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Abstract

The problem of error control in random linear network codingis addressed from a matrix perspective

that is closely related to the subspace perspective of Kötter and Kschischang. A large class of constant-

dimension subspace codes is investigated. It is shown that codes in this class can be easily constructed

from rank-metric codes, while preserving their distance properties. Moreover, it is shown that minimum

distance decoding of such subspace codes can be reformulated as a generalized decoding problem for

rank-metric codes where partial information about the error is available. This partial information may

be in the form of erasures (knowledge of an error location butnot its value) anddeviations(knowledge

of an error value but not its location). Taking erasures and deviations into account (when they occur)

strictly increases the error correction capability of a code: if µ erasures andδ deviations occur, then

errors of rankt can always be corrected provided that2t ≤ d− 1+µ+ δ, whered is the minimum rank

distance of the code. For Gabidulin codes, an important family of maximum rank distance codes, an

efficient decoding algorithm is proposed that can properly exploit erasures and deviations. In a network

coding application wheren packets of lengthM overFq are transmitted, the complexity of the decoding

algorithm is given byO(dM) operations in an extension fieldFqn .
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I. INTRODUCTION

While random linear network coding [1]–[3] is an effective technique for information dissemination

in communication networks, it is highly susceptible to errors. The insertion of even a single corrupt

packet has the potential, when linearly combined with legitimate packets, to affect all packets gathered

by an information receiver. The problem of error control in random network coding is therefore of great

interest.

In this paper, we focus on end-to-end error control coding, where only the source and destination nodes

apply error control techniques. Internal network nodes areassumed to be unaware of the presence of an

outer code; they simply create outgoing packets as random linear combinations of incoming packets in

the usual manner of random network coding. In addition, we assume that the source and destination nodes

have no knowledge—or at least make no effort to exploit knowledge—of the topology of the network

or of the particular network code used in the network. This isin contrast to the pioneering approaches

[4]–[6], which have considered the design of a network code as part of the error control problem.

In the basic transmission model for end-to-end coding, the source node producesn packets, which are

length-M vectors in a finite fieldFq, and the receiver gathersN packets. Additive packet errors may

occur in any of the links. The channel equation is given byY = AX + BZ, whereX, Y andZ are

matrices whose rows represent the transmitted, received and (possibly) corrupting packets, respectively,

andA andB are the (unknown) corresponding transfer matrices inducedby linear network coding.

There have been three previous quite different approaches to reliable communication under this model.

In [7], Zhang characterizes the error correction capability of a network code under a brute-force decoding

algorithm. He shows that network codes with good error-correcting properties exist if the field size is

sufficiently large. His approach can be applied to random network coding if an extended header is

included in each packet in order to allow for the matrixB (as well asA) to be estimated at a sink node.

A drawback of this approach is that the extended header has size equal to the number of network edges,

which may incur excessive overhead. In addition, no efficient decoding algorithm is provided for errors

occurring according to an adversarial model.

Jaggi et al. [8] propose a different approach specifically targeted to combat Byzantine adversaries.

They provide rate-optimal end-to-end codes that do not relyon the specific network code used and that

can be decoded in polynomial time. However, their approach is based on probabilistic arguments that

require both the field size and the packet length to be sufficiently large.

In contrast, Kötter and Kschischang [9] take a more combinatorial approach to the problem, which



3

provides correction guarantees against adversarial errors and can be used with any given field and packet

size. Their key observation is that, under the unknown linear transformation applied by random network

coding, the only property of the matrixX that is preserved is its row space. Thus, information should

be encoded in the choice of a subspace rather than a specific matrix. The receiver observes a subspace,

given by the row space ofY , which may be different from the transmitted space when packet errors

occur. A metric is proposed to account for the discrepancy between transmitted and received spaces, and

a new coding theory based on this metric is developed. In particular, nearly-optimal Reed-Solomon-like

codes are proposed that can be decoded inO(nM) operations in an extension fieldFqn.

Although the approach in [9] seems to be the appropriate abstraction of the error control problem in

random network coding, one inherent difficulty is the absence of a natural group structure on the set of all

subspaces of the ambient spaceF
M
q . As a consequence, many of the powerful concepts of classical coding

theory such as group codes and linear codes do not naturally extend to codes consisting of subspaces.

In this paper, we explore the close relationship between subspace codes and codes for yet another

distance measure: the rank metric. Codewords of a rank metric code aren ×m matrices and the rank

distance between two matrices is the rank of their difference. The rank metric was introduced in coding

theory by Delsarte [10]. Codes for the rank metric were largely developed by Gabidulin [11] (see also

[10], [12]). An important feature of the coding theory for the rank metric is that it supports many of

the powerful concepts and techniques of classical coding theory, such as linear and cyclic codes and

corresponding decoding algorithms [11]–[14].

One main contribution of this paper is to show that codes in the rank metric can be naturally “lifted” to

subspace codes in such a way that the rank distance between two codewords is reflected in the subspace

distance between their lifted images. In particular, nearly-optimal subspace codes can be obtained directly

from optimal rank-metric codes. Conversely, when lifted rank-metric codes are used, the decoding problem

for random network coding can be reformulated purely in rank-metric terms, allowing many of the tools

from the theory of rank-metric codes to be applied to random network coding.

In this reformulation, we obtain a generalized decoding problem for rank-metric codes that involves

not only ordinary rank errors, but also two additional phenomena that we callerasuresand deviations.

Erasures and deviations are dual to each other and correspond to partial information about the error

matrix, akin to the role played by symbol erasures in the Hamming metric. Here, an erasure corresponds

to the knowledge of an error location but not its value, whilea deviation correspond to the knowledge of

an error value but not its location. These concepts generalize similar concepts found in the rank-metric

literature under the terminology of “row and column erasures” [13], [15]–[18]. Although with a different
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terminology, the concept of a deviation (and of a code that can correct deviations) has appeared before

in [19].

Our second main contribution is an efficient decoding algorithm for rank-metric codes that takes into

account erasures and deviations. Our algorithm is applicable to Gabidulin codes [11], a class of codes,

analogous to conventional Reed-Solomon codes, that attainmaximum distance in the rank metric. We

show that our algorithm fully exploits the correction capability of Gabidulin codes; namely, it can correct

any pattern ofǫ errors,µ erasures andδ deviations provided2ǫ+µ+ δ ≤ d−1, whered is the minimum

rank distance of the code. Moreover, the complexity of our algorithm isO(dM) operations inFqn, which

is smaller than that of the algorithm in [9], especially for practical high-rate codes.

In the course of setting up the problem, we also prove a resultthat can be seen as complementary

to [9]; namely, we relate the performance guarantees of a subspace code with more concrete network

parameters such as the maximum number of corrupting packetsthat can be injected in the network. This

result provides a tighter connection between the subspace approach of [9] and previous approaches that

deal with link errors.

The remainder of this paper is organized as follows. In Section II, we provide a brief review of rank-

metric codes and subspace codes. In Section III, we describein more detail the problem of error control

in random network coding, along with Kötter and Kschischang’s approach to this problem. In Section IV,

we present our code construction and show that the resultingerror control problem can be replaced by a

generalized decoding problem for rank-metric codes. At this point, we turn our attention entirely to rank-

metric codes. The generalized decoding problem that we introduce is developed in more detail in Section

V, wherein the concepts of erasures and deviations are described and compared to related concepts in

the rank-metric literature. In Section VI, we present an efficient algorithm for decoding Gabidulin codes

in the presence of errors, erasures and deviations. Finally, Section VII contains our conclusions.

II. PRELIMINARIES

A. Notation

Let q ≥ 2 be a power of a prime. In this paper, all vectors and matrices have components in the finite

field Fq, unless otherwise mentioned. We useF
n×m
q to denote the set of alln×m matrices overFq and

we setFn
q = F

n×1
q . In particular,v ∈ F

n
q is a column vector andv ∈ F

1×m
q is a row vector.

If v is a vector, then the symbolvi denotes theith entry of v. If A is a matrix, then the symbolAi

denotes either theith row or theith column ofA; the distinction will always be clear from the way
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in which A is defined. In either case, the symbolAij always refers to the entry in theith row andjth

column ofA.

For clarity, thek× k identity matrix is denoted byIk×k. If we setI = In×n, then the notationIi will

denote theith column ofI. More generally, ifU ⊆ {1, . . . , n}, then IU = [Ii, i ∈ U ] will denote the

sub-matrix ofI consisting of the columns indexed byU .

The linear span of a set of vectorsv1, . . . , vk is denoted by〈v1, . . . , vk〉. The row space, the rank and

the number of nonzero rows of a matrixX are denoted by〈X〉, rank X andwt(X), respectively. The

reduced row echelon (RRE) form of a matrixX is denoted byRRE(X).

B. Properties of Matrix Rank and Subspace Dimension

Let X ∈ F
n×m
q . By definition, rank X = dim 〈X〉; however, there are many useful equivalent

characterizations. For example,rank X is the smallestr for which there exist matricesA ∈ F
n×r
q and

B ∈ F
r×m
q such thatX = AB, i.e.,

rank X = min
r,A∈Fn×r

q ,B∈Fr×m
q :

X=AB

r. (1)

It is well-known that, for anyX,Y ∈ F
n×m
q , we have

rank(X + Y ) ≤ rank X + rank Y (2)

and that, forX ∈ F
n×m
q andA ∈ F

N×n
q , we have

rank(AX) ≥ rank A+ rank X − n. (3)

Recall that ifU andV are subspaces of some fixed vector space, then the sum

U + V = {u+ v : u ∈ U, v ∈ V }

is the smallest subspace that contains bothU andV . Recall also that

dim(U + V ) = dim U + dim V − dim(U ∩ V ). (4)

We will make extensive use of the fact that
〈





X

Y





〉

= 〈X〉+ 〈Y 〉 (5)

and therefore

rank





X

Y



 = dim(〈X〉+ 〈Y 〉)

= rank X + rank Y − dim(〈X〉 ∩ 〈Y 〉). (6)
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C. Rank-Metric Codes

A matrix codeis defined as any nonempty subset ofF
n×m
q . A matrix code is also commonly known

as anarray codewhen it forms a linear space overFq [12].

A natural and useful distance measure between elements ofF
n×m
q is given in the following definition.

Definition 1: For X,Y ∈ F
n×m
q , the rank distancebetweenX and Y is defined asdR(X,Y ) ,

rank(Y −X).

As observed in [11], rank distance is indeed ametric. In particular, the triangle inequality for the rank

metric follows directly from (2). In the context of the rank metric, a matrix code is called arank-metric

code. The minimum (rank) distance of a rank-metric codeC ⊆ F
n×m
q is defined as

dR(C) , min
x,x′∈C
x6=x

′

dR(x,x
′).

Associated with every rank-metric codeC ⊆ F
n×m
q is the transposed codeCT ⊆ F

m×n
q , whose

codewords are obtained by transposing the codewords ofC, i.e.,CT = {xT : x ∈ C}. We have|CT | = |C|

anddR(C
T ) = dR(C). Observe the symmetry between rows and columns in the rank metric; the distinction

between a code and its transpose is in fact transparent to themetric.

A minimum distance decoder for a rank-metric codeC ⊆ F
n×m
q takes a wordr ∈ F

n×m
q and returns

a codewordx̂ ∈ C that is closest tor in rank distance, that is,

x̂ = argmin
x∈C

rank(r − x). (7)

Note that ifdR(x, r) < dR(C)/2, then a minimum distance decoder is guaranteed to returnx̂ = x.

Throughout this paper, problem (7) will be referred to as theconventionalrank decoding problem.

There is a rich coding theory for rank-metric codes that is analogous to the classical coding theory in

the Hamming metric. In particular, we mention the existenceof a Singleton bound [10], [11] (see also

[20] [21]), which states that every rank metric codeC ⊆ F
n×m
q with minimum distanced = dR(C) must

satisfy

logq |C| ≤ min{n(m− d+ 1), m(n− d+ 1)}

= max{n,m}(min{n,m} − d+ 1). (8)

Codes that achieve this bound are calledmaximum-rank-distance(MRD) codes. An extensive class of

MRD codes withn ≤ m was presented by Gabidulin in [11]. By transposition, MRD codes withn > m

can also be obtained. Thus, MRD codes exist for alln andm and alld ≤ min{n,m}, irrespectively of

the field sizeq.
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D. Subspace Codes

Let P(FM
q ) denote the set of all subspaces ofF

M
q . We review some concepts of the coding theory for

subspaces developed in [9].

Definition 2: Let V, V ′ ∈ P(FM
q ). The subspace distancebetweenV andV ′ is defined as

dS(V, V
′) , dim(V + V ′)− dim(V ∩ V ′)

= 2 dim(V + V ′)− dim V − dim V ′ (9)

= dim V + dim V ′ − 2 dim(V ∩ V ′). (10)

It is shown in [9] that the subspace distance is indeed a metric onP(FM
q ).

A subspace codeis defined as a nonempty subset ofP(FM
q ). The minimum (subspace) distance of a

subspace codeΩ ⊆ P(FM
q ) is defined as

dS(Ω) , min
V,V ′∈Ω
V 6=V ′

dS(V, V
′).

The minimum distance decoding problem for a subspace code isto find a subspacêV ∈ Ω that is

closest to a given subspaceU ∈ P(FM
q ), i.e.,

V̂ = argmin
V ∈Ω

dS(V,U). (11)

A minimum distance decoder is guaranteed to returnV̂ = V if dS(V,U) < dS(Ω)/2.

Let P(FM
q , n) denote the set of alln-dimensional subspaces ofFM

q . A subspace codeΩ is called a

constant-dimension code ifΩ ⊆ P(FM
q , n). It follows from (9) or (10) that the minimum distance of a

constant-dimension code is always an even number.

Let Aq[M, 2d, n] be denote the maximum number of codewords in a constant-dimension code with

minimum subspace distance2d. Many bounds onAq[M, 2d, n] were developed in [9], in particular the

Singleton-like bound

Aq[M, 2d, n] ≤





M − d+ 1

max{n,M − n}





q

(12)

where
[

M

n

]

q

,
(qM − 1) · · · (qM−n+1 − 1)

(qn − 1) · · · (q − 1)

denotes theGaussian coefficient. It is well known that the Gaussian coefficient gives the number of

distinct n-dimensional subspaces of anM -dimensional vector space overFq, i.e.,
[

M
n

]

q
= |P(FM

q , n)|.
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A useful bound on
[

M
n

]

q
is given by [9, Lemma 5]

[

M

n

]

q

< 4qn(M−n). (13)

Combining (12) and (13) gives

Aq[M, 2d, n] < 4qmax{n,M−n}(min{n,M−n}−d+1). (14)

There exist also bounds onAq[M, 2d, n] that are tighter than (12), namely the Wang-Xing-Safavi-Naini

bound [22] and a Johnson-type bound [23].

For future reference, we define thesub-optimalityof a constant-dimension codeΩ ⊆ P(FM
q , n) with

dS(Ω) = 2d to be

α(Ω) ,
logq Aq[M, 2d, n] − logq |Ω|

logq Aq[M, 2d, n]
. (15)

III. E RROR CONTROL IN RANDOM NETWORK CODING

A. Channel Model

We start by reviewing the basic model for single-source generation-based random linear network

coding [2], [3]. Consider a point-to-point communication network with a single source node and a single

destination node. Each link in the network is assumed to transport, free of errors, a packet ofM symbols

in a finite field Fq. Links are directed, incidentfrom the node transmitting the packet and incidentto

the node receiving the packet. A packet transmitted on a linkincident to a given node is said to be an

incoming packetfor that node, and similarly a packet transmitted on a link incident from a given node

is said to be anoutgoing packetfor that node.

During each transmission generation, the source node formats the information to be transmitted inton

packetsX1, . . . ,Xn ∈ F
1×M
q , which are regarded as incoming packets for the source node.Whenever a

node (including the source) has a transmission opportunity, it produces an outgoing packet as a random

Fq-linear combination of all the incoming packets it has untilthen received. The destination node collects

N packetsY1, . . . , YN ∈ F
1×M
q and tries to recover the original packetsX1, . . . ,Xn.

Let X be ann ×M matrix whose rows are the transmitted packetsX1, . . . ,Xn and, similarly, let

Y be anN ×M matrix whose rows are the received packetsY1, . . . , YN . Since all packet operations

are linear overFq, then, regardless of the network topology, the transmittedpacketsX and the received

packetsY can be related as

Y = AX, (16)

whereA is anN × n matrix corresponding to the overall linear transformationapplied by the network.
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Before proceeding, we remark that this model encompasses a variety of situations:

• The network may have cycles or delays. Since the overall system is linear, expression (16) will be

true regardless of the network topology.

• The network could be wireless instead of wired. Broadcast transmissions in wireless networks may

be modeled by constraining each intermediate node to send exactly the same packet on each of its

outgoing links.

• The source node may transmit more than onegeneration(a set ofn packets). In this case, we assume

that each packet carries a label identifying the generationto which it corresponds and that packets

from different generations are processed separately throughout the network [2].

• The network topology may be time-varying as nodes join and leave and connections are established

and lost. In this case, we assume that each network link is theinstantiation of an actual successful

packet transmission.

• The network may be used for multicast, i.e., there may be morethan one destination node. Again,

expression (16) applies; however, the matrixA may be different for each destination.

Let us now extend this model to incorporate packet errors. Following [4]–[6], we consider that packet

errors may occur in any of the links of the network. Suppose the links in the network are indexed from

1 to ℓ, and letZi denote the error packet applied at linki ∈ {1, . . . , ℓ}. The application of an error

packet is modeled as follows. We assume that, for each linki, the node transmitting on that link first

creates a prescribed packetPin,i ∈ F
1×M
q following the procedure described above. Then, an error packet

Zi ∈ F
1×M
q is added toPin,i in order to produce the outgoing packet on this link, i.e.,Pout,i = Pin,i+Zi.

Note that any arbitrary packetPout,i can be formed simply by choosingZi = Pout,i − Pin,i.

Let Z be anℓ×M matrix whose rows are the error packetsZ1, . . . , Zℓ. By linearity of the network,

we can write

Y = AX +BZ, (17)

whereB is anN × ℓ matrix corresponding to the overall linear transformationapplied toZ1, . . . , Zℓ on

route to the destination. Note thatZi = 0 means that no corrupt packet was injected at linki. Thus, the

number of nonzero rows ofZ, wt(Z), gives the total number of (potentially) corrupt packets injected in

the network. Note that it is possible that a nonzero error packet happens to be in the row space ofX, in

which case it is not really a corrupt packet.

Observe that this model can represent not only the occurrence of random link errors, but also the

action of malicious nodes. A malicious node can potentiallytransmit erroneous packets on all of its
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outgoing links. A malicious node may also want to disguise itself and transmit correct packets on some

of these links, or may simply refuse to transmit some packet (i.e., transmitting an all-zero packet), which

is represented in the model by settingZi = −Pin,i. In any case,wt(Z) gives the total number of “packet

interventions” performed by all malicious nodes and thus gives a sense of the total adversarial “power”

employed towards jamming the network.

Equation (17) is our basic model of a channel induced by random linear network coding, and we

will refer to it as therandom linear network coding channel(RLNCC). The channel input and output

alphabets are given byFn×M
q andF

N×M
q , respectively. To give a full probabilistic specification of the

channel, we would need to specify the joint probability distribution of A, B andZ givenX. We will

not pursue this path in this paper, taking, instead, a more combinatorial approach.

B. Transmission via Subspace Selection

Let Ω ⊆ P(FM
q ) be a subspace code with maximum dimensionn. In the approach in [9], the source

node selects a subspaceV ∈ Ω and transmits this subspace over the RLNCC as some matrixX ∈ F
n×M
q

such thatV = 〈X〉. The destination node receivesY ∈ F
N×M
q and computesU = 〈Y 〉, from which the

transmitted subspace can be inferred using a minimum distance decoder (11).

In this paper, it will be convenient to view the above approach from a matrix perspective. In order to

do that, we simply replaceΩ by an (arbitrarily chosen) matrix code that generatesΩ. More precisely, let

[Ω] , {X ∈ F
n×M
q : X = RRE(X), 〈X〉 ∈ Ω} be a matrix code consisting of all then×M matrices in

RRE form whose row space is inΩ. Now, the above setup can be reinterpreted as follows. The source

node selects a matrixX ∈ [Ω] to transmit over the RLNCC. Upon reception ofY , the destination node

tries to infer the transmitted matrix using the minimum distance decoding rule

X̂ = argmin
X∈[Ω]

dS(〈X〉 , 〈Y 〉). (18)

Note that the decoding is guaranteed to be successful ifdS(〈X〉 , 〈Y 〉) < dS(Ω)/2.

C. Performance Guarantees

In this subsection, we wish to relate the performance guarantees of a subspace code with more concrete

network parameters. Still, we would like these parameters to be sufficiently general so that we do not

need to take the whole network topology into account.

We make the following assumptions:

• The column-rank deficiency of the transfer matrixA is never greater thanρ, i.e., rank A ≥ n− ρ.
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• The adversarial nodes together can inject at mostt corrupting packets, i.e.,wt(Z) ≤ t.

The following result characterizes the performance guarantees of a subspace code under our assump-

tions.

Theorem 1:Supposerank A ≥ n− ρ andwt(Z) ≤ t. Then, decoding according to (18) is guaranteed

to be successful provided2t+ ρ < dS(Ω)/2.

In order to prove Theorem 1, we need a few results relating rank and subspace distance.

Proposition 2: Let X,Y ∈ F
N×M
q . Then

rank





X

Y



 ≤ rank(Y −X) + min{rank X, rank Y }.

Proof: We have

rank





X

Y



 = rank





X

Y −X



 ≤ rank(Y −X) + rank X

rank





X

Y



 = rank





Y −X

Y



 ≤ rank(Y −X) + rank Y.

Corollary 3: Let X,Z ∈ F
N×M
q andY = X + Z. Then

dS(〈X〉 , 〈Y 〉) ≤ 2 rank Z − | rank X − rank Y |.

Proof: From Proposition 2, we have

dS(〈X〉 , 〈Y 〉) = 2 rank





X

Y



− rank X − rank Y

≤ 2 rank Z + 2min{rank X, rank Y }

− rank X − rank Y

= 2 rank Z − | rank X − rank Y |.

We can now give a proof of Theorem 1.

Proof of Theorem 1:From Corollary 3, we have that

dS(〈AX〉 , 〈Y 〉) ≤ 2 rank BZ ≤ 2 rank Z ≤ 2wt(Z) ≤ 2t.
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Using (3), we find that

dS(〈X〉 , 〈AX〉) = rank X − rank AX ≤ n− rank A ≤ ρ.

SincedS(·, ·) satisfies the triangle inequality, we have

dS(〈X〉 , 〈Y 〉) ≤ dS(〈X〉 , 〈AX〉) + dS(〈AX〉 , 〈Y 〉)

≤ ρ+ 2t

<
dS(Ω)

2

and therefore the decoding is guaranteed to be successful.

Theorem 1 is analogous to Theorem 2 in [9], which states that minimum subspace distance decoding

is guaranteed to be successful if2(µ + δ) < dS(Ω), where δ and µ are, respectively, the number of

“insertions” and “deletions” of dimensions that occur in the channel [9]. Intuitively, since one corrupted

packet injected at a network min-cut can effectively replace a dimension of the transmitted subspace, we

see thatt corrupted packets can causet deletions andt insertions of dimensions. Combined with possible

ρ further deletions caused by a row-rank deficiency ofA, we have thatδ = t andµ = t+ ρ. Thus,

δ + µ <
dS(Ω)

2
=⇒ 2t+ ρ <

dS(Ω)

2
.

In other words, under the condition that corrupt packets maybe injected in any of the links in network

(which must be assumed if we do not wish to take the network topology into account), the performance

guarantees of a minimum distance decoder are essentially given by Theorem 1.

It is worth to mention that, according to recent results [24], minimum subspace distance decoding may

not be the optimal decoding rule when the subspaces inΩ have different dimensions. For the remainder

of this paper, however, we focus on the case of a constant-dimension code and therefore we use the

minimum distance decoding rule (18). Our goal will be to construct constant-dimension subspace codes

with good performance and efficient encoding/decoding procedures.

IV. CODES FOR THERANDOM L INEAR NETWORK CODING CHANNEL BASED ON RANK -METRIC

CODES

In this section, we show how a constant-dimension subspace code can be constructed from any rank-

metric code. In particular, this construction will allow usto obtain nearly-optimal subspace codes that

possess efficient encoding and decoding algorithms.
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A. Lifting Construction

From now on, assume thatM = n+m, wherem > 0. Let I = In×n.

Definition 3: Let I : Fn×m
q → P(Fn+m

q ), given byx 7→ I(x) =
〈[

I x

]〉

. The subspaceI(x) is

called thelifting of the matrixx. Similarly, if C ⊆ F
n×m
q is a rank-metric code, then the subspace code

I(C), obtained by lifting each codeword ofC, is called thelifting of C.

Definition 3 provides an injective mapping between rank-metric codes and subspace codes. Note that

a subspace code constructed by lifting is always a constant-dimension code (with codeword dimension

n).

Although the lifting construction is a particular way of constructing subspace codes, it can also be

seen as a generalization of the standard approach to random network coding [2], [3]. In the latter, every

transmitted matrix has the formX = [I x], where the payload matrixx ∈ F
n×m
q corresponds to the

raw data to be communicated. In our approach, each transmitted matrix is also of the formX = [I x],

but the payload matrixx ∈ C is restricted to be a codeword of a rank-metric code rather than uncoded

data.

Our reasons for choosingC to be a rank-metric code will be made clear from the followingproposition.

Proposition 4: Let C ⊆ F
n×m
q andx,x′ ∈ C. Then

dS(I(x),I(x
′)) = 2dR(x,x

′)

dS(I(C)) = 2dR(C).

Proof: Sincedim I(x) = dim I(x′) = n, we have

dS(I(x),I(x
′)) = 2 dim(I(x) + I(x′))− 2n

= 2 rank





I x

I x′



− 2n

= 2 rank





I x

0 x′ − x



− 2n

= 2 rank(x′ − x).

The second statement is immediate.

Proposition 4 shows that a subspace code constructed by lifting inherits the distance properties of its

underlying rank-metric code. The question of whether such lifted rank-metric codes are “good” compared

to the whole class of constant-dimension codes is addressedin the following proposition.
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Proposition 5: Let C ⊆ F
n×m
q be an MRD code withdR(C) = d. ThendS(I(C)) = 2d and

Aq[n+m, 2d, n] < 4|I(C)| = 4|C|.

Moreover, for any code parameters, the sub-optimality ofI(C) in P(Fn+m
q , n) satisfies

α(I(C)) <
4

(n+m) log2 q
.

Proof: Using (14) and the fact thatC achieves the Singleton bound for rank-metric codes (8), we

have

Aq[n+m, 2d, n] < 4qmax{n,m}(min{n,m}−d+1)

= 4|C|.

Applying this result in (15), we obtain

α(I(C)) <
logq 4

max{n,m}(min{n,m} − d+ 1)

≤
logq 4

max{n,m}

≤
logq 4

(n+m)/2

=
4

(n+m) log2 q
.

Proposition 5 shows that, for all practical purposes, lifted MRD codes are essentially optimal as

constant-dimension codes. Indeed, the rate loss in using a lifted MRD code rather than an optimal

constant-dimension code is smaller than4/P , whereP = (n +m) log2 q is the packet size in bits. In

particular, for packet sizes of 50 bytes or more, the rate loss is smaller than 1%.

In this context, it is worth mentioning that the nearly-optimal Reed-Solomon-like codes proposed in

[9] correspond exactly to the lifting of the class of MRD codes proposed by Gabidulin [11]. The latter

will be discussed in more detail in Section VI.

B. Decoding

We now specialize the decoding problem (18) to the specific case of lifted rank-metric codes. We will

see that it is possible to reformulate such a problem in a way that resembles the conventional decoding

problem for rank-metric codes, but with additional side-information presented to the decoder.
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Let the transmitted matrix be given byX = [I x], wherex ∈ C and C ⊆ F
n×m
q is a rank-metric

code. Write the received matrix as

Y = [Â y]

whereÂ ∈ F
N×n
q andy ∈ F

N×m
q . In accordance with the formulation of Section III-B, we assume that

rank Y = N , since any linearly dependent received packets do not affect the decoding problem and may

be discarded by the destination node. Now, define

µ , n− rank Â and δ , N − rank Â.

Hereµ measures the rank deficiency ofÂ with respect to columns, whileδ measures the rank deficiency

of Â with respect to rows.

Before examining the general problem, we study the simple special case that arises whenµ = δ = 0.

Proposition 6: If µ = δ = 0, then

dS(〈X〉 , 〈Y 〉) = 2dR(x, r)

wherer = Â−1y.

Proof: Since µ = δ = 0, Â is invertible. Thus,Ȳ = [I Â−1y] is row equivalent toY , i.e.,
〈

Ȳ
〉

= 〈Y 〉. Applying Proposition 4, we get the desired result.

The above proposition shows that, wheneverÂ is invertible, a solution to (18) can be found by solving

the conventional rank decoding problem. This case is illustrated by the following example.

Example 1:Let n = 4 andq = 5. Let x1, . . . , x4 denote the rows of a codewordx ∈ C. Suppose that

A =

















2 4 2 4

0 0 3 3

1 0 4 3

0 4 1 4

















,

B =
[

4 0 1 0
]T

andZ =
[

1 2 3 4 z
]

. Then

Y =

















1 2 4 0 2x1 + 4x2 + 2x3 + 4x4 + 4z

0 0 3 3 3x3 + 3x4

2 2 2 2 x1 + 4x3 + 3x4 + z

0 4 1 4 4x2 + x3 + 4x4

















.

ConvertingY to RRE form, we obtain

Ȳ =
[

I r

]

(19)
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where

r =

















3x2 + 2x3 + x4 + z

3x1 + 2x2 + 4x3 + 2x4 + 2z

4x1 + 3x2 + 3x3 + x4 + z

x1 + 2x2 + 3x3 + 4z

















.

Note that, if no errors had occurred, we would expect to findr = x.

Now, observe that we can write

r =

















x1

x2

x3

x4

















+

















1

2

1

4

















[

4x1 + 3x2 + 2x3 + x4 + z
]

.

Thus,rank(r − x) = 1. We can think of this as an error worde = r − x of rank 1 applied tox. This

error can be corrected ifdR(C) ≥ 3.

Let us now proceed to the general case, whereÂ is not necessarily invertible. We first examine a

relatively straightforward approach that, however, leadsto an unattractive decoding problem.

Similarly to the proof of Proposition 6, it is possible to show that

dS(〈X〉 , 〈Y 〉) = 2 rank(y − Âx) + µ− δ

which yields the following decoding problem:

x̂ = argmin
x∈C

rank(y − Âx). (20)

If we define a new codeC′ = ÂC = {Âx, x ∈ C}, then a solution to (20) can be found by first solving

x̂′ = argmin
x

′∈C′

rank(y − x′)

using a conventional rank decoder forC′ and then choosing anŷx ∈ {x | Âx = x̂′} as a solution.

An obvious drawback of this approach is that it requires a newcodeC′ to be used at each decoding

instance. This is likely to increase the decoding complexity, since the existence of an efficient algorithm

for C does not imply the existence of an efficient algorithm forC′ = ÂC for all Â. Moreover, even if

efficient algorithms are known for allC′, running a different algorithm for each received matrix maybe

impractical or undesirable from an implementation point-of-view.

In the following, we seek an expression fordS(〈X〉 , 〈Y 〉) where the structure ofC can be exploited. In

order to motivate our approach, we consider the following two examples, which generalize Example 1.
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Example 2:Let us return to Example 1, but now suppose

A =























1 0 2 3

1 3 0 3

1 4 0 3

2 0 4 0

1 1 2 4























,

B =
[

4 0 1 0 0
]T

andZ =
[

1 2 3 4 z
]

. Then

Y =























0 3 4 4 x1 + 2x3 + 3x4 + 4z

1 3 0 3 x1 + 3x2 + 3x4

2 1 3 2 x1 + 4x2 + 3x4 + z

2 0 4 0 2x1 + 4x3

1 1 2 4 x1 + x2 + 2x3 + 4x4























=
[

Â y

]

.

Although Â is not invertible, we can nevertheless convertY to RRE form to obtain

Ȳ =





I r

0 Ê



 (21)

where

r =

















2x1 + 2x2 + 3x3 + 4x4 + 4z

4x1 + 4x2 + 2x3 + x4 + z

2x1 + 4x2 + 2x3 + 3x4 + 3z

3x1 + x2 + 4x3 + 3x4 + 2z

















and

Ê = 2x1 + 4x2 + x3 + 3x4 + 3z.

Observe that

e = r − x =

















x1 + 2x2 + 3x3 + 4x4 + 4z

4x1 + 3x2 + 2x3 + x4 + z

2x1 + 4x2 + x3 + 3x4 + 3z

3x1 + x2 + 4x3 + 2x4 + 2z

















=

















3

2

1

4

















Ê.

Thus, we see not only thatrank e = 1, but we have also recovered part of its decomposition as an outer

product, namely, the vector̂E.
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Example 3:Consider again the parameters of Example 1, but now let

A =











3 2 1 1

0 4 3 2

2 1 0 4











and suppose that there are no errors. Then

Y =











3 2 1 1 3x1 + 2x2 + x3 + x4

0 4 3 2 4x2 + 3x3 + 2x4

2 1 0 4 2x1 + x2 + 4x4











=
[

Â y

]

.

Once again we cannot invert̂A; however, after convertingY to RRE form and inserting an all-zero row

in the third position, we obtain

Ŷ =

















1 0 4 0 x1 + 4x3

0 1 2 0 x2 + 2x3

0 0 0 0 0

0 0 0 1 x4

















=

















1 0 4 0 x1 + 4x3

0 1 2 0 x2 + 2x3

0 0 1− 1 0 x3 − x3

0 0 0 1 x4

















=
[

I + L̂IT3 x+ L̂x3

]

=
[

I + L̂IT3 r

]

(22)

where

L̂ =

















4

2

−1

0

















.

Once again we see that the error word has rank 1, and that we have recovered part of its decomposition

as an outer product. Namely, we have

e = r − x = L̂x3

where this timeL̂ is known.
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Having seen from these two examples how side information (partial knowledge of the error matrix)

arises at the output of the RLNCC, we address the general casein the following proposition.

Proposition 7: LetY , µ andδ be defined as above. There exist a tuple(r, L̂, Ê) ∈ F
n×m
q ×F

n×µ
q ×F

δ×m
q

and a setU ⊆ {1, . . . , n} satisfying

|U| = µ (23)

ITU r = 0 (24)

ITU L̂ = −Iµ×µ (25)

rank Ê = δ (26)

such that
〈





I + L̂ITU r

0 Ê





〉

= 〈Y 〉 . (27)

Proof: See the Appendix.

Proposition 7 shows that every matrixY is row equivalent to a matrix

Ȳ =





I + L̂ITU r

0 Ê





which is essentially the matrixY in reduced row echelon form. Equations (19), (21) and (22) are examples

of matrices in this form. We can think of the matricesr, L̂ andÊ and the setU as providing a compact

description of the received subspace〈Y 〉. The setU is in fact redundant and can be omitted from the

description, as we show in the next proposition.

Proposition 8: Let (r, L̂, Ê) ∈ F
n×m
q × F

n×µ
q × F

δ×m
q be a tuple andU ⊆ {1, . . . , n} be a set that

satisfy (23)–(26). For anyS ⊆ {1, . . . , n}, T ∈ F
µ×µ
q andR ∈ F

δ×δ
q such that(r, L̂T,RÊ) andS satisfy

(23)–(26), we have
〈





I + L̂T ITS r

0 RÊ





〉

=

〈





I + L̂ITU r

0 Ê





〉

.

Proof: See the Appendix.

Proposition 8 shows that, given a tuple(r, L̂, Ê) obtained from Proposition 7, the setU can be found

asanyset satisfying (23)–(25). Moreover, the matrixL̂ can be multiplied on the right by any nonsingular

matrix (provided that the resulting matrix satisfies (23)–(25) for someU ), and the matrixÊ can be

multiplied on the left by any nonsingular matrix; none of these operations change the subspace described

by (r, L̂, Ê). The notion of a concise description of a subspace〈Y 〉 is captured in the following definition.
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Definition 4: A tuple (r, L̂, Ê) ∈ F
n×m
q × F

n×µ
q × F

δ×m
q that satisfies (23)–(27) for someU ⊆

{1, . . . , n} is said to be areductionof the matrixY .

Remark 1: It would be enough to specify, besides the matrixr, only the column space of̂L and the

row space ofÊ in the definition of a reduction. For simplicity we will, however, not use this notation

here.

Note that ifY is a lifting of r, then(r, [], []) is a reduction ofY (where[] denotes an empty matrix).

Thus, reduction can be interpreted as the inverse of lifting.

We can now prove the main theorem of this section.

Theorem 9:Let (r, L̂, Ê) be a reduction ofY . Then

dS(〈X〉 , 〈Y 〉) = 2 rank





L̂ r − x

0 Ê



− (µ+ δ).

Proof: See the Appendix.

A consequence of Theorem 9 is that, under the lifting construction, the decoding problem (18) for

random network coding can be abstracted to a generalized decoding problem for rank-metric codes. More

precisely, if we cascade an RLNCC, at the input, with a devicethat takesx to its lifting X =
[

I x

]

and, at the output, with a device that takesY to its reduction(r, L̂, Ê), then the decoding problem (18)

reduces to the following problem:

Generalized Decoding Problem for Rank-Metric Codes: Let C ⊆ F
n×m
q be a rank-metric code. Given

a received tuple(r, L̂, Ê) ∈ F
n×m
q × F

n×µ
q × F

δ×m
q with rank L̂ = µ andrank Ê = δ, find

x̂ = argmin
x∈C

rank





L̂ r − x

0 Ê



 . (28)

The problem above will be referred to as the generalized decoding problem for rank-metric codes, or

generalized rank decoding for short. Note that the conventional rank decoding problem (7) corresponds

to the special case whereµ = δ = 0.

The remainder of this paper is devoted to the study of the generalized rank decoding problem and to

its solution in the case of MRD codes.
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V. A GENERALIZED DECODING PROBLEM FORRANK -METRIC CODES

In this section, we develop a perspective on the generalizedrank decoding problem that will prove

useful to the understanding of the correction capability ofrank-metric codes, as well as to the formulation

of an efficient decoding algorithm.

A. Error Locations and Error Values

Let C ∈ F
n×m
q be a rank-metric code. For a transmitted codewordx and a received wordr, define

e , r − x as the error word.

Note that if an error worde has rankτ , then we can writee = LE for some full-rank matricesL ∈ F
n×τ
q

andE ∈ F
τ×m
q , as in (1). LetL1, . . . , Lτ ∈ F

n
q denote the columns ofL and letE1, . . . , Eτ ∈ F

1×m
q

denote the rows ofE. Then we can expande as a summation of outer products

e = LE =
τ

∑

j=1

LjEj . (29)

We will now borrow some terminology from classical coding theory. Recall that an error vectore ∈ F
n
q

of Hamming weightτ can be expanded uniquely as a sum of products

e =
τ

∑

j=1

Iijej

where1 ≤ i1 < · · · < iτ ≤ n and e1, . . . , eτ ∈ Fq. The indexij (or the unit vectorIij ) specifies the

location of the jth error, whileej specifies thevalueof the jth error.

Analogously, in the sum-of-outer-products expansion (29)we will refer to L1, . . . , Lτ as theerror

locationsand toE1, . . . , Eτ as theerror values. The locationLj (a column vector) indicates that, for

i = 1, . . . , n, the jth error valueEj (a row vector) occurred in rowi multiplied by the coefficientLij.

Of course,Lij = 0 means that thejth error value is not present in rowi.

Note that, in contrast to the classical case, the distinction between error locations and error values in

the rank metric is merely a convention. If we prefer to think of errors as occurring on columns rather

than rows, then the roles ofLj andEj would be interchanged. The same observation will also applyto

any concept derived from the interpretation of these quantities as error locations and error values.

It is important to mention that, in contrast with classical coding theory, the expansion (29) is not

unique, since

e = LE = LT−1TE

for any nonsingularT ∈ F
τ×τ
q . Thus, strictly speaking,L1, . . . , Lτ andE1, . . . , Eτ are just one possible

set of error locations/values describing the error worde.
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B. Erasures and Deviations

We now reformulate the generalized rank decoding problem ina way that facilitates its understanding

and solution.

First, observe that the problem (28) is equivalent to the problem of finding an error word̂e, given by

ê = argmin
e∈r−C

rank





L̂ e

0 Ê



 , (30)

from which the output of the decoder can be computed asx̂ = r − ê.

Proposition 10: Let e ∈ F
n×m
q , L̂ ∈ F

n×µ
q and Ê ∈ F

δ×n
q . The following statements are equivalent:

1) τ∗ = rank





L̂ e

0 Ê



 .

2) τ∗ − µ− δ is the minimum value of

rank(e− L̂E(1) − L(2)Ê)

for all E(1) ∈ F
µ×m
q and allL(2) ∈ F

n×δ
q .

3) τ∗ is the minimum value ofτ for which there existL1, . . . , Lτ ∈ F
n
q andE1, . . . , Eτ ∈ F

1×m
q

satisfying:

e =
τ

∑

j=1

LjEj

Lj = L̂j, j = 1, . . . , µ

Eµ+j = Êj, j = 1, . . . , δ.

Proof: See the Appendix.

With the help of Proposition 10, the influence ofL̂ andÊ in the decoding problem can be interpreted

as follows. Supposee ∈ r−C is the unique solution to (30). Thene can be expanded ase =
∑τ

j=1 LjEj,

whereL1, . . . , Lµ andEµ+1, . . . , Eµ+δ areknownto the decoder. In other words, the decoding problem

is facilitated, since the decoder has side information about the expansion ofe.

Recall the terminology of Section V-A. Observe that, forj ∈ {1, . . . , µ}, the decoder knows the

location of the jth error term but not its value, while forj ∈ {µ+1, . . . , µ+ δ}, the decoder knows the

value of the jth error term but not its location. Since in classical codingtheory knowledge of an error

location but not its value corresponds to an erasure, we willadopt a similar terminology here. However

we will need to introduce a new term to handle the case where the value of an error is known, but not

its location. In the expansion (29) of the error word, each term LjEj will be called
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• an erasure, if Lj is known;

• a deviation, if Ej is known; and

• a full error (or simply anerror), if neitherLj nor Ej are known.

Collectively, erasures, deviations and errors will be referred to as “errata.” We say that an errata pattern

is correctablewhen (28) has a unique solution equal to the original transmitted codeword.

The following theorem characterizes the errata-correction capability of rank-metric codes.

Theorem 11:A rank-metric codeC ⊆ F
n×m
q of minimum distanced is able to correct every pattern

of ǫ errors,µ erasures andδ deviations if and only if2ǫ+ µ+ δ ≤ d− 1.

Proof: Let x ∈ C be a transmitted codeword and let(r, L̂, Ê) ∈ F
n×m
q × F

n×µ
q × F

δ×m
q be a

received tuple such thatrank





L̂ r − x

0 Ê



 = µ + δ + ǫ. Supposex′ ∈ C is another codeword such that

rank





L̂ r − x′

0 Ê



 = µ+ δ + ǫ′, whereǫ′ ≤ ǫ. From Proposition 10, we can write

e = r − x = L̂E(1) + L(2)Ê + L(3)E(3)

e′ = r − x′ = L̂E(4) + L(5)Ê + L(6)E(6)

for someE(1), L(2), . . . , E(6) with appropriate dimensions such thatrank L(3)E(3) = ǫ andrank L(6)E(6) =

ǫ′.

Thus,

e− e′ = L̂(E(1) − E(4)) + (L(2) − L(5))Ê + L(3)E(3) + L(6)E(6)

and

rank(x′ − x) = rank(e− e′) ≤ µ+ δ + ǫ+ ǫ′ ≤ d− 1

contradicting the minimum distance of the code.

Conversely, letx,x′ ∈ C be two codewords such thatrank(x′ − x) = d. For all µ, δ andǫ such that

µ+ δ + 2ǫ ≥ d, we can write

x′ − x = L(1)E(1) + L(2)E(2) + L(3)E(3) + L(4)E(4)

where the four terms above have inner dimensions equal toµ, δ, ǫ andǫ′ = d− µ− δ − ǫ, respectively.

Let

e = L(1)E(1) + L(2)E(2) + L(3)E(3)

e′ = −L(4)E(4)
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and observe thatx′ − x = e− e′. Let r = x+ e = x′ + e′, L̂ = L(1) andÊ = E(2). Suppose thatx is

transmitted and the tuple(r, L̂, Ê) is received. Then

rank





L̂ r − x

0 Ê



 = rank





L̂ e

0 Ê



 = µ+ δ + ǫ

rank





L̂ r − x′

0 Ê



 = rank





L̂ e′

0 Ê



 = µ+ δ + ǫ′.

Sinceǫ′ = d − µ − δ − ǫ ≤ ǫ, it follows thatx cannot be the unique solution to (28) and therefore the

errata pattern cannot be corrected.

Theorem 11 shows that, similarly to erasures in the Hamming metric, erasures and deviations cost half

of an error in the rank metric.

Theorem 11 also shows that taking into account information about erasures and deviations (when they

occur) can strictly increase the error correction capability of a rank-metric code. Indeed, suppose that an

error word of rankt = µ+ δ+ ǫ is applied to a codeword, whereµ, δ andǫ are the number of erasures,

deviations and full errors, respectively, in the errata pattern. It follows that a conventional rank decoder

(which ignores the information about erasures and deviations) can only guarantee successful decoding if

2t ≤ d − 1, whered is the minimum rank distance of the code. On the other hand, a generalized rank

decoder requires only2ǫ+µ+δ ≤ d−1, or 2t ≤ d−1+µ+δ, in order to guarantee successful decoding.

In this case, the error correction capability is increased by (µ + δ)/2 if a generalized rank decoder is

used instead of a conventional one.

We conclude this section by comparing our generalized decoding problem with previous decoding

problems proposed for rank-metric codes.

There has been a significant amount of research on the problemof correcting rank errors in the presence

of “row and column erasures” [13], [15]–[18], where a row erasure means that all entries of that row are

replaced by an erasure symbol, and similarly for a column erasure. The decoding problem in this setting

is naturally defined as finding a codeword such that, when the erased entries in the received word are

replaced by those of the codeword, the difference between this new matrix and the codeword has the

smallest possible rank. We now show that this problem is a special case of (28).

First, we force the received wordr to be inFn×m
q by replacing each erasure symbol with an arbitrary

symbol inFq, say0. Suppose that the rowsi1, . . . , iµ and the columnsk1, . . . , kδ have been erased. Let

L̂ ∈ F
n×µ
q be given byL̂ij ,j = 1 and L̂i,j = 0, ∀i 6= ij , for j = 1, . . . , µ and letÊ ∈ F

δ×m
q be given by
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Êj,kj
= 1 and Êj,k = 0, ∀k 6= kj , for j = 1, . . . , δ. Since





L̂ r − x

0 Ê



 =





L̂ r

0 Ê



−





0 x

0 0



 (31)

it is easy to see that we can perform column operations on (31)to replace the erased rows ofr with the

same entries asx, and similarly we can perform row operations on (31) to replace the erased columns of

r with the same entries asx. The decoding problem (28) is unchanged by these operationsand reduces

exactly to the decoding problem with “row and column erasures” described in the previous paragraph.

An example is given below.

Example 4:Let n = m = 3. Suppose the third row and the second column have been erasedin the

received word. Then

r =











r11 0 r13

r21 0 r23

0 0 0











, L̂ =











0

0

1











, Ê =
[

0 1 0
]

.

Since
















0 r11 0 r13

0 r21 0 r23

1 0 0 0

0 0 1 0

















and

















0 r11 x12 r13

0 r21 x22 r23

1 x31 x32 x33

0 0 1 0

















are row equivalent, we obtain that

rank





L̂ r − x

0 Ê



 = rank

















0 r11 − x11 0 r13 − x13

0 r21 − x21 0 r23 − x23

1 0 0 0

0 0 1 0

















= 2 + rank











r11 − x11 0 r13 − x13

r21 − x21 0 r23 − x23

0 0 0











which is essentially the same objective function as in the decoding problem with “row and column

erasures” described above.

While row/column erasures are a special case of erasures/deviations, it also true that the latter can

always be transformed into the former. This can be accomplished by multiplying all rank-metric codewords

to the left and to the right by nonsingular matrices in such a way that the correspondinĝLj andÊj become
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unit vectors. The drawback of this approach, as pointed out in Section IV-B, is that the structure of the

code is changed at each decoding instance, which may raise complexity and/or implementation issues.

Thus, it is practically more advantageous to fix the structure of the code and construct a decoder that

can handle the generalized notions of erasures and deviations. This is the approach we take in the next

section.

VI. D ECODING GABIDULIN CODES WITH ERRORS, ERASURES ANDDEVIATIONS

In this section, we turn our attention to the design of an efficient rank decoder that can correct any

pattern ofǫ errors,µ erasures andδ deviations satisfying2ǫ+ µ+ δ ≤ d− 1, whered is the minimum

rank distance of the code. Our decoder is applicable to Gabidulin codes, a class of MRD codes proposed

in [11].

A. Preliminaries

Rank-metric codes inFn×m
q are typically constructed as block codes of lengthn over the extension

field Fqm . More precisely, by fixing a basis forFqm as anm-dimensional vector space overFq, we

can regard any element ofFqm as arow vector of lengthm overFq (and vice-versa). Similarly, we can

regard anycolumnvector of lengthn overFqm as ann×m matrix overFq (and vice-versa). All concepts

previously defined for matrices inFn×m
q can be naturally applied to vectors inFn

qm ; in particular, the

rank of a vectorx ∈ F
n
qm is the rank ofx as ann×m matrix overFq.

1) Gabidulin Codes:In order to simplify notation, let[i] denoteqi. A Gabidulin code is a linear(n, k)

code overFqm defined by the parity-check matrix

H =

















h
[0]
1 h

[0]
2 · · · h

[0]
n

h
[1]
1 h

[1]
2 · · · h

[1]
n

...
...

. . .
...

h
[n−k−1]
1 h

[n−k−1]
2 · · · h

[n−k−1]
n

















where the elementsh1, . . . , hn ∈ Fqm are linearly independent overFq (note thatn ≤ m is required).

The minimum rank distance of a Gabidulin code isd = n− k+1, satisfying the Singleton bound in the

rank metric [11].

2) Linearized Polynomials:A class of polynomials that play an important role in the study of rank-

metric codes are thelinearized polynomials[25, Sec. 3.4]. A linearized polynomial (orq-polynomial)

overFqm is a polynomial of the form

f(x) =
t

∑

i=0

fix
[i]
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wherefi ∈ Fqm. If ft 6= 0, we call t the q-degree off(x). Linearized polynomials receive their name

because of the following property: for anya1, a2 ∈ Fq and anyβ1, β2 ∈ Fqm,

f(a1β1 + a2β2) = a1f(β1) + a2f(β2).

That is, evaluation of a linearized polynomial is a mapFqm → Fqm that is linear overFq. In particular,

the set of all roots inFqm of a linearized polynomial is a subspace ofFqm .

Let A(x) andB(x) be linearized polynomials ofq-degreestA and tB, respectively. The symbolic

product ofA(x) andB(x) is defined as the polynomialA(x) ⊗ B(x) , A(B(x)). It is easy to verify

thatP (x) = A(x)⊗B(x) is a linearized polynomial ofq-degreet = tA + tB whose coefficients can be

computed as

Pℓ =

min{ℓ,tA}
∑

i=max{0,ℓ−tB}

AiB
[i]
ℓ−i =

min{ℓ,tB}
∑

j=max{0,ℓ−tA}

Aℓ−jB
[ℓ−j]
j

for ℓ = 0, . . . , t. In particular, if tA ≤ tB, then

Pℓ =

tA
∑

i=0

AiB
[i]
ℓ−i, tA ≤ ℓ ≤ tB , (32)

while if tB ≤ tA, then

Pℓ =

tB
∑

j=0

Aℓ−jB
[ℓ−j]
j , tB ≤ ℓ ≤ tA. (33)

It is known that the set of linearized polynomials overFqm together with the operations of polynomial

addition and symbolic multiplication forms a noncommutative ring with identity having many of the

properties of a Euclidean domain.

We define theq-reverseof a linearized polynomialf(x) =
∑t

i=0 fix
[i] as the polynomialf̄(x) =

∑t
i=0 f̄ix

[i] given by f̄i = f
[i−t]
t−i for i = 0, . . . , t. (When t is not specified we will assume thatt is the

q-degree off(x).)

For a setS ⊆ Fqm, define theminimal linearized polynomialof S (with respect toFqm), denoted

MS(x) or minpoly{S}(x), as the monic linearized polynomial overFqm of least degree whose root

space containsS. It can be shown thatMS(x) is given by

MS(x) ,
∏

β∈〈S〉

(x− β)

so theq-degree ofMS(x) is equal todim 〈S〉. Moreover, if f(x) is any linearized polynomial whose

root space containsS, then

f(x) = Q(x)⊗MS(x)
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for some linearized polynomialQ(x). This implies thatMS∪{α}(x) = MMS(α)(x) ⊗MS(x) for anyα.

Thus,MS(x) can be computed inO(t2) operations inFqm by taking a basis{α1, . . . , αt} for 〈S〉 and

computingM{α1,...,αi}(x) recursively fori = 1, . . . , t.

3) Decoding of Gabidulin Codes:Recall that, in the conventional rank decoding problem withτ

errors, where2τ ≤ d− 1, we are given a received wordr ∈ F
n
qm and we want to find the unique error

word e ∈ r−C such thatrank e = τ . We review below the usual decoding procedure, which consists of

finding error valuesE1, . . . , Eτ ∈ Fqm and error locationsL1, . . . , Lτ ∈ F
n
q such thate =

∑τ
j=1LjEj.

Sincee ∈ r − C, we can form thesyndromes

[S0, . . . , Sd−2]
T , Hr = He

which can then be related to the error values and error locations according to

Sℓ =
n
∑

i=1

h
[ℓ]
i ei =

n
∑

i=1

h
[ℓ]
i

τ
∑

j=1

LijEj

=
τ

∑

j=1

X
[ℓ]
j Ej, ℓ = 0, . . . , d− 2 (34)

where

Xj =

n
∑

i=1

Lijhi, j = 1, . . . , τ (35)

are called theerror locatorsassociated withL1, . . . , Lτ .

Suppose, for now, that the error valuesE1, . . . , Eτ (which are essentiallyτ linearly independent

elements satisfying〈e〉 = 〈E1, . . . , Eτ 〉) have already been determined. Then the error locators can

be determined by solving (34) or, equivalently, by solving

S̄ℓ = S
[ℓ−d+2]
d−2−ℓ =

τ
∑

j=1

E
[ℓ−d+2]
j Xj , ℓ = 0, . . . , d− 2 (36)

which is a system of equations of the form

Bℓ =

τ
∑

j=1

A
[ℓ]
j Xj , ℓ = 0, . . . , d− 2 (37)

consisting ofd− 1 linear equations (overFqm) in τ unknownsX1, . . . ,Xτ . Such a system is known to

have a unique solution (whenever one exists) providedτ ≤ d−1 andA1, . . . , Aτ are linearly independent

(see [25], [26]). Moreover, a solution to (37) can be found efficiently in O(d2) operations inFqm by an

algorithm proposed by Gabidulin [11, pp. 9–10].



29

After the error locators have been found, the error locations L1, . . . , Lτ can be easily recovered by

solving (35). More precisely, leth ∈ F
n×m
q be the matrix whose rows areh1, . . . , hn, and letQ ∈ F

m×n
q

be a right inverse ofh, i.e.,hQ = In×n. Then

Lij =

m
∑

k=1

XjkQki, i = 1, . . . , n, j = 1, . . . , τ.

The computation of error values can be done indirectly via anerror span polynomialσ(x). Let σ(x)

be a linearized polynomial ofq-degreeτ having as roots all linear combinations ofE1, . . . , Eτ . Then,

σ(x) can be related to thesyndrome polynomial

S(x) =

d−2
∑

j=0

Sjx
[j]

through the followingkey equation:

σ(x)⊗ S(x) ≡ ω(x) mod x[d−1] (38)

whereω(x) is a linearized polynomial ofq-degree≤ τ − 1.

An equivalent way to express (38) is
τ

∑

i=0

σiS
[i]
ℓ−i = 0, ℓ = τ, . . . , d− 2. (39)

This key equation can be efficiently solved inO(d2) operations inFqm by the modified Berlekamp-

Massey algorithm proposed in [13], provided2τ ≤ d− 1.

After the error span polynomial is found, the error values can be obtained by computing a basis

E1, . . . , Eτ for the root space ofσ(x). This can be done either by the probabilistic algorithm in [27], in

an average ofO(dm) operations inFqm, or by the methods in [28], which take at mostO(m3) operations

in Fq plusO(dm) operations inFqm .

B. A Modified Key Equation Incorporating Erasures and Deviations

In the general rank decoding problem withǫ errors,µ erasures andδ deviations, where2ǫ+µ+δ ≤ d−1,

we are given a received tuple(r, L̂, Ê) ∈ F
n
qm ×F

n×µ
q ×F

δ
qm and we want to find the unique error word

e ∈ r − C such thatrank





L̂ e

0 Ê



 = ǫ+ µ + δ , τ (along with the value ofǫ, which is not known a

priori).

First, note that if we can find a linearized polynomialσ(x) of q-degree at mostτ ≤ d− 1 satisfying

σ(ei) = 0, i = 1, . . . , n, then the error word can be determined in the same manner as inSection VI-A3.
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According to Proposition 10, we can write the error word ase =
∑τ

j=1 LjEj for someL1, . . . , Lτ ∈ F
n
q

andE1, . . . , Eτ ∈ Fqm satisfyingLj = L̂j , j = 1, . . . , µ, andEµ+j = Êj, j = 1, . . . , δ. Let σD(x),

σF (x) andσU (x) be linearized polynomials of smallestq-degrees satisfying

σD(Ej) = 0, j = µ+ 1, . . . , µ + δ

σF (σD(Ej)) = 0, j = µ+ δ + 1, . . . , τ

σU (σF (σD(Ej))) = 0, j = 1, . . . , µ.

Clearly, theq-degrees ofσD(x) and σF (x) are δ and ǫ, respectively, and theq-degree ofσU (x) is at

mostµ.

Define theerror span polynomial

σ(x) = σU (x)⊗ σF (x)⊗ σD(x).

Thenσ(x) is a linearized polynomial ofq-degree≤ τ satisfying

σ(ei) = σ(

τ
∑

j=1

LijEj) =

τ
∑

j=1

Lijσ(Ej) = 0, i = 1, . . . , n.

Thus, sinceσD(x) can be readily determined from̂E, decoding reduces to the determination ofσF (x)

andσU (x).

Now, let λU (x) be a linearized polynomial ofq-degreeµ satisfying

λU (Xj) = 0, j = 1, . . . , µ

and letλ̄U (x) be theq-reverse ofλU (x). We define anauxiliary syndrome polynomialas

SDU(x) = σD(x)⊗ S(x)⊗ λ̄U (x).

Observe thatSDU(x) incorporates all the information that is known at the decoder, including erasures

and deviations.

Our modified key equation is given in the following theorem.

Theorem 12:

σF (x)⊗ SDU (x) ≡ ω(x) mod x[d−1] (40)

whereω(x) is a linearized polynomial ofq-degree≤ τ − 1.

Proof: Let ω(x) = σF (x)⊗ SDU(x) mod x[d−1]. If τ ≥ d− 1, we have nothing to prove, so let us

assumeτ ≤ d− 2. We will show thatωℓ = 0 for ℓ = τ, . . . , d− 2.
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Let σFD(x) = σF (x)⊗σD(x) andSFD(x) = σFD(x)⊗S(x). According to (32), forǫ+δ ≤ ℓ ≤ d−2

we have

SFD,ℓ =
ǫ+δ
∑

i=0

σFD,iS
[i]
ℓ−i =

ǫ+δ
∑

i=0

σFD,i





τ
∑

j=1

X
[ℓ−i]
j Ej





[i]

=

τ
∑

j=1

X
[ℓ]
j σFD(Ej) =

µ
∑

j=1

X
[ℓ]
j βj, (41)

where

βj = σFD(Ej), j = 1, . . . , µ.

Note thatσF (x) ⊗ SDU (x) = SFD(x) ⊗ λ̄U (x). Using (33) and (41), forµ + ǫ + δ ≤ ℓ ≤ d− 2 we

have

ωℓ =

µ
∑

i=0

λ̄
[ℓ−i]
U,i SFD,ℓ−i =

µ
∑

i=0

λ
[ℓ−µ]
U,µ−i

µ
∑

j=1

X
[ℓ−i]
j βj

=

µ
∑

j=1

µ
∑

i=0

λ
[ℓ−µ]
U,i X

[ℓ−µ+i]
j βj =

µ
∑

j=1

λU (Xj)
[ℓ−µ]βj = 0.

This completes the proof of the theorem.

The key equation can be equivalently expressed as
ǫ

∑

i=0

σF,iS
[i]
DU,ℓ−i = 0, ℓ = µ+ δ + ǫ, . . . , d− 2. (42)

Note that this key equation reduces to the original key equation (38) when there are no erasures or

deviations. Moreover, it can be solved by the same methods asthe original key equation (38), e.g.,

using the Euclidean algorithm for linearized polynomials [11] or using the modified Berlekamp-Massey

algorithm from [13], provided2ǫ ≤ d − 1 − µ − δ (which is true by assumption). Note that a small

adjustment needs to be made so that (42) becomes indeed equivalent to (39); namely, we should choose

Sℓ in (39) asSℓ = SDU,ℓ+µ+δ and replaced with d− µ− δ.

After computingσF (x), we still need to determineσU (x). In the proof of Theorem 12, observe

that (41) has the same form as (37); thus,β1, . . . , βµ can be computed using Gabidulin’s algorithm

[11, pp. 9–10], sinceSFD(x) andX1, . . . ,Xµ are known. Finally,σU (x) can be obtained asσU (x) =

minpoly{β1, . . . , βµ}.

C. Summary of the Algorithm and Complexity Analysis

The complete algorithm for decoding Gabidulin codes with erasures and deviations is summarized in

Fig. 1. We now estimate the complexity of this algorithm.
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Input: received tuple(r, L̂, Ê) ∈ F
n
qm × F

n×µ
q × F

δ
qm .

Output: error worde ∈ F
n
qm .

1) Computing the auxiliary syndrome polynomial:

Compute

a) Sℓ =
∑n

i=1 h
[ℓ]
i ri, ℓ = 0, . . . , d− 2

b) X̂j =
∑n

i=1 L̂ijhi, j = 1, . . . , µ

c) λU (x) = minpoly{X̂1, . . . , X̂µ}

d) σD(x) = minpoly{Ê1, . . . , Êδ}, and

e) SDU(x) = σD(x)⊗ S(x)⊗ λ̄U (x).

2) Computing the error span polynomial:

a) Use the Berlekamp-Massey algorithm [13] to findσF (x) that solve the key equation (40).

b) ComputeSFD(x) = σF (x)⊗ σD(x)⊗ S(x).

c) Use Gabidulin’s algorithm [11] to findβ1, . . . , βµ ∈ Fqm that solve (41).

d) ComputeσU (x) = minpoly{β1, . . . , βµ} and

e) σ(x) = σU (x)⊗ σF (x)⊗ σD(x).

3) Finding the roots of the error span polynomial:

Use either the algorithm in [27] or the methods in [28] to find abasisE1, . . . , Eτ ∈ Fqm for the

root space ofσ(x).

4) Finding the error locations:

a) Solve (36) using Gabidulin’s algorithm [11] to find the error locatorsX1, . . . ,Xτ ∈ Fqm .

b) Compute the error locationsLij =
∑m

k=1XjkQki, i = 1, . . . , n, j = 1, . . . , τ .

c) Compute the error worde =
∑τ

j=1LjEj.

Fig. 1. Generalized decoding algorithm for Gabidulin codes.

Steps 1e), 2b) and 2e) are symbolic multiplications of linearized polynomials and can be performed in

O(d2) operations inFqm . Steps 1c), 1d) and 2d) involve finding a minimal linearized polynomial, which

takesO(d2) operations inFqm . Steps 1b), 4b) and 4c) are matrix multiplications and takeO(dnm)

operations inFq only. Both instances 2c) and 4a) of Gabidulin’s algorithm and also the Berlekamp-

Massey algorithm in step 2a) takeO(d2) operations inFqm .
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The most computationally demanding steps are 1a) computingthe syndromes and 3) finding a basis

for the root space of the error span polynomial. The former can be implemented in a straightforward

manner usingO(dn) operations inFqm , while the latter can be performed using an average ofO(dm)

operations inFqm with the algorithm in [27] (although the method described in[28] will usually perform

faster whenm is small).

We conclude that the overall complexity of the algorithm isO(dm) operations inFqm .

D. An Equivalent Formulation Based on the Error Locator Polynomial

Due to the perfect duality between error values and error locators (both are elements ofFqm), it is

also possible to derive a decoding algorithm based on an error locator polynomial that contains all the

error locators as roots.

Let the auxiliary syndrome polynomial be defined as

SUD(x) = λU (x)⊗ S̄(x)⊗ σ̄D(x
[d−2])[−d+2]

whereσ̄D(x) is theq-reverse ofσD(x) and S̄(x) is theq-reverse ofS(x).

Let λF (x) be a linearized polynomial ofq-degreeǫ such thatλF (λU (Xi)) = 0, for i = µ+δ+1, . . . , τ .

We have the following key equation:

Theorem 13:

λF (x)⊗ SUD(x) ≡ ψ(x) mod x[d−1] (43)

whereψ(x) is a linearized polynomial ofq-degree≤ τ − 1.

Proof: The proof is similar to that of Theorem 12 and will be omitted.

The complete decoding algorithm based on the error locator polynomial is given in Fig. 2.

E. Practical Considerations

We have seen that the complexity of decoding a Gabidulin codeC ⊆ F
n×m
q with dR(C) = d is given

by O(dm) operations inFqm . In many applications, in particular for network coding, wehavem ≫ n.

In such cases, the decoding complexity can be significantly reduced by using, rather than a Gabidulin

code, an MRD code formed by the Cartesian product of many shorter Gabidulin codes with the same

distance. More precisely, letℓ = ⌊m
n
⌋ andn′ = m − n(ℓ − 1). TakeC = C1 × C2 × · · · × Cℓ, where

Ci ⊆ F
n×n
q , i = 1, . . . , ℓ− 1, andCℓ ⊆ F

n×n′

q are Gabidulin codes with minimum rank distanced. Then

C is an MRD code withdR(C) = d.



34

Input: received tuple(r, L̂, Ê) ∈ F
n
qm × F

n×µ
q × F

δ
qm .

Output: error worde ∈ F
n
qm .

1) Computing the auxiliary syndrome polynomial:

Compute

a) Sℓ =
∑n

i=1 h
[ℓ]
i ri, ℓ = 0, . . . , d− 2

b) X̂j =
∑n

i=1 L̂ijhi, j = 1, . . . , µ

c) λU (x) = minpoly{X̂1, . . . , X̂µ}

d) σD(x) = minpoly{Ê1, . . . , Êδ}, and

e) SUD(x) = λU (x)⊗ S̄(x)⊗ σ̄D(x
[d−2])[−d+2].

2) Computing the error locator polynomial:

a) Use the Berlekamp-Massey algorithm [13] to findλF (x) that solve the key equation (43).

b) ComputeSFU (x) = λF (x)⊗ λU (x)⊗ S̄(x).

c) Use Gabidulin’s algorithm [11] to findγ1, . . . , γδ ∈ Fqm that solve

SFU,ℓ =
δ

∑

j=1

E
[ℓ−d+2]
µ+j γj .

d) ComputeλD(x) = minpoly{γ1, . . . , γδ} and

e) λ(x) = λD(x)⊗ λF (x)⊗ λU (x).

3) Finding the roots of the error locator polynomial:

Use either the algorithm in [27] or the methods in [28] to find abasisX1, . . . ,Xτ ∈ Fqm for the

root space ofλ(x).

4) Finding the error values:

a) Solve (34) using Gabidulin’s algorithm [11] to find the error valuesE1, . . . , Eτ ∈ Fqm.

b) Compute the error locationsLij =
∑m

k=1XjkQki, i = 1, . . . , n, j = 1, . . . , τ .

c) Compute the error worde =
∑τ

j=1LjEj.

Fig. 2. Generalized decoding algorithm for Gabidulin codes, alternative formulation.
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Now, decoding ofC can be performed by decoding eachCi individually. Thus, assuming for simplicity

thatm = nℓ, the overall decoding complexity is given byℓO(dn) = O(dm) operations inFqn. In other

words, operations in a potentially large fieldFqm can be replaced by operations in a much smaller field

Fqn.

Note that, in this case, additional computational savings may be obtained, since all received words

will share the same set of error locations. For instance, if all error locations are known and the decoding

algorithm of Fig. 2 is used, then only steps 1a), 1b) and 4a)–4c) need to be performed.

VII. C ONCLUSIONS

In this paper, we have introduced a new approach to the problem of error control in random network

coding. Our approach is based, on the one hand, on Kötter andKschischang’s abstraction of the problem

as a coding-theoretic problem for subspaces and, on the other hand, on the existence of optimal and

efficiently-decodable codes for the rank metric. We have shown that, whenlifting is performed at the

transmitter andreductionat the receiver, the random network coding channel behaves essentially as a

matrix channel that introduces errors in the rank metric andmay also supply partial information about

these errors in the form of erasures and deviations.

An important consequence of our results is that many of the tools developed for rank-metric codes can

be almostdirectly applied to random network coding. However, in order to fully exploit the correction

capability of a rank-metric code, erasures and deviations must be taken into account. A second contribution

of this work is the generalization of the decoding algorithmfor Gabidulin codes in order to fulfill this

task. Our proposed algorithm requiresO(dm) operations inFqm , achieving the same complexity as

conventional decoding algorithms that only correct rank errors.

Following this work, a natural step toward practical error control in random network coding is the

pursuit of efficient software (and possibly hardware) implementations of encoders and decoders for

Gabidulin codes. Another avenue would be the investigationof more general network coding scenarios

where error and erasure correction might be useful; for example, the case of multiple heterogeneous

receivers can be addressed using a priority encoding transmission scheme based on Gabidulin codes [29].

An exciting open question, paralleling the development of Reed-Solomon codes, is whether an efficient

list-decoder for Gabidulin codes exists that would allow correction of errors above the error-correction

bound.

We believe that, with respect to forward error (and erasure)correction, Gabidulin codes will play the

same role in random network coding that Reed-Solomon codes have played in traditional communication
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systems.
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APPENDIX

A. Proof of Proposition 7

Before proving Proposition 7, let us recall some propertiesof the matricesIU andIUc , whereI = In×n,

U ⊆ {1, . . . , n} andU c = {1, . . . , n} \ U .

For anyA ∈ F
n×k
q (respectively,A ∈ F

k×n
q ), the matrixITUA (resp.,AIU ) extracts the rows (resp.,

columns) ofA that are indexed byU . Conversely, for anyB ∈ F
|U|×k
q (resp.,B ∈ F

k×|U|
q ) the matrixIUB

(resp.,BITU ) reallocates the rows (resp., columns) ofB to the positions indexed byU , where all-zero

rows (resp., columns) are inserted at the positions indexedby U c. Furthermore, observe thatIU andIUc

satisfy the following properties:

I = IUI
T
U + IUcITUc ,

ITU IU = I|U|×|U|

ITU IUc = 0.

We now give a proof of Proposition 7.

Proof of Proposition 7: Let RRE(Y ) denote the reduced row echelon form ofY . For i = 1, . . . , N ,

let pi be the column position of the leading entry of rowi in RRE(Y ). Let U c = {p1, . . . , pn−µ} and

U = {1, . . . , n} \ U c. Note that|U| = µ. From the properties of the reduced row echelon form, we can

write

RRE(Y ) =





W r̃

0 Ê
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wherer̃ ∈ F
(n−µ)×m
q , Ê ∈ F

δ×m
q has rankδ, andW ∈ F

(n−µ)×n
q satisfiesWIUc = I(n−µ)×(n−µ).

Now, let

Ȳ =





IUc 0

0 Iδ×δ



RRE(Y ) =





IUcW r

0 Ê





wherer = IUc r̃. SinceI = IUcITUc + IUI
T
U , we have

IUcW = IUcW (IUcITUc + IUI
T
U )

= IUcITUc + IUcWIUI
T
U

= I − IUI
T
U + IUcWIUI

T
U

= I + L̂ITU

where L̂ = −IU + IUcWIU . Also, sinceITU IU = Iµ×µ and ITU IUc = 0, we haveITU L̂ = −Iµ×µ and

ITU r = 0.

Thus,

Ȳ =





I + L̂ITU r

0 Ê





is a matrix with the same row space asY . The proof is complete.

B. Proof of Proposition 8

Proof of Proposition 8: We want to show that
〈





I + L̂T ITS r

0 RÊ





〉

=

〈





I + L̂ITU r

0 Ê





〉

.

From (5) and the fact thatR is nonsingular (sincerank RÊ = δ), this amounts to showing that
〈[

I + L̂T ITS r

]〉

=
〈[

I + L̂ITU r

]〉

.

Let W1 = I + L̂ITU andW2 = I + L̂T ITS . Note that, sinceW1IUc = IUc andITU
[

W1 r

]

= 0, we have

that ITUcW1 is full rank. Similarly, ITS

[

W2 r

]

= 0 and ITScW2 is full rank. Thus, it suffices to prove

that

M
[

W2 r

]

=
[

W1 r

]

(44)

for someM ∈ F
n×n
q .
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Let A = U ∪ S andB = U ∩ S. Observe thatM can be partitioned into three sub-matrices,MIAc ,

MIS andMIU\B. ChooseMIAc = IAc , andMIS arbitrarily. We will chooseMIU\B so that (44) is

satisfied. First, note that

Mr =M(IAcITAc + IAI
T
A)r = IAcITAcr = r

sinceITAr = 0. Thus, we just need to considerMW2 =W1 in (44). Moreover, note that

MW2 =M(IAcITAc + ISI
T
S + IU\BI

T
U\B)W2

= IAcITAcW2 + (MIU\B)(I
T
U\BW2).

Now, consider the systemMW2 =W1. From basic linear algebra, we can solve forMIU\B if and only

if

rank





ITU\BW2

W1 − IAcITAcW2



 ≤ |U \ B|.

SinceITU\BW1 = 0 andITSW2 = 0, we can rearrange rows to obtain

rank





ITU\BW2

W1 − IAcITAcW2



 = rank





ITU\B(W1 −W2)

I(U\B)cI
T
(U\B)c(W1 −W2)





= rank(W1 −W2).

To complete the proof, we will show thatrank(W1 −W2) ≤ |U \ B|. We have

rank(W1 −W2) = rank(L̂ITU − L̂T ITS )

≤ rank(ITU − TITS )

= rank(ITS L̂I
T
U + ITS ) (45)

= rank ITSW1

= rank ISI
T
SW1

= rank(IS\BI
T
S\B + IBI

T
B )W1

= rank IS\BI
T
S\BW1

≤ |S \ B| = |U \ B|.

where (45) is obtained by left multiplying byITS L̂ = −T−1.
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C. Proof of Theorem 9

Proof of Theorem 9:We have

rank





X

Y



 = rank











I x

I + L̂ITU r

0 Ê











= rank











−L̂ITU x− r

I + L̂ITU r

0 Ê











= rank











L̂ITU r − x

ITUc(I + L̂ITU ) ITUcr

0 Ê











(46)

= rank











L̂ITU r − x

ITUc ITUcx

0 Ê











(47)

= rank





L̂ITU r − x

0 Ê



+ rank
[

ITUc ITUcx

]

(48)

= rank





L̂ r − x

0 Ê



+ n− µ (49)

where (46) follows fromITU

[

I + L̂ITU r

]

= 0, (48) follows by subtractingITUc

[

L̂ITU r − x

]

from
[

ITUc(I + L̂ITU ) ITUcr

]

, (48) follows fromITUcIUc = I(n−µ)×(n−µ) andL̂ITU IUc = 0 (i.e., the two matrices

in (48) have row spaces that intersect trivially), and (49) follows by deleting the all-zero columns.

Sincerank X + rank Y = 2n− µ+ δ, we have

dS(〈X〉 , 〈Y 〉) = 2 rank





X

Y



− rank X − rank Y

= 2 rank





L̂ r − x

0 Ê



− µ− δ.

D. Proof of Proposition 10

Before proving Proposition 10, we need the following lemma.
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Lemma 14:ForX ∈ F
n×m
q andY ∈ F

N×m
q we have

min
A∈FN×n

q

rank(Y −AX) = rank





X

Y



− rank X

and forX ∈ F
n×m
q andY ∈ F

n×M
q we have

min
B∈Fm×M

q

rank(Y −XB) = rank
[

X Y
]

− rank X.

Proof: For anyA ∈ F
N×n
q , we have

rank





X

Y



 = rank





X

Y −AX



 ≤ rank X + rank(Y −AX)

which gives a lower bound onrank(Y −AX). We now prove that this lower bound is achievable.

Let Z ∈ F
t×m
q be such that〈Y 〉 = 〈X〉 ∩ 〈Y 〉 ⊕ 〈Z〉, wheret = rank Y − ω andω = dim 〈X〉 ∩ 〈Y 〉.

Let B ∈ F
ω×n
q be such that〈BX〉 = 〈X〉 ∩ 〈Y 〉. We can writeY = T





BX

Z



 for some full-rank

T ∈ F
N×(ω+t)
q . Now, letA = T





B

0



 ∈ F
N×m
q . Then

rank(Y −AX) = rank(T





BX

Z



− T





BX

0



)

= rank(T





0

Z



) = rank Z

= rank Y − dim(〈X〉 ∩ 〈Y 〉)

= rank





X

Y



− rank X.

This proves the first statement. The second statement is justthe transposed version of the first one.

Proof of Proposition 10: Let

ǫ′ = min
E(1),L(2)

rank(e− L̂E(1) − L(2)Ê).

We first show the equivalence of 1) and 2). From Lemma 14, we have

min
L(2)

rank(e− L̂E(1) − L(2)Ê) = rank





e− L̂E(1)

Ê



− rank Ê.
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Similarly, from Lemma 14 we have

min
E(1)

rank





e− L̂E(1)

Ê



 = min
E(1)

rank









e

Ê



−





L̂

0



E(1)





= rank





L̂ e

0 Ê



− rank L̂.

Thus,

ǫ′ = rank





L̂ e

0 Ê



− µ− δ

and the equivalence is shown.

Now, observe that the statement in 3) is equivalent to the statement thatτ∗ − µ − δ is the minimum

value of ǫ for which there existE(1) ∈ F
µ×m
q , L(2) ∈ F

n×δ
q , L(3) ∈ F

n×ǫ
q andE(3) ∈ F

ǫ×m
q satisfying

e = L̂E(1) + L(2)Ê + L(3)E(3).

To show the equivalence of 2) and 3), we will show thatǫ′ = ǫ′′, where

ǫ′′ = min
ǫ,E(1),L(2),L(3),E(3):

e=L̂E(1)+L(2)Ê+L(3)E(3)

ǫ.

We can rewriteǫ′′ as

ǫ′′ = min
E(1),L(2)

min
ǫ,L(3),E(3):

e−L̂E(1)−L(2)Ê=L(3)E(3)

ǫ

= min
E(1),L(2)

rank(e− L̂E(1) − L(2)Ê) (50)

= ǫ′.

where (50) follows from (1). This shows the equivalence between 2) and 3).


	Introduction
	Preliminaries
	Notation
	Properties of Matrix Rank and Subspace Dimension
	Rank-Metric Codes
	Subspace Codes

	Error Control in Random Network Coding
	Channel Model
	Transmission via Subspace Selection
	Performance Guarantees

	Codes for the Random Linear Network Coding Channel Based on Rank-Metric Codes
	Lifting Construction
	Decoding

	A Generalized Decoding Problem for Rank-Metric Codes
	Error Locations and Error Values
	Erasures and Deviations

	Decoding Gabidulin Codes with Errors, Erasures and Deviations
	Preliminaries
	Gabidulin Codes
	Linearized Polynomials
	Decoding of Gabidulin Codes

	A Modified Key Equation Incorporating Erasures and Deviations
	Summary of the Algorithm and Complexity Analysis
	An Equivalent Formulation Based on the Error Locator Polynomial
	Practical Considerations

	Conclusions
	References
	Appendix
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Theorem ??
	Proof of Proposition ??


