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Abstract—We study the average distortion introduced by does not have infinite precision observations. With certain
quantizing compressive sensing measurements. Both unifor assumptions of the quantization rate, it has been showrin [8
guantization and non-uniform quantization are considered The that uniform scalar quantization provides near-optimatatr

asymptotic distortion-rate functions are obtained when tfe mea- fi f H th tization teckni
surement matrix belongs to certain random ensembles. A new lon performance. However, the same quantization teciniqu

modification of greedy reconstruction algorithm that accommo- IS not efficient for sparse signals in the sense that a large
dates quantization errors is proposed and its performances fraction of quantization regions is not used at all [9]. Both

evaluated through extensive computer simulations. of the above approaches focus on the worst case analysis. On
the algorithmic side, a reconstruction algorithm for oné bi
l. INTRODUCTION quantization is proposed and discussed_ifi [10].

Compressive sensing (CS) has received significant attentio As opposed to the approach inl [8], [9], we consider the
due to its wide applications in medical imaging, biosensingverage distortion introduced by quantization, and stundy t
spectrum monitoring and other areas of signal processimgfects of both uniform quantization and non-uniform qurant
It is a sampling method that converts unknown input sigsation. The asymptotic distortion rate function is chagezed
nals, embedded in a high dimensional space, into signaleen the measurement matrix is taken from certain random
that lie in a space of significantly smaller dimension, usingatrix ensembles. We also discuss the more general case of CS
linear measurements. In general, it is an ill-posed prokiemin which constraints on the column norms of the measurement
recover the unknown signal using measurements embeddeatrix are imposed. Finally, we adapt two benchmark CS
in a reduced-dimensional space. Nevertheless, if the inpatonstruction algorithms to accommodate quantizatioorer
signal is sufficiently sparse, exact reconstruction is fpessn  and show that the new algorithms offer significant perforogan
polynomial time [1], [2], [3], [4], which is the central rebwf improvement over classical CS reconstruction techniques.

CS theory. As a result, CS significantly reduces the number ofThis paper is organized as follows. Sectioh Il contains a
measurements required to acquire an unknown sparse sigaief overview of CS theory, the BP and SP reconstruction

There exist many different techniques for sparse signalgorithms, and various quantization techniques. In Seffi]
reconstruction. For simplicity, assume that the unknownali we analyze the CS distortion rate function and examine the
x € RV is K-sparse, i.e., that there are at m@stnonzero influence of quantization errors on the BP and SP reconstruc-
entries inx. The naive reconstruction method is to searction algorithms. In Sectioh IV, we describe two modificason
among all possible signals and find the sparsest one whihthe aforementioned algorithms, suitable for quantizathd
is consistent with the linear measurements. In generad, tlihat offer significant performance improvements when cop-
method requires onlyn = 2K random linear measurementsmared to standard BP and SP technigues. Simulation results
Unfortunately, to find the sparsest signal representasoani are presented in Sectigd V.

NP-hard problem. On the other hand, the work by Donoho

and Candés et. al.|[1].[2].[3].[4] demonstrated that spars 1. PRELIMINARIES

signal reconstruction is a polynomial tl_m_e proplem prodlde_. Compressive Sensing (CS)

that more measurements are taken. This is achieved by gastin
the reconstruction problem as a linear programming problem!n CS, one encodes a signabf dimensionV' by computing
and solving it using the basis pursuit (BP) method. Mord measurement vectgr of dimension ofm < N via linear
recently, the authors proposed the so called subspaceipurB(Plections, I.e.,

(SP) algorithm in[[5] (see the independent wark [6] for a mod- y = ®x,

ification). Its computational complexity is linear in theysal where® ¢ R™*N is referred to as theneasurement matrix.

dimension, and the required number of linear measureme|)sy,; N
) ! is paper, we assume thate RY is exactly K-sparse,
is of the same order as that needed for the BP method. Fqr bap y P

both the BP and SP algorithms, the reconstruction dismrti{)'%" that there are exactly entries ofx that are nonzero. The
can also be analyzed when the measurements are subjecte
noise with bounded powelr [7].1[5].

For most practical applications, it is reasonable to assu

that the measurements are quantized and that therefore one min ||x||; subject toy = ®x, (1)

construction problem is to recovergiveny and ®.
e BP method is a technique that casts the reconstruction
r%reoblem as ari;-regularized optimization problem, i.e.,
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where||x||, = Zf;l |z;| denotes thé;-norm of the vectoi. The RIP constant is defined as the infimum of all parameters
It is a convex optimization problem and can be solved effi-for which the RIP holds, i.e.,
ciently by linear programming techniques. The reconsioact . 9 9 9
complexity equalsO (m?N?/2) if the convex optimization 0K = 1nf{§: (1=9)llall; < [®rall; < (1 +0) llall;,
problem is solved using interior point methodsl|[11]. V|I|< K, Vq € RUI},

The computational complexity of CS reconstruction can be -
further reduced by the SP algorithm, recently proposed byMost known families of matrices satisfying the RIP prop-
two research groups independently In [5] and [6]. It is aarty with optimal or near-optimal performance guarantees a
iterative algorithm drawing on the theory of list decodiiipe random, and include Gaussian random matrices with i.i.d.
computational complexity of this algorithm is upper boudde\ (0, L) entries, wheren > O (K log N).
by O (Km(N + K?)), which is significantly smaller than that
of the BP method whenk’ < N. See [5] for a detailed B. Scalar Quantization

performance and complexity analysis of this greedy alponit LetC C R be afinite discrete set, referred to as a codebook.

For completeness, we brlefly describe the SP algorithm. FR quantization is a mapping fro to the codebook such
an index setl' C {1,2 ,N}, let &1 be the “truncated

that
matrix” consisting of the columns @b indexed byT’, and let
span (®7) be the subspace IR™ spanned by the columns of qg: R=>C
® . Suppose thab’ . @ is invertible. For any gively € R™, y—weCiff y e Ry, (5)

the projection ofy ontospan (®r) is defined as . . L
wherew is referred to as &evel and R, is the quantization

yp = proj (y, ®r) region corresponding to levelb. The performance of a quan-
S, - (<I>*T<I>T)’1 By, ) tizer is often dgscriped by its distt)rtion-rate functioficed as
follows. The distortion measure is assumed to be the squared
The corresponding projection residue vegtorand projection Euclidean distance. For a random souice the distortion

coefficient vectorx,, are defined as associated with a quantizeris D, = E [(Y —q(Y))?
y, = resid (y, ®7) ==y — yp, (3) For a given codebook, the optimal quantization level that
g minimizes the Euclidean distortion measure is given by
an
q* (V) = arg min (Y —w)>.
xp = peoett (y, ®r) wee
_ (‘I>i}<I>T)_1 By. (4) The distortion associated with this codebablequals
* 2
Then the SP algorithm is summarized in Algorithin 1. D(C):=E|(Y —q"(Y)) } :

Let R := log, |C| be the rate of the codebodk For a given

Algorithm 1 The Subspace Pursuit (SP) Algorithm code rateR, the distortion rate function is given by

Input: K, @,y
Initialization : Let T° = { K indices of the largest magnitude D*(R):= inf D(C).
entries in®*y} andy? = resid (y, ®;0). c: c|<2F
lteration : At the (" iteration, go through the following steps. Necessary conditions for optimal quantizer design can be
1) T = Tf‘1U{K indices of the largest magnitudefound in [12]. In this paper, we assume that the random
entries in®*y‘~1}. variableY does not have mass points and that < wy <
2) Letx, = pcoeff (y,®7.) andT* = {K indices of the --- < w,r. Let the quantization regions be
largest magnitude entnes iR, }.
3) y' = resid (y, ®7¢) . Ry = {(_Oo’tl) k=1 ’ (6)
a) If |lytll, > |lye ], let T8 = T-' and quit the ti1,ti) k=23, 20
iteration. wheretyr = +o00, andty, - - - ,tor_; € R satisfyw;, < t; <
Output: The vectork satisfyingXy; ... yy—r¢ =0andX; = ;. Note that for simplicity, we replaced the symisBl,
peoeff (y, ®re). in B) with R;. We adhere to this notation throughout the

remainder of this paper. An optimal quantizer satisfies the

A sufficient condition for both BP and SP algorithmdollowing condttions: .
to perform exact reconstruction is the so called restrictedl) If the optimal quantizer has levels. ; andwy, then the
isometry property (RIP)]2], formally defined as follows. threshold that minimizes the mean square error (MSE)

is
Definition 1 (RIP). A matrix & € R™*" is said to satisfy 1
. . t; = = (wk + wk“) . @)
the Restricted Isometry Property (RIP) with parametéss) 2
for K <m, 0 <4 <1, if for all index sets/ c {1,--- ,N} 2) If the optimal quantizer has thresholgs ; andt;, then
such that7| < K and for allq € R/, one has the level that minimizes the MSE is

1-0)llall; < |®rall3 < (1 +0) [all3- wi = E[Y|Ry]. (8)



Lloyd’s algorithm [12] for quantizer codebook design iD. Subgaussian Random Variables
based on the above necessary conditions for an optimal qUaRFinition 2. A random variableX is said to beSubgaussian
tizer. Lloyd’s algorithm starts with an initial codebookid it there exist positive constants and ¢, such that
then in each iteration, computes the threshdldsaccording )
to (@) and updates the codebook vid (8). Although Lloyd's Pr(|X]| > ) <cie” " Va>0.

algorithm does not guarantee global optimality, it produce . o :
Iogally optimal codek?ooks. d P ¥ P One property of Subgaussian distributions is that they have

As a low-complexity alternative, a uniform quantizer is mo& Well defined moment generating function. Note that the
widely used in practice. A uniform quantizer is associatégaussian and Bernoulli distributions are special casesief t
with a “uniform codebookC, = {w; < wa < --- < wys} for Subgaussian distribution.
which w; —w;—1 = w; —w;_1 forall 1 < i # j < 2f. For

a fixed code rateR, the distortion rate function of a uniform [1l. DISTORTIONANALYSIS
quantizer is defined as A. Distortion of Measurements
D: (R) := inf i D(C). We consider the following two CS scenarios.
wl |Cu| < .
. . Cur 1€ lf2 . Assumptions |
For a given probability density function, the exact asymp- _
totic distortion rate function can be quantified exactlynbDe 1) .L.et P = LmA_e R™*N Where the e_ntrles oA are
the probability density function of the sourdé by p (y). It |.|.q. Su_bgaussuan random variables with zero mean and
was shown by Zadof [13] that unit variance.
1 3 2) Let X € RY be exactlyK-sparse, that is, the signal
lim 228 pD* (R) = — (/p1/3 () da:> ] X has exactlyK nonzero entries. We assume that the
R0 12 nonzeros entries oKX are i.i.d. Subgaussian random
If the source is Gaussian with varianeé, then the corre- variables with zero mean and unit variance.
sponding asymptotic distortion rate function becomes 3) The quantization codé is designed offline and fixed
2.:./3 when the measurements are taken.
lim 228D* (R) = Z 3 (9)
R—o0 2 Assumptions II:

The distortion rate function of a uniform quantizer was de- N | <N )
scribed in[14, Theorem 6]. For Gaussian random sources withl) Let ® € R be such thatg 32", [le;ll; = 1,

variances?, one has whereg; is the ;' column of the matrix®.
92R 4 2) Assume that there are exactly nonzero entries in
lim =D} (R) = -0 (10) X € R™, and that the nonzeros entries Xf are i.i.d.
Boo R 3 standard Gaussian random variables with zero mean and
C. Scalar Quantization of CS Measurements unit variance.

We study the effect of quantization on CS measurements3) The quantization cod€ is designed offline and fixed
For simplicity, we assume a scalar quantization scheme: to When the measurements are taken.
each entry ofY, sayY;, one applies the same quantization The asysmptotic distortion rate function of the measure-

procedure ments under the first scenario is characterized in Thebiem 3.
g: R-CcCR Theorem 3. Suppose that Assumptions | hold. Then
Y;H}A/i:arg min |Y;—w|2. 92R 3

wel i 1 I b [
W et KDY= @9

Similar to the traditional distortion-rate function for aadar,
we define the distortion rate function for quantization of thand there exist constants 0 < ¢; < ¢y such that

measurement vectdy’ by 9R 4
m lim lim —Dy ,(R)==. (14)
. . v 2 R—c0 (K,m,N)—oo KR Y 3
DY (B)1= (a0 By | 2 mlp w']- an

. T i . ~ Remark 4. According to Theorerm]3, if the quantization rate
When only uniform quantization is taken into considerationy sufficiently large, the distortion of the optimal non-ammn

the corresponding distortion-rate function is defined by quantizer is approximately/R of that of the optimal uniform
m quantizer.
D% . (R) == in |V; —wl*|, (12
Yo (F) ;cirenc% | w| ] (12) Proof: Let T = {1 <j < N: X; # 0} be the support
R et of x. It is easy to show that for all < i < m and
c{l,---,N} such thalT| = K,

Ey

inf
Cy: |Cy|<2R

where C,, denotes a uniform codebook. We are particularlS
interested in the total distortion of the forrh{11) and](12),
because the CS reconstruction distortion is determinedhéy t
total distortion in the measurements rather than the distor E Z Aij X;1 =0
of each individual measurement. JET
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According to the Central Limit Theorem, the distribution of 11 m
1 H _ 2
NG .ZJ.G.T A; ;X; converges weakly to the §taqdard Gaussian = Em Z _ Z ©;
distribution ask’ — occ. As a result, the distribution of/ 2 Y; K/ T jeT \i=l
converges weakly to the standard Gaussian distribution as @ 1 1 N
K,m, N — oc. . _ = Emz H‘PJHQ
If we apply a scalar quantizer with’® levels to the random K/ j=1 \T:jeT
variable /22Y;, then it holds that w11 XN: N—1 | _”2
om (N) _ K—1) 1%l
7T\/§ K/ j=1
lim lim  22BD*(R) = —=. (15) N
R—o0 (K,m,N)—o00 2 (:c) Ei Z ” ”
mN Pilla
Note that " =1
@ K
Lo -] o Y
K 2
Im_ |~/ 2 where
="k (i—n)
m K ;

(a) is obtained by exchanging the sums o%eand j,
(b)  holds because for any given< j; < N, there are
(%—1) many subsetd" containing the indey,
(¢) s due to the fact tha@é:})/(%) = K/N,
(16) (d) follows from Assumption II-1).

:_ZE

Suppose that one deals with the ideal case: the support set

where the last line represents the distortion of quantizidg is known before taking measurements; and for different
\/gYi. Combining ?) and [I6) proves the result df (13). values ofi andT, we are allowed to use different quantizers.
Consider a uniform quantizer with codebo6, such that Giveni andT’, we apply the optimal quantizer for the standard
|C.| = 2%, and apply this uniform quantizer to the randonfsaussian random variable {p’%yl so that the corresponding
variable,/ZY;. Let K, m, N — oo. Note that the distribution distortion rate function satisfies
of \/gYZ— converges weakly to the standard Gaussian distri-
bution. Applying the result in({10) proves the result claime - (ﬂaz )
n @4). u lim 2°RD*T (R) = —E 212/3,
For the scenario described by Assumptions Il, lower bounds fimoe 2
on the distortion rate function are described in Theotém 5.

, Taking the average over alland all'T" gives
Theorem 5. Suppose that Assumptions |1 hold. Then

22R 7T\/§

. . 277 . SRR | . 02R i, T
fpint Jmipt TPy (=5, an w2y 2 (Jm 20 ()
i=1 K T
and there exists a constant ¢ > 0 such that 1 i 1 > <7T (%oir) \/§>
- T
) ) 22R 4 m =1 K T 2
pint liminf egPye B 25 (19 = 2V3,

Proof: Given Assumptions II, eacly;, 1 < ¢ < m,
is a linear combination of Gaussian random variables, andnere the last equality follows from (119).
therefore eacly; is a Gaussian random variable ifself. For a However, the support sef’ is unknown before taking
giveni and a givenZ’, the mean and the variance Bf are the measurements. Furthermore, the same quantizer has to

E[Y]] =0ando?, = E[Y?] = 3", ¢7;, respectively. The be employed for different choices gfand T accordmg to
variance depends on the row indeaind the support sét. We

calculate the average variance across all rows and all sup

FQ)ssumptmns Il. Thus, for everR, i andT, E [



DT (R). As a result Consider Assumptions |. For the optimal scalar quantizer,
the reconstruction distortion can be upper bounded by

22R R 2
lig inf =~ [EY [HY -Y| H o2R 12
Rroo 2 lim  lm =B {HX - XH }
92R Z 1o m ( )2 R—oo (K,;m,N)—=oo K 2
= liminf—— — — y[%—% } 2 m/3 ;
N s
R—o0 (T) —m = K < Cop \Qf for the SP algorithm (20)
2R 1 cbp7T for the BP algorithm -
> liminf < Y — Y D" (R
= R (]}7) XT: m ; ®) For the optimal uniform quantizer, an upper bound for the
_T/ reconstruction distortion is given by
=5V3.
Sin_ce _the abqve derivation is valid for af, m and N, the 1%1_13)0 (K, "}1]%1)900 KR U }
claim in (I%) is proved. 2 4 g0 the SP aleorith
The result in [[ID) for uniform quantizers can be proved < c;”f or the ago“fﬁ o (1)
using similar arguments. ] Cpp3 for the BP algorithm

Remark 6. Our work is based on the fundamental assumption The upper bounds on the reconstruction distortion increase
that the sparsity leveK is known in advance and that thefor the scenario described in Assumptions Il. The upper
statistics of the sparse vectaris specified. Very frequently, bounds for optimal quantizers and optimal uniform quamsize
however, this is not the case in practice. If we relax Assumgre lower bounded by (20) and {21), respectively.
tions | and Il further by assuming that is sufficently large,
it will often be the case that the statistics of the measur&mel
Y; is well approximated by a Gaussian distribution. Here,
note that differentt; variables may have different variances We present next modifications of BP and SP algorithms that
and these variances are generally unknown in advance. Take into account quantization effects.
problem of statistical unmatch has been previously addeess To describe these algorithms, we find the following notation
in quantization theory[[15, Chapter 8]. Particularly, nondseful. LetY be the quantized measurement vector. Figm
uniform quantizations with slightly under-estimated wae the corresponding quantization regions for each cooreioét
perform better than those with over-estimated variancé [I¥ can be easily identified. Lét; € Ry, whereY; is theith
Chapter 8.6]. entry of Y and Ry, is the corresponding quantization region
as given by[(B). We represent the Cartesian product set of the
Ri;S by R: a vectory is in R if and only if y € R™ and
Yyi € Ry, foralli=1,2,--- ,m.

It is well known from CS literature that the reconstruction Similar to the standard BP method, the reconstruction
distortion is dependent on the distortion in the measurésnerproblem can be now casted as
Consider the quantized compressive sensing scenariogwher

V. RECONSTRUCTIONALGORITHMS FORQUANTIZED CS

B. Reconstruction Distortion

min ||x||; subject to ®x € R, (22)

Y =q(Y)=®X +E, _ , » , ,
which again can be efficiently solved by linear programming

and whereE € R™ denotes the quantization error. L%t be techniques.
the reconstructed signal based on the noisy measureﬁi’ents In order to adapt the SP algorithm to the quantization

Then the reconstruction distortion is defined X scenario at hand, we describe first a geometric interpogtafi

For the BP method, the reconstruction distortion is uppg}e prOJect|or71ncX>T:)T?rat|on in the SP algorithm. Givere R™
bounded by (se€T7]) nd®r € R the projection operation ifJ(2) is used

to find a linear combination of the columns &; that best

5 . . :
o 2 approximatess (in the l-norm), that is,
|x =], << IE3. Pp ¥ (in the fz-norm)

. 2
where XER* Iy = ®exl; (23)
Cip = 2/\/1§ . Let x* be the solution of the quadratic optimization problem
V1I—=04x = V14 dax (23). Then functions[{2}4) are equivalent pooj (y, ®;) =
i&:x", resid (v, ®:) =y — ®:x* andpcoeff (y, ®;) = x*.

The modified SP algorithm is based on the above geometric
interpretation. For quantized compressive sensing, ores do
not know the exact value & . The only information available
is thatY € R. Following the geometric interpretation of the
where projection operation, one may intuitively use

1+ 83k + 035 : 2
o = ——————— min e ¢ 24
Csp 531( (1 — 53[{) xERE yeR Hy t ”2 ( )

A similar upper bound on the reconstruction distortion
derived in [5] for the SP algorithm, and is of the form

A |2 9 9
|x-x| <<, 1Bl



to replace the optimization problem in_{23). But there exis m=128, N=256, K=6, 1000 realizations

a problem associated with this approach. Note that —— Nonuniform Quanizer by the Lioyd Method
5 10° 3 —+— Uniform:Quantizer
2 y
Iy - @l =0 -2 | ¥ | .
2 5]
£
and the matrix[I — ®;] does not have full column rank. £
Consequently, the quadratic optimization probldml (24) m: £
not have a unique solution. To solve this difficulty, we use tr £ ol
following definition. £
Definition 7. For given®, € R™*¥, Y andR, define §
0= {(x,y) eRF xR :
ly — @uxll, < Iy’ — x|, ¥(x',y") € R* x R}, . S
whereR is the closure ofR, and 2 R enaionrae. o °
(x,y") = argmin Hy —Y) - Figure 1: Distortion in the measurements.

(x,y)€O

It can be verified thak* andy* are well defined.
Based on Definitiof]7, we redefine the projection operatiQfanerated the entries supported Byirom the standard i.i.d.
for the modified SP algorithm as follows. For given measurg;ayssian distribution and set all other entries to zero. e |

mentsY < R™, codebookC and &7 < Rmxl?_" we obtain  gyantization rates vary fromto 6 bits. For each quantization
‘R and then compute* andy*. Then the modified projection rate, we used Lloyd’s algorithm (SectiG@TI-B) to obtain a

functions are defined by nonuniform quantizer and employed brute-force search tb fin

(@) — -(a) ( ) o X the optimal uniform quantizer. To test different quantizer
Y profi (Y, @1 ) := 217, (25) and reconstruction algorithms, we randomly generakeand
@ — 1osid® (V. &) = v* — Boxc” 26 X independently thousand times. For each realization, we
yr = rest ( ’ T) =Y TR (26) calculated the measuremer¥s the quantized measurements

Y and the reconstructed signats
Xéq) = peoeff@ (Y,@T) = x*, (27) Fig. I compares uniform and uniform quantizers with

respect to measurement distortion. Though the quantizatio
where the superscripfg) emphasizes that these definitiongates in our experiments are relatively small, the simaiati
are for the quantized case. Finally, we replace thgid results are consistent with the asymptotic results in Tém@or
and pcoeff functions in Algorithm[l with the new functions[3: nonuniform quantization is better than uniform quarticra
resid@ andpcoeff?. This gives the modified SP algorithmand the gain increases with the quantization rate. Fi§. 2a
for reconstruction from quantized measurements. compares the reconstruction distortion of the standard B8P a

Remark 8. Both the modified BP algorithm i (22) and theSP algorithms. The comparison of the modified algorithms
modified SP algorithm work for vector quantization as well/$ given in Fig[2. The modified algorithms reduce the recon-
struction distortion significantly. When the quantizatiate is

Remark 9. As discussed in[[7],[[5], it is often the case thag bits, the reconstruction distortion of the modified algoris

the energy of quantization error, or an upper bound on the roughly only one tenth of that of standard algorithms.
error energy, is known before reconstruction. This casebean Fyrthermore, for both standard and modified algorithms, the
coped with by replacing the quantization regi@ with the  reconstruction distortion given by SP algorithms is much
lo-ball Sy : ’y -Y Lg c¢ wherec > 0 is the error energy. smaller than that of BP methods. Note that the computational
On the other hand, the subspaReused in this paper providescomplexity of the SP algorithms is also smaller than that of
finer information aboul than thel,-ball and therefore allows BP methods, which shows clear advantages for using SP al-

and

for better reconstruction performance. gorithms in conjuction with quantized CS data. An interggti
phenomenon happens for the case of the modified BP method:
V. EMPIRICAL RESULTS although the nonuniform quantization gives smaller measur

ment distortion, the corresponding reconstruction digtoris
Eoctually slightly larger than that of uniform quantizatioive

do not have solid analytical argument to completely explain
this somewhat counterintuitive fact.

We performed extensive computer simulations in order
compare the performance of different quantizers and differ
reconstruction algorithms empirically. The parameteesius
our simulations weren = 128, N = 256 and K = 6.
Given these parameters, we generated realizations &f NV
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