(7) corresponds
to the special case wheye= ¢ = 0.

The remainder of this paper is devoted to the study of the rgéimed rank decoding problem and to

its solution in the case of MRD codes.



21

V. A GENERALIZED DECODING PROBLEM FORRANK-METRIC CODES

In this section, we develop a perspective on the generaliael decoding problem that will prove
useful to the understanding of the correction capabilityamik-metric codes, as well as to the formulation

of an efficient decoding algorithm.

A. Error Locations and Error Values

Let C € F;*™ be a rank-metric code. For a transmitted codewerend a received word, define
e £ r — x as the error word.

Note that if an error wore has rankr, then we can writeé = LE for some full-rank matrice$ € Fy*"
andE € F;*™, as in Q). LetLy,..., L, € [F; denote the columns of and letEy,. .., B € Iﬁ‘éxm

denote the rows oF. Then we can expand as a summation of outer products
e=LE=Y L;Ej (29)
j=1

We will now borrow some terminology from classical codingahy. Recall that an error vecterec Iy

of Hamming weightr can be expanded uniquely as a sum of products

e = ZT: I; e
j=1
wherel <i; < --- < i, <n andey,...,e, € F,. The indexi; (or the unit vectorl; ) specifies the
location of the jth error, whilee; specifies thevalue of the jth error.

Analogously, in the sum-of-outer-products expansiod (@) will refer to Lq,..., L. as theerror
locationsand to £y, ..., E, as theerror values The locationL; (a column vector) indicates that, for
i =1,...,n, the jth error valueE; (a row vector) occurred in row multiplied by the coefficient;;.

Of course,L;; = 0 means that thgth error value is not present in roiw

Note that, in contrast to the classical case, the distindbetween error locations and error values in
the rank metric is merely a convention. If we prefer to thirfkeorors as occurring on columns rather
than rows, then the roles df; and £; would be interchanged. The same observation will also afply
any concept derived from the interpretation of these gtiastas error locations and error values.

It is important to mention that, in contrast with classicading theory, the expansiof (29) is not
unique, since

e=LE=LT"'TE

for any nonsingulafl” € F7*7. Thus, strictly speakingl, ..., L, and Ey,..., E. are just one possible
y g q y sp J p

set of error locations/values describing the error werd
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B. Erasures and Deviations

We now reformulate the generalized rank decoding probleavay that facilitates its understanding
and solution.

First, observe that the problefm _{28) is equivalent to thévlerm of finding an error wore@, given by

L e
€ = argmin rank 1, (30)
ecr—C 0 F

from which the output of the decoder can be computed asr — é.

Proposition 10:Let e € Fj*™, Le Fg ™" andE e IE‘gX". The following statements are equivalent:

A

L e
1) 7" =rank .
0 FE
2) 7% — u — 6 1s the minimum value of

rank(e — LEY) — L E)

for all EM) € Fy*™ and all L?) € F7>9.
3) 7 is the minimum value ofr for which there existL,,...,L, € Fy and Ey, ..., E; € IE‘}]XW

satisfying:

Proof: See the Appendix. |

With the help of Propositioh 10, the influence bfand E in the decoding problem can be interpreted
as follows. Suppose € r—C is the unique solution td_(30). Thencan be expanded as= Z]T.Zl L;E;,
whereLy,...,L, andE,1,...,E, s areknownto the decoder. In other words, the decoding problem
is facilitated, since the decoder has side information abizel expansion oé.

Recall the terminology of Section_V}A. Observe that, fore {1,...,u}, the decoder knows the
location of the jth error term but not its value, while fgre {x+1,...,u+ 0}, the decoder knows the
value of the jth error term but not its location. Since in classical codihgory knowledge of an error
location but not its value corresponds to an erasure, weadliipt a similar terminology here. However
we will need to introduce a new term to handle the case wherevdfue of an error is known, but not

its location. In the expansiof_(29) of the error word, easinté; E; will be called
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o anerasurg if L; is known;

« adeviation if £; is known; and

« afull error (or simply anerror), if neither L; nor £; are known.
Collectively, erasures, deviations and errors will be mefé to as “errata.” We say that an errata pattern
is correctablewhen [28) has a unique solution equal to the original tratistchicodeword.

The following theorem characterizes the errata-corractiapability of rank-metric codes.

Theorem 11:A rank-metric codeC C ;™ of minimum distancel is able to correct every pattern
of ¢ errors, ;. erasures and deviations if and only i2e +pu+ 0 < d — 1.

Proof: Let € C be a transmitted codeword and lpt, L, E) € FI*™ x Fg™" x F2*™ be a

L r—«x
received tuple such thatnk ) = 1+ 0 + €. Supposer’ € C is another codeword such that
0 E
L r—a N _
rank . = u+ 6+ €, wheree’ < e. From Propositiof 10, we can write
0 E
e=r—x=LEY +LPE 4+ O EC
e =r—a' =LEW + LOE + LOEO)
forsomeE™, L3 ... E©) with appropriate dimensions such thatk L) E®) = ¢ andrank L) E©) =
€.
Thus,

e—e = L(ED — EW) £ (1O — [OYE 4+ LOE®) 4 16 5O

and

rank(a:/—m):rank(e—e’)S,u+5—|—e—|—e/§d—1

contradicting the minimum distance of the code.
Conversely, letz, 2’ € C be two codewords such thatnk (z’ — x) = d. For all 4, 6 ande such that

1+ 9+ 2¢ > d, we can write
2 —x=ILVEV L 1A L 1B 6 L @p“

where the four terms above have inner dimensions equal 8 ¢ ande’ = d — . — § — ¢, respectively.

Let
e=LWEY L 1@ p® 4 16G)EG)

e = _[WEW
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and observe that' —z =e—¢'. Letr =z +e=a' + €/, L =LY andE = E®?. Suppose that is
transmitted and the tupler, L, £) is received. Then

L r—=x L e
rank . = rank | =p+o+e€
0 E 0 F
[ r—a L € ,
rank . = rank | =p+d+e.
0 E 0 F

Sincee’ =d — pu— 6 — e <, it follows thatx cannot be the unique solution f0 {28) and therefore the

errata pattern cannot be corrected. [ ]

TheorenIll shows that, similarly to erasures in the Hammiagioy erasures and deviations cost half
of an error in the rank metric.

Theoren 11l also shows that taking into account informatlmsuaerasures and deviations (when they
occur) can strictly increase the error correction capighdf a rank-metric code. Indeed, suppose that an
error word of rankt = 4 6 + € is applied to a codeword, wheye § ande are the number of erasures,
deviations and full errors, respectively, in the erratagrat It follows that a conventional rank decoder
(which ignores the information about erasures and devigjican only guarantee successful decoding if
2t < d — 1, whered is the minimum rank distance of the code. On the other handnemglized rank
decoder requires one+p+96 < d—1, or2t < d—1+pu-+4, in order to guarantee successful decoding.
In this case, the error correction capability is increasgd b+ §)/2 if a generalized rank decoder is

used instead of a conventional one.

We conclude this section by comparing our generalized degoproblem with previous decoding
problems proposed for rank-metric codes.

There has been a significant amount of research on the praiflearrecting rank errors in the presence
of “row and column erasures” [13], [15]-[18], where a rowsree means that all entries of that row are
replaced by an erasure symbol, and similarly for a columsuwrea The decoding problem in this setting
is naturally defined as finding a codeword such that, when thsed entries in the received word are
replaced by those of the codeword, the difference betweisnndw matrix and the codeword has the
smallest possible rank. We now show that this problem is aiapease of[(28).

First, we force the received wordto be inFy*™ by replacing each erasure symbol with an arbitrary
symbol inF,, say0. Suppose that the rows, ... ,i, and the columng,..., ks have been erased. Let

L e Fg*" be given byL;, ; =1 andL;; = 0, Vi #i;, for j =1,...,p and letE € F*™ be given by
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EMJ_ -1 andEM =0, Vk #kj, forj=1,...,0. Since

A A

L r—=x L r 0 =

.| = | - (31)
0 F 0 FE 0 0
it is easy to see that we can perform column operationg dnt(3teplace the erased rows ofwith the
same entries as, and similarly we can perform row operations 6nl(31) to replthe erased columns of
r with the same entries as. The decoding problenfi_(28) is unchanged by these operadiodseduces
exactly to the decoding problem with “row and column erasudescribed in the previous paragraph.

An example is given below.

Example 4:Let n = m = 3. Suppose the third row and the second column have been eraseel

received word. Then

T11 0 13 0
= |ro1 0 m3]> L= o], E:[o 1 0}-
0O 0 O 1
Since ~ _ _ -
0 71 0 73 0 r1 x2 713
0 701 0 193 0 7ro1 x99 To3
and
1 0 0 0 1 ®31 732 33
0O 0 1 0 0 O 1 0
are row equivalent, we obtain that
0 m1—x11 0 m3—213
[: rTr—x 0 T91 — I21 0 23 — 23
rank ) = rank
FE 1 0 0 0
0 0 1 0
ri1—2r11 0 ri3— 3

0

0 793 — 23

0

0

which is essentially the same objective function as in theodang problem with “row and column

erasures” described above.

While row/column erasures are a special case of erasuvéstides, it also true that the latter can

always be transformed into the former. This can be accommgdi®y multiplying all rank-metric codewords

to the left and to the right by nonsingular matrices in suchag that the correspondirfgj andEj become
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unit vectors. The drawback of this approach, as pointed m@&dctiod IV-B, is that the structure of the
code is changed at each decoding instance, which may ramplexity and/or implementation issues.
Thus, it is practically more advantageous to fix the striecioff the code and construct a decoder that
can handle the generalized notions of erasures and desafitis is the approach we take in the next

section.

VI. DECODING GABIDULIN CODES WITHERRORS ERASURES ANDDEVIATIONS

In this section, we turn our attention to the design of an iefficrank decoder that can correct any
pattern ofe errors, . erasures and deviations satisfyin@e + .+ 6 < d — 1, whered is the minimum
rank distance of the code. Our decoder is applicable to Gébidodes, a class of MRD codes proposed
in [11].

A. Preliminaries

Rank-metric codes iff;*™ are typically constructed as block codes of lengtiover the extension
field F,~. More precisely, by fixing a basis fdf,~ as anm-dimensional vector space ovéy, we
can regard any element &f» as arow vector of lengthm overF, (and vice-versa). Similarly, we can
regard anycolumnvector of lengthn overF,~ as ann x m matrix overlF, (and vice-versa). All concepts
previously defined for matrices iRy " can be naturally applied to vectors kf..; in particular, the
rank of a vectorr € Fy.. is the rank ofr as ann x m matrix overF,.

1) Gabidulin Codesin order to simplify notation, lefi] denoteqg’. A Gabidulin code is a lineapm, k)

code overlF,~ defined by the parity-check matrix

h[lo] h[20} Rl
Rl Rl Bl
H— 1 2
_h[ln_k_u h[2n—k—1] . hgl_k_u_
where the elements,, ... h, € F,~ are linearly independent ovéi, (note thatn < m is required).

The minimum rank distance of a Gabidulin codelis- n — k + 1, satisfying the Singleton bound in the
rank metric [11].

2) Linearized PolynomialsA class of polynomials that play an important role in the gtad rank-
metric codes are thknearized polynomialg25, Sec. 3.4]. A linearized polynomial (@rFpolynomial)

overF,~ is a polynomial of the form

f@) =3 fual
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where f; € Fgn. If f # 0, we callt the g-degree off(x). Linearized polynomials receive their name

because of the following property: for amy, as € F, and anyf;, 82 € Fym,

flarfr + azfa) = a1 f(Br) + azf(B2).

That is, evaluation of a linearized polynomial is a nfgp. — F,~ that is linear oveif,. In particular,
the set of all roots i, of a linearized polynomial is a subspaceltyf-.

Let A(x) and B(x) be linearized polynomials of-degreest4 andtg, respectively. The symbolic
product of A(z) and B(z) is defined as the polynomial(z) ® B(z) £ A(B(z)). It is easy to verify
that P(z) = A(x) ® B(x) is a linearized polynomial of-degreet = t4 + tp whose coefficients can be

computed as

min{l,t4} _ min{¢,tp} _
=Y aBl= Y A ;B
t=max{0,/—tp} j=max{0,{—ta}

for £ =0,...,t. In particular, ift4 < tpg, then

ta )
P =>"AB,  ta<l<tp, (32)
=0
while if tg < t4, then
tp )
=Y A B tp<i<ita (33)
7=0

It is known that the set of linearized polynomials oW&y- together with the operations of polynomial
addition and symbolic multiplication forms a noncommuwt@tring with identity having many of the
properties of a Euclidean domain.

We define theg-reverseof a linearized polynomialf(z) = >_i_, fizll as the polynomialf(z) =
St izl given by f; = ft[i__it] for i = 0,...,t. (Whent is not specified we will assume thais the
g-degree off(z).)

For a setS C F,~, define theminimal linearized polynomiabf S (with respect toF,~), denoted
Ms(z) or minpoly{S}(z), as the monic linearized polynomial ov&~ of least degree whose root
space contain§. It can be shown thad/s(z) is given by

Ms(z) = ] (@-5)
BE(S)
so theg-degree ofMs(x) is equal todim (S). Moreover, if f(z) is any linearized polynomial whose

root space contain§, then

f(z) = Q) ® Ms(x)
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for some linearized polynomiap(z). This implies thatMs 4} (2) = My (a)(z) ® Ms(x) for any a.
Thus, Ms(z) can be computed i) (¢?) operations inF,. by taking a basi§as,...,a;} for (S) and

computing My, . (x) recursively fori = 1,...,t.

0}
3) Decoding of Gabidulin CodesRecall that, in the conventional rank decoding problem with
errors, wher&r < d — 1, we are given a received worel € Fm and we want to find the unique error
word e € » —C such thatank e = 7. We review below the usual decoding procedure, which ctssis
finding error valuess:, ..., B € Fy» and error locationd.s, ..., L, € Fy such thate = >7_, L; Ej.

Sincee € r — C, we can form thesyndromes
[S(],. .o ,Sd_Q]T = Hr = He

which can then be related to the error values and error lmeataccording to

Sg = Zn: hy}ei = Zn: hy] ZT: LijEj
i=1 =1 j=1

:ZT:X]MEJ-, (=0,....d—2 (34)
j=1

where .

Xj =Y Lijhi, j=1,...,7 (35)

i=1
are called theerror locatorsassociated withlq, ..., L,.
Suppose, for now, that the error valuég, ..., E. (which are essentially- linearly independent

elements satisfyinge) = (Fy,..., E;)) have already been determined. Then the error locators can

be determined by solving (B4) or, equivalently, by solving
Se=8 3t =N "ECTIX e=0,..,d-2 (36)
j=1
which is a system of equations of the form

T

B=> AVX; t=o0,....d-2 (37)
j=1
consisting ofd — 1 linear equations (oveF,~) in 7 unknownsXj, ..., X.. Such a system is known to
have a unique solution (whenever one exists) providedd —1 and Ay, ..., A, are linearly independent

(see [25], [26]). Moreover, a solution tb{37) can be founficehtly in O(d?) operations inF,~ by an
algorithm proposed by Gabidulin [11, pp. 9-10].
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After the error locators have been found, the error locatibp, ..., L, can be easily recovered by
solving [35). More precisely, lék € F;*™ be the matrix whose rows afg, ..., h,, and letQ € Fy**"
be a right inverse oh, i.e., hQ) = I,,x,. Then

m
Lij :ZXijm', i=1,...,n, j=1,...,7.
k=1

The computation of error values can be done indirectly vigaar span polynomiab(z). Let o(x)
be a linearized polynomial of-degreer having as roots all linear combinations 8%, ..., E,. Then,

o(x) can be related to theyndrome polynomial

d—2
S(x) =) S;all
§=0
through the followingkey equation
o(z) @ S(z) = w(z) mod x4 (38)

wherew(x) is a linearized polynomial of-degree< 7 — 1.

An equivalent way to expresk_(38) is
SN oS, =0, t=71,....d-2 (39)
=0

This key equation can be efficiently solved @(d?) operations inF,~ by the modified Berlekamp-
Massey algorithm proposed in [13], provided < d — 1.

After the error span polynomial is found, the error values t& obtained by computing a basis
Es, ..., E. for the root space of (x). This can be done either by the probabilistic algorithm iA][2n
an average of)(dm) operations irff,, or by the methods in [28], which take at m@3tm?) operations

in Fy plus O(dm) operations inf .

B. A Modified Key Equation Incorporating Erasures and Devias

In the general rank decoding problem witkrrors,. erasures andl deviations, wher@e+pu+0 < d—1,

we are given a received tuple, L, E) € Fym X Fy ™ x Fgm and we want to find the unique error word
L

e € r — C such thatrank = e+ p+ 6 = 7 (along with the value of, which is not known a

0

E
priori).
First, note that if we can find a linearized polynomidl:) of ¢-degree at most < d — 1 satisfying

o(e;) =0,i=1,...,n, then the error word can be determined in the same manner@ectior VI-A3.
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According to Proposition 10, we can write the error woregkas > 7, L;E; for someLs, ..., L, € Fy
and By, ...,E, € Fyn satisfyingL; = L;, j = 1,...,p, andE,y; = Ej, j = 1,...,8. Let op(x),
or(z) andoy(x) be linearized polynomials of smallegtdegrees satisfying

or(op(Ej) =0, j=p+do+1,...,7
ou(or(op(E)))) =0, j=1,....pu

Clearly, theg-degrees olrp(z) andor(z) ared ande, respectively, and the-degree ofoy(x) is at
most 4.

Define theerror span polynomial
o(z) =oy(r) ® op(r) @ op(z).

Theno(x) is a linearized polynomial of-degree< 7 satisfying
ole;) = U(ZLz’jEj) = ZLijJ(Ej) =0, 2=1,...,n.
j=1 j=1

Thus, sincerp(x) can be readily determined froifi, decoding reduces to the determinationogf(z)
andoy(x).

Now, let \;(z) be a linearized polynomial of-degreeu satisfying
M(X;)=0, j=1,...,u
and let\y (z) be theg-reverse of\;(z). We define arauxiliary syndrome polynomias
Spu(z) = op(z) ® S(x) @ Ay ().

Observe thatSpy () incorporates all the information that is known at the decotheluding erasures
and deviations.
Our modified key equation is given in the following theorem.
Theorem 12:
or(x) ® Spu(r) = w(x) mod 2!~ (40)

wherew(x) is a linearized polynomial of-degree< 7 — 1.
Proof: Let w(z) = or(z) ® Spy(x) mod zl= 1. If > d — 1, we have nothing to prove, so let us

assumer < d — 2. We will show thatwy, =0 for{=7,...,d — 2.



31

Letopp(z) = op(x)@op(z) andSpp(z) = opp(x) @ S(x). According to [3R), fore+d < ¢ < d—2

we have
€+0 e+6 g
SFDZ—ZUFDZSE]Z ZUFDZ ZX
_ZX opp(E ZXV B;, (41)
where

ﬁj:JFD(Ej)7 ]:1,,,&

Note thator(r) ® Spy(r) = Spp(x) ® Ay (z). Using [33) and[(41), fopi +e+6 < £ < d—2 we

have

) I
N 'Sep i = Zm X
7 = 7j=1

n
— Z )\[Z N]X[é M+Z - Z)\U(XJ)[Z—;L}IBJ — 0
7=1

Jj=11i=

&
~
I
= th

This completes the proof of the theorem. [ |

The key equation can be equivalently expressed as
ZUF,iS[DﬂU,Z_iZO, C=p+d+e...,d—2. (42)

Note that this key equation reduces to the original key egnaf38) when there are no erasures or
deviations. Moreover, it can be solved by the same methodbe®riginal key equation (38), e.g.,
using the Euclidean algorithm for linearized polynomidl&][or using the modified Berlekamp-Massey
algorithm from [13], providede < d — 1 — pu — ¢ (which is true by assumption). Note that a small
adjustment needs to be made so that (42) becomes indeedlequito [39); namely, we should choose
Se in (39) asSy = Spu,e+u+s and replacel with d — p — 4.

After computingor(z), we still need to determiney (z). In the proof of Theorenl 12, observe
that [41) has the same form ds](37); th@s, ..., 3, can be computed using Gabidulin’s algorithm
[11, pp. 9-10], sinc&rp(z) and Xy, ..., X, are known. Finallys (z) can be obtained asy (z) =

minpoly{B1, .. . , B}

C. Summary of the Algorithm and Complexity Analysis

The complete algorithm for decoding Gabidulin codes withseres and deviations is summarized in

Fig.[d. We now estimate the complexity of this algorithm.
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Input: received tuple(r, L, E) € F2, x Fy™" x FS,.
Output: error worde € ...
1) Computing the auxiliary syndrome polynomial
Compute

a) Sy=3" hr 0=0,... d-2
by X; =" Lijhi,j=1,...,p
¢) Av(z) = minpoly{X1, ..., X,}
d) op(x) = minpoly{E1,..., Es}, and
e) Spu(z) =op(z) @ S(x) ® Ay ().

2) Computing the error span polynomial
a) Use the Berlekamp-Massey algorithm [13] to find(x) that solve the key equatioh_(40).
b) ComputeSrp(z) = op(z) ® op(z) ® S(x).
c) Use Gabidulin’s algorithm [11] to find;, ..., 3, € Fy= that solve [(41L).
d) Computesy (x) = minpoly{f3i,..., 5.} and
e) o(x) =oy(z) ®op(zr) ®op(x).

3) Finding the roots of the error span polynomial
Use either the algorithm in [27] or the methods in [28] to finBasisE:,. .., E; € F,» for the

root space ob(x).

4) Finding the error locations
a) Solve [(36) using Gabidulin’s algorithm [11] to find thearfocatorsX;, ..., X, € Fym.
b) Compute the error locations;; = > /" | X3 Qri, i =1,...,n,j=1,...,7.

c¢) Compute the error word =37, L; E.

Fig. 1. Generalized decoding algorithm for Gabidulin codes

Stepd 1k), 2b) arldRe) are symbolic multiplications of lireeal polynomials and can be performed in
O(d?) operations inf,~. Stepg_Iic).2d) arld 2d) involve finding a minimal linearizetypomial, which
takes O(d?) operations inF .. Steps_Ib)[4b) andH#c) are matrix multiplications and tékenm)
operations inF, only. Both instance§ 2c) arid]4a) of Gabidulin’s algorithnd aiso the Berlekamp-
Massey algorithm in stepPa) take(d?) operations inF .
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The most computationally demanding steps[ade 1a) compthiegyndromes arld 3) finding a basis
for the root space of the error span polynomial. The former loa implemented in a straightforward
manner using)(dn) operations inF,~, while the latter can be performed using an averag® @im)
operations irf,- with the algorithm in [27] (although the method described28] will usually perform
faster whenm is small).

We conclude that the overall complexity of the algorithnOi&lm) operations inF .

D. An Equivalent Formulation Based on the Error Locator Palynial

Due to the perfect duality between error values and errcattos (both are elements &), it is
also possible to derive a decoding algorithm based on am kxcator polynomial that contains all the
error locators as roots.

Let the auxiliary syndrome polynomial be defined as
Sup(z) = Ay(z) ® S(z) ® 5D(w[d—2])[—d+2]

whereap(z) is the g-reverse ofop(z) and S(x) is the g-reverse ofS(x).
Let A\r(x) be a linearized polynomial af-degree: such that\p (A (X;)) =0, fori = u+o+1,...,7.
We have the following key equation:
Theorem 13:
Ap() ® Syp(x) = $(x) mod 21 (43)

where(x) is a linearized polynomial of-degree< 7 — 1.
Proof: The proof is similar to that of Theorem]12 and will be omitted. [ |

The complete decoding algorithm based on the error locattynpmial is given in Fig[R.

E. Practical Considerations

We have seen that the complexity of decoding a Gabidulin ¢bdeFy ™ with d;(C) = d is given
by O(dm) operations inF,~. In many applications, in particular for network coding, Wwavem > n.
In such cases, the decoding complexity can be significaetiueed by using, rather than a Gabidulin
code, an MRD code formed by the Cartesian product of manytah@abidulin codes with the same
distance. More precisely, l¢t= || andn’ = m —n(f — 1). TakeC = C; x Cy x --- x Cy, where
C; C IE‘ZX", 1=1,...,4—1,andC; C FQX”' are Gabidulin codes with minimum rank distanteThen

C is an MRD code withd,(C) = d.
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Input: received tuple(r, L, E) € F2,. x Fy™" x F2,..
Output: error worde € ...
1) Computing the auxiliary syndrome polynomial
Compute

a) Sy=3" b =0, d-2
by X; =" Lijhi,j=1,...,p
¢) \y(z) = minpoly{X1y,..., X,}
d) op(x) = minpoly{E1, ..., Es}, and
e) Sup(z) = Au(z) ® 5(x) @ op(al®2)=d+2,
2) Computing the error locator polynomial
a) Use the Berlekamp-Massey algorithm [13] to fikd(z) that solve the key equatioh (43).
b) ComputeSry(z) = Ar(z) ® A\y(z) ® S(z).
¢) Use Gabidulin’s algorithm [11] to find,...,vs; € F,~ that solve

t—d
Srus = ZELﬂ -

d) Computelp(x) = minpoly{v1,...,7s} and
e) AMxz) = Ap(z) ® Ar(z) ® Ay (z).
3) Finding the roots of the error locator polynomial
Use either the algorithm in [27] or the methods in [28] to finbasis X, ..., X, € F,~ for the
root space of\(z).
4) Finding the error values
a) Solve [(34) using Gabidulin’s algorithm [11] to find the@rvaluesE;, ..., E. € Fy»
b) Compute the error locations;; = > /" | X3 Qpi, i =1,...,n, j=1,...,T.
c¢) Compute the error word =37, L;Ej.

Fig. 2. Generalized decoding algorithm for Gabidulin codgternative formulation.
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Now, decoding of” can be performed by decoding eaghindividually. Thus, assuming for simplicity
that m = n¢, the overall decoding complexity is given B9 (dn) = O(dm) operations inF,.. In other
words, operations in a potentially large fielg- can be replaced by operations in a much smaller field
Fyr.

Note that, in this case, additional computational savingy iine obtained, since all received words
will share the same set of error locations. For instancd| #raor locations are known and the decoding

algorithm of Fig.[2 is used, then only steps 1a), 1b) and 4g)réed to be performed.

VIlI. CONCLUSIONS

In this paper, we have introduced a new approach to the probfeerror control in random network
coding. Our approach is based, on the one hand, on KotteKackischang'’s abstraction of the problem
as a coding-theoretic problem for subspaces and, on the b#red, on the existence of optimal and
efficiently-decodable codes for the rank metric. We havenshthat, whenlifting is performed at the
transmitter andeductionat the receiver, the random network coding channel behasssngally as a
matrix channel that introduces errors in the rank metric aray also supply partial information about
these errors in the form of erasures and deviations.

An important consequence of our results is that many of thks tdeveloped for rank-metric codes can
be almostdirectly applied to random network coding. However, in artte fully exploit the correction
capability of a rank-metric code, erasures and deviatiomst ime taken into account. A second contribution
of this work is the generalization of the decoding algoritfon Gabidulin codes in order to fulfill this
task. Our proposed algorithm requiré¥dm) operations inF,~, achieving the same complexity as
conventional decoding algorithms that only correct ranorst

Following this work, a natural step toward practical errontol in random network coding is the
pursuit of efficient software (and possibly hardware) impdmtations of encoders and decoders for
Gabidulin codes. Another avenue would be the investigadiomore general network coding scenarios
where error and erasure correction might be useful; for @@nthe case of multiple heterogeneous
receivers can be addressed using a priority encoding tias&m scheme based on Gabidulin codes [29].
An exciting open question, paralleling the development eé&®RSolomon codes, is whether an efficient
list-decoder for Gabidulin codes exists that would allowrection of errors above the error-correction
bound.

We believe that, with respect to forward error (and erascogdection, Gabidulin codes will play the

same role in random network coding that Reed-Solomon coales played in traditional communication
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APPENDIX
A. Proof of Propositiorl7

Before proving Propositio] 7, let us recall some propexighe matriced;; and ., wherel = I,,.p,
UCA{l,...,nyandu¢={1,...,n}\U.

For any A € F;‘X’“ (respectively,A € F’;X"), the matrix [, A (resp., Al/) extracts the rows (resp.,
columns) ofA that are indexed b§/. Conversely, for any3 € IE‘L”‘X'“ (resp.,.B € IF];XM) the matrix ;B
(resp.,BIf;) reallocates the rows (resp., columns) Bfto the positions indexed bi/, where all-zero
rows (resp., columns) are inserted at the positions indéeydd. Furthermore, observe théy and I,

satisfy the following properties:
[ = IyI} + Iy-Ik.,
Iy Ty = Ty
IE Iy = 0.
We now give a proof of Propositidd 7.

Proof of Propositiori]7: Let RRE(Y") denote the reduced row echelon formYofFori =1,..., N,
let p; be the column position of the leading entry of rewn RRE(Y). Let /¢ = {p1,...,pn—,} and
U=1{1,...,n}\U° Note that|i/| = . From the properties of the reduced row echelon form, we can

write
W r

RRE(Y) = )
0 B
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wheres € FY" X" F ¢ Fo*m has ranks, and W € F" %" satisfiesiV I = L=y (n—p)-

Now, let

L 0 LW r
y =Y RRE(Y) = | A
0 Isxs 0 E

wherer = I..7. Sincel = Iy I}, + Iy I}, we have
LW = LW (Iye I%e + IyI)
= Iye I + Ty W Iy I

=1 — Iyl} + Iy Wiy}

=1+ LI}
where L = — Iy + Iy-WIy. Also, sincel} Ty = I,x, and I/I;- = 0, we havel[L = —1I,, and
Igfr =0.
Thus,
_ I+ LIE r
Y= u -
0 E
is a matrix with the same row space ¥s The proof is complete. [ |

B. Proof of Propositiori 18

Proof of Propositiorf B: We want to show that

I+I:TI§ r I+ﬁ[5 r
0 RE o E|/

From [B) and the fact thak is nonsingular (sinceank RE = ), this amounts to showing that

(rvirg o) =([reiz o))
Let Wy = I + LI} andWy = I + LTIL. Note that, sincéV, Iy. = I and I} [Wl r] = 0, we have
that ZL. W is full rank. Similarly, IZ |:W2 r] = 0 and IL. W; is full rank. Thus, it suffices to prove
that
M |:W2 7‘] = |:W1 7‘] (44)

for someM € IE‘{;X".
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Let A=UUS andB = U N S. Observe thatV/ can be partitioned into three sub-matric@$/ 4,
MIs and M ;5. ChooseM 4. = I4-, and M Is arbitrarily. We will chooseM I\ 5 so that [44) is
satisfied. First, note that

Mr = M(IACIEC + [A[Z;)T = IACIEZCT =r
sincelﬂr = 0. Thus, we just need to consid&f W, = W, in (@4). Moreover, note that
MWy = M(Ig-T4. + IsIE L
2= M(Laelge +Isls + Lunplyp g)Wo
= Lae Lje Wa + (M Ip ) (Ijp sW2)-

Now, consider the systed/W> = W;. From basic linear algebra, we can solve fdif;, 5 if and only
if

IE W
rank w2 <|U\ B|.
Wi — L I5. W5

Sincelg\BI/Vl =0 and IEWQ = 0, we can rearrange rows to obtain
IT W I (W, — W
rank u\B? = rank M\B( ! 2)
W1 — L T4 Wo Long)e L 5y (W1 — Wa)

= rank (W — Wa).
To complete the proof, we will show thaink (1, — Ws) < U/ \ B|. We have
rank (W1 — W) = rank (LI}, — LTIE)
< rank (I} —TIY)
= rank (ILLIT + 1Y) (45)
= rank IL W),
= rank IsIE W,
= rank (Is\gI§\ 5 + Is 1)W1
= rank Is\gl5 sW1
<[S\B|= U\ Bl

where [45) is obtained by left multiplying bggf/ =771 [ |
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C. Proof of Theorerm]9

Proof of Theorerh]9: We have

X .
rank =rank |[+ LI} r

=rank |+ LIL 7

ﬁ[g r—x

=rank I} (I +LI}) Ihr (46)
0 E

ﬁ[g r—x
= rank [Z;Q [&m 47

A

0 E

ﬁ[g r—x

0 E

= rank + rank [[5 [5;3} (48)

L r—ax
= rank +n—u (49)

A

0 E

where [46) follows fromZ}; [[Jr ﬁ[if r} = 0, (@8) follows by subtracting/.. [ﬁ[zf r— w] from

[[LT{C(] + ﬁ[g) [LT{CT}, (@8) follows fromI}. I;c = Tin—pyx (n—p) andﬁ[if[uc =0 (i.e., the two matrices

in (@8) have row spaces that intersect trivially), ahd (48)ofvs by deleting the all-zero columns.
Sincerank X +rank Y = 2n — u + 6, we have

X
ds((X),(Y)) = 2rank —rank X —rank Y
Y
L r—=x
= 2rank ) —p—0.
0 E

D. Proof of Propositiori 10

Before proving Proposition 10, we need the following lemma.
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Lemma 14:For X € ngm andY ¢ IE‘{IVX””L we have

X
min rank(Y — AX) = rank [ ] —rank X
AEFIqVXn Y

and forX € F/*™ andY ¢ IE‘Z‘XM we have

min rank(Y — X B) = rank [X Y} —rank X.
BeFy =M

Proof: For any A € FY*", we have

X X
rank = rank <rank X + rank(Y — AX)
Y Y - AX

which gives a lower bound orank (Y — AX). We now prove that this lower bound is achievable.

Let Z € F{*™ be such thatY) = (X) N (Y) @ (Z), wheret = rank Y —w andw = dim (X) N (Y).

for some full-rank

BX
Let B € Fy*" be such thafBX) = (X) N (Y). We can writeY = T [
A

B
T e FY*“ Now, letA =T € FN>m_ Then
0

rank (Y — AX) = rank (T -T )

0
= rank (T ) =rank Z

=rank Y —dim ((X) N (Y))

X
= rank — rank X.
Y

This proves the first statement. The second statement ishestansposed version of the first onem
Proof of Propositior 10: Let

¢ = min rank(e — LEYW — LOE).
EM,L@

We first show the equivalence of 1) and 2). From Lenimla 14, we hav

- LED _LOF £ ;
min rank (e — LE'Y — L' F) = rank . —rank E.
L2 E



Similarly, from LemmdI¥ we have

e— LEW e L 1
min rank . = min rank N EW
E® E E@® E 0
L e .
= rank | —rank L.
0 F
Thus,
/ ie
€ = rank | —pu—=9
0 F

and the equivalence is shown.
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Now, observe that the statement in 3) is equivalent to theerskant that™ — p — § is the minimum

value of e for which there existz(!) € F;*™, L) € F7>0, LB) € F1*¢ and E®) € F™ satisfying

e=LEW + LPE 4+ LOEG),

To show the equivalence of 2) and 3), we will show tHat ¢’, where

’ .
= min
¢ EW [ [3) B,

e=LEW LR EL LG B®)
We can rewritec” as
€ = min min

EM LG e, L) E®.
e—LEM L) E=[() E®)

[0

= min rank(e — LEW — LOE)
EM,L@

/
= €.

where [50) follows from[{ll). This shows the equivalence leetw?2) and 3).

(50)
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