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Abstract—We study the average distortion introduced by
quantizing compressive sensing measurements. Both uniform
quantization and non-uniform quantization are considered. The
asymptotic distortion-rate functions are obtained when the mea-
surement matrix belongs to certain random ensembles. A new
modification of greedy reconstruction algorithm that accommo-
dates quantization errors is proposed and its performance is
evaluated through extensive computer simulations.

I. I NTRODUCTION

Compressive sensing (CS) has received significant attention
due to its wide applications in medical imaging, biosensing,
spectrum monitoring and other areas of signal processing.
It is a sampling method that converts unknown input sig-
nals, embedded in a high dimensional space, into signals
that lie in a space of significantly smaller dimension, using
linear measurements. In general, it is an ill-posed problemto
recover the unknown signal using measurements embedded
in a reduced-dimensional space. Nevertheless, if the input
signal is sufficiently sparse, exact reconstruction is possible in
polynomial time [1], [2], [3], [4], which is the central result of
CS theory. As a result, CS significantly reduces the number of
measurements required to acquire an unknown sparse signal.

There exist many different techniques for sparse signal
reconstruction. For simplicity, assume that the unknown signal
x ∈ R

N is K-sparse, i.e., that there are at mostK nonzero
entries inx. The naive reconstruction method is to search
among all possible signals and find the sparsest one which
is consistent with the linear measurements. In general, this
method requires onlym = 2K random linear measurements.
Unfortunately, to find the sparsest signal representation is an
NP-hard problem. On the other hand, the work by Donoho
and Candès et. al. [1], [2], [3], [4] demonstrated that sparse
signal reconstruction is a polynomial time problem provided
that more measurements are taken. This is achieved by casting
the reconstruction problem as a linear programming problem
and solving it using the basis pursuit (BP) method. More
recently, the authors proposed the so called subspace pursuit
(SP) algorithm in [5] (see the independent work [6] for a mod-
ification). Its computational complexity is linear in the signal
dimension, and the required number of linear measurements
is of the same order as that needed for the BP method. For
both the BP and SP algorithms, the reconstruction distortion
can also be analyzed when the measurements are subjected to
noise with bounded power [7], [5].

For most practical applications, it is reasonable to assume
that the measurements are quantized and that therefore one

does not have infinite precision observations. With certain
assumptions of the quantization rate, it has been shown in [8]
that uniform scalar quantization provides near-optimal distor-
tion performance. However, the same quantization technique
is not efficient for sparse signals in the sense that a large
fraction of quantization regions is not used at all [9]. Both
of the above approaches focus on the worst case analysis. On
the algorithmic side, a reconstruction algorithm for one bit
quantization is proposed and discussed in [10].

As opposed to the approach in [8], [9], we consider the
average distortion introduced by quantization, and study the
effects of both uniform quantization and non-uniform quanti-
zation. The asymptotic distortion rate function is characterized
when the measurement matrix is taken from certain random
matrix ensembles. We also discuss the more general case of CS
in which constraints on the column norms of the measurement
matrix are imposed. Finally, we adapt two benchmark CS
reconstruction algorithms to accommodate quantization errors
and show that the new algorithms offer significant performance
improvement over classical CS reconstruction techniques.

This paper is organized as follows. Section II contains a
brief overview of CS theory, the BP and SP reconstruction
algorithms, and various quantization techniques. In Section III,
we analyze the CS distortion rate function and examine the
influence of quantization errors on the BP and SP reconstruc-
tion algorithms. In Section IV, we describe two modifications
of the aforementioned algorithms, suitable for quantized data,
that offer significant performance improvements when cop-
mared to standard BP and SP techniques. Simulation results
are presented in Section V.

II. PRELIMINARIES

A. Compressive Sensing (CS)

In CS, one encodes a signalx of dimensionN by computing
a measurement vectory of dimension ofm ≪ N via linear
projections, i.e.,

y = Φx,

whereΦ ∈ R
m×N is referred to as themeasurement matrix.

In this paper, we assume thatx ∈ R
N is exactlyK-sparse,

i.e., that there are exactlyK entries ofx that are nonzero. The
reconstruction problem is to recoverx giveny andΦ.

The BP method is a technique that casts the reconstruction
problem as anl1-regularized optimization problem, i.e.,

min ‖x‖1 subject to y = Φx, (1)
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where‖x‖1 =
∑N

i=1 |xi| denotes thel1-norm of the vectorx.
It is a convex optimization problem and can be solved effi-
ciently by linear programming techniques. The reconstruction
complexity equalsO

(

m2N3/2
)

if the convex optimization
problem is solved using interior point methods [11].

The computational complexity of CS reconstruction can be
further reduced by the SP algorithm, recently proposed by
two research groups independently in [5] and [6]. It is an
iterative algorithm drawing on the theory of list decoding.The
computational complexity of this algorithm is upper bounded
byO

(

Km(N +K2)
)

, which is significantly smaller than that
of the BP method whenK ≪ N . See [5] for a detailed
performance and complexity analysis of this greedy algorithm.

For completeness, we briefly describe the SP algorithm. For
an index setT ⊂ {1, 2, · · · , N}, let ΦT be the “truncated
matrix” consisting of the columns ofΦ indexed byT , and let
span (ΦT ) be the subspace inRm spanned by the columns of
ΦT . Suppose thatΦ∗

TΦT is invertible. For any giveny ∈ R
m,

the projection ofy onto span (ΦT ) is defined as

yp = proj (y,ΦT )

:= ΦT (Φ∗
TΦT )

−1
Φ∗

Ty. (2)

The corresponding projection residue vectoryr and projection
coefficient vectorxp are defined as

yr = resid (y,ΦT ) := y − yp, (3)

and

xp = pcoeff (y,ΦT )

:= (Φ∗
TΦT )

−1
Φ∗

Ty. (4)

Then the SP algorithm is summarized in Algorithm 1.

Algorithm 1 The Subspace Pursuit (SP) Algorithm
Input : K, Φ, y
Initialization : Let T 0 = {K indices of the largest magnitude
entries inΦ∗y} andy0

r = resid
(

y,ΦT̂ 0

)

.
Iteration : At the ℓth iteration, go through the following steps.

1) T̃ ℓ = T ℓ−1
⋃{K indices of the largest magnitude

entries inΦ∗yℓ−1
r

}

.
2) Let xp = pcoeff (y,ΦT̃ ℓ) andT ℓ = {K indices of the

largest magnitude entries inxp}.
3) yℓ

r = resid (y,ΦT ℓ) .
4) If

∥

∥yℓ
r

∥

∥

2
>
∥

∥yℓ−1
r

∥

∥

2
, let T ℓ = T ℓ−1 and quit the

iteration.

Output : The vector̂x satisfyingx̂{1,··· ,N}−T ℓ = 0 andx̂T ℓ =
pcoeff (y,ΦT ℓ).

A sufficient condition for both BP and SP algorithms
to perform exact reconstruction is the so called restricted
isometry property (RIP) [2], formally defined as follows.

Definition 1 (RIP). A matrix Φ ∈ R
m×N is said to satisfy

the Restricted Isometry Property (RIP) with parameters(K, δ)
for K ≤ m, 0 ≤ δ ≤ 1, if for all index setsI ⊂ {1, · · · , N}
such that|I| ≤ K and for allq ∈ R

|I|, one has

(1− δ) ‖q‖22 ≤ ‖ΦIq‖22 ≤ (1 + δ) ‖q‖22 .

The RIP constant is defined as the infimum of all parameters
δ for which the RIP holds, i.e.,

δK := inf
{

δ : (1− δ) ‖q‖22 ≤ ‖ΦIq‖22 ≤ (1 + δ) ‖q‖22 ,

∀ |I| ≤ K, ∀q ∈ R
|I|
}

.

Most known families of matrices satisfying the RIP prop-
erty with optimal or near-optimal performance guarantees are
random, and include Gaussian random matrices with i.i.d.
N
(

0, 1
m

)

entries, wherem ≥ O (K logN).

B. Scalar Quantization

Let C ⊂ R be a finite discrete set, referred to as a codebook.
A quantization is a mapping fromR to the codebookC such
that

q : R → C
y 7→ ω ∈ C iff y ∈ Rω, (5)

whereω is referred to as alevel andRω is the quantization
region corresponding to levelω. The performance of a quan-
tizer is often described by its distortion-rate function defined as
follows. The distortion measure is assumed to be the squared
Euclidean distance. For a random sourceY , the distortion
associated with a quantizerq is Dq := E

[

(Y − q (Y ))2
]

.
For a given codebookC, the optimal quantization level that
minimizes the Euclidean distortion measure is given by

q
∗ (Y ) = arg min

ω∈C
(Y − ω)

2
.

The distortion associated with this codebookC equals

D (C) := E
[

(Y − q
∗ (Y ))2

]

.

Let R := log2 |C| be the rate of the codebookC. For a given
code rateR, the distortion rate function is given by

D∗ (R) := inf
C: |C|≤2R

D (C) .

Necessary conditions for optimal quantizer design can be
found in [12]. In this paper, we assume that the random
variableY does not have mass points and thatω1 < ω2 <
· · · < ω2R . Let the quantization regions be

Rk =

{

(−∞, t1) k = 1

[ti−1, ti) k = 2, 3, · · · , 2Rfb

, (6)

wheret2R = +∞, and t1, · · · , t2R−1 ∈ R satisfyωk ≤ ti ≤
ωk+1. Note that for simplicity, we replaced the symbolRω

in (5) with Rk. We adhere to this notation throughout the
remainder of this paper. An optimal quantizer satisfies the
following conditions:

1) If the optimal quantizer has levelsωk−1 andωk, then the
threshold that minimizes the mean square error (MSE)
is

ti =
1

2
(ωk + ωk+1) . (7)

2) If the optimal quantizer has thresholdstk−1 andtk, then
the level that minimizes the MSE is

ωk = E [Y |Rk] . (8)
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Lloyd’s algorithm [12] for quantizer codebook design is
based on the above necessary conditions for an optimal quan-
tizer. Lloyd’s algorithm starts with an initial codebook, and
then in each iteration, computes the thresholdstis according
to (7) and updates the codebook via (8). Although Lloyd’s
algorithm does not guarantee global optimality, it produces
locally optimal codebooks.

As a low-complexity alternative, a uniform quantizer is most
widely used in practice. A uniform quantizer is associated
with a “uniform codebook”Cu = {ω1 < ω2 < · · · < ωM} for
which ωi − ωi−1 = ωj − ωj−1 for all 1 < i 6= j ≤ 2R. For
a fixed code rateR, the distortion rate function of a uniform
quantizer is defined as

D∗
u (R) := inf

Cu: |Cu|≤2R
D (Cu) .

For a given probability density function, the exact asymp-
totic distortion rate function can be quantified exactly. Denote
the probability density function of the sourceY by p (y). It
was shown by Zador [13] that

lim
R→∞

22RD∗ (R) =
1

12

(∫

p1/3 (x) dx

)3

.

If the source is Gaussian with varianceσ2, then the corre-
sponding asymptotic distortion rate function becomes

lim
R→∞

22RD∗ (R) =
σ2π

√
3

2
. (9)

The distortion rate function of a uniform quantizer was de-
scribed in [14, Theorem 6]. For Gaussian random sources with
varianceσ2, one has

lim
R→∞

22R

R
D∗

u (R) =
4

3
σ2. (10)

C. Scalar Quantization of CS Measurements

We study the effect of quantization on CS measurements.
For simplicity, we assume a scalar quantization scheme: to
each entry ofY, say Yi, one applies the same quantization
procedure

q : R → C ⊂ R

Yi 7→ Ŷi = arg min
ω∈C

|Yi − ω|2 .

Similar to the traditional distortion-rate function for a scalar,
we define the distortion rate function for quantization of the
measurement vectorY by

D∗
Y (R) := inf

C: |C|≤2R
EY

[

m
∑

i=1

min
ω∈C

|Yi − ω|2
]

. (11)

When only uniform quantization is taken into consideration,
the corresponding distortion-rate function is defined by

D∗
Y,u (R) := inf

Cu: |Cu|≤2R
Ey

[

m
∑

i=1

min
ω∈Cu

|Yi − ω|2
]

, (12)

where Cu denotes a uniform codebook. We are particularly
interested in the total distortion of the form (11) and (12),
because the CS reconstruction distortion is determined by the
total distortion in the measurements rather than the distortion
of each individual measurement.

D. Subgaussian Random Variables

Definition 2. A random variableX is said to beSubgaussian
if there exist positive constantsc1 andc2 such that

Pr (|X | > x) ≤ c1e
−c2x

2 ∀x > 0.

One property of Subgaussian distributions is that they have
a well defined moment generating function. Note that the
Gaussian and Bernoulli distributions are special cases of the
Subgaussian distribution.

III. D ISTORTION ANALYSIS

A. Distortion of Measurements

We consider the following two CS scenarios.

Assumptions I:

1) Let Φ = 1√
m
A ∈ R

m×N , where the entries ofA are
i.i.d. Subgaussian random variables with zero mean and
unit variance.

2) Let X ∈ R
N be exactlyK-sparse, that is, the signal

X has exactlyK nonzero entries. We assume that the
nonzeros entries ofX are i.i.d. Subgaussian random
variables with zero mean and unit variance.

3) The quantization codeC is designed offline and fixed
when the measurements are taken.

Assumptions II:

1) Let Φ ∈ R
m×N be such that 1N

∑N
j=1 ‖ϕj‖22 = 1,

whereϕj is the jth column of the matrixΦ.
2) Assume that there are exactlyK nonzero entries in

X ∈ R
n, and that the nonzeros entries ofX are i.i.d.

standard Gaussian random variables with zero mean and
unit variance.

3) The quantization codeC is designed offline and fixed
when the measurements are taken.

The asysmptotic distortion rate function of the measure-
ments under the first scenario is characterized in Theorem 3.

Theorem 3. Suppose that Assumptions I hold. Then

lim
R→∞

lim
(K,m,N)→∞

22R

K
D∗

Y (R) =
π
√
3

2
, (13)

and there exist constants 0 < c1 < c2 such that

lim
R→∞

lim
(K,m,N)→∞

22R

KR
D∗

Y,u (R) =
4

3
. (14)

Remark 4. According to Theorem 3, if the quantization rateR
is sufficiently large, the distortion of the optimal non-uniform
quantizer is approximately1/R of that of the optimal uniform
quantizer.

Proof: Let T = {1 ≤ j ≤ N : Xj 6= 0} be the support
set of x. It is easy to show that for all1 ≤ i ≤ m and
T ⊂ {1, · · · , N} such that|T | = K,

E





∑

j∈T

Ai,jXj



 = 0
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and

E











∑

j∈T

Ai,jXj





2





= K.

According to the Central Limit Theorem, the distribution of
1√
K

∑

j∈T Ai,jXj converges weakly to the standard Gaussian

distribution asK → ∞. As a result, the distribution of
√

m
KYi

converges weakly to the standard Gaussian distribution as
K,m,N → ∞.

If we apply a scalar quantizer with2R levels to the random
variable

√

m
KYi, then it holds that

lim
R→∞

lim
(K,m,N)→∞

22RD∗ (R) =
π
√
3

2
. (15)

Note that

1

K
E

[

∥

∥

∥Ŷ −Y

∥

∥

∥

2

2

]

=
1

m

m

K
E

[

m
∑

i=1

(

Ŷi − Yi

)2
]

=
1

m

m
∑

i=1

E

[

(
√

m

K
Ŷi −

√

m

K
Yi

)2
]

= E

[

(√

m

K
Ŷi −

√

m

K
Yi

)2
]

, (16)

where the last line represents the distortion of quantizing
√

m
KYi. Combining (??) and (16) proves the result of (13).
Consider a uniform quantizer with codebookCu, such that

|Cu| = 2R, and apply this uniform quantizer to the random
variable

√

m
KYi. LetK,m,N → ∞. Note that the distribution

of
√

m
KYi converges weakly to the standard Gaussian distri-

bution. Applying the result in (10) proves the result claimed
in (14).

For the scenario described by Assumptions II, lower bounds
on the distortion rate function are described in Theorem 5.

Theorem 5. Suppose that Assumptions II hold. Then

lim inf
R→∞

lim inf
(K,m,N)→∞

22R

K
D∗

y (R) ≥ π
√
3

2
, (17)

and there exists a constant c > 0 such that

lim inf
R→∞

lim inf
(K,m,N)→∞

22R

KR
D∗

y,u (R) ≥ 4

3
. (18)

Proof: Given Assumptions II, eachYi, 1 ≤ i ≤ m,
is a linear combination of Gaussian random variables, and
therefore eachYi is a Gaussian random variable ifself. For a
given i and a givenT , the mean and the variance ofYi are
E [Yi] = 0 andσ2

i,T = E
[

Y 2
i

]

=
∑

j∈T ϕ2
i,j , respectively. The

variance depends on the row indexi and the support setT . We
calculate the average variance across all rows and all support

sets as

σ̄2 =
1

m

m
∑

i=1





1
(

N
K

)

∑

T

∑

j∈T

ϕ2
i,j





=
1

m

1
(

N
K

)

∑

T

∑

j∈T

(

m
∑

i=1

ϕ2
i,j

)

(a)
=

1

m

1
(

N
K

)

N
∑

j=1





∑

T : j∈T

‖ϕj‖22





(b)
=

1

m

1
(

N
K

)

N
∑

j=1

(

N − 1

K − 1

)

‖ϕj‖22

(c)
=

K

m

1

N

N
∑

j=1

‖ϕj‖22

(d)
=

K

m
, (19)

where

(a) is obtained by exchanging the sums overT andj,
(b) holds because for any given1 ≤ j ≤ N , there are

(

N−1
K−1

)

many subsetsT containing the indexj,
(c) is due to the fact that

(

N−1
K−1

)

/
(

N
K

)

= K/N ,
(d) follows from Assumption II-1).

Suppose that one deals with the ideal case: the support set
T is known before taking measurements; and for different
values ofi andT , we are allowed to use different quantizers.
Giveni andT , we apply the optimal quantizer for the standard
Gaussian random variable to

√

m
K yi, so that the corresponding

distortion rate function satisfies

lim
R→∞

22RDi,T (R) =
π
(

m
K σ2

i,T

)

2

√
3.

Taking the average over alli and allT gives

1

m

m
∑

i=1

1
(

T
K

)

∑

T

(

lim
R→∞

22RDi,T (R)
)

=
1

m

m
∑

i=1

1
(

T
K

)

∑

T

(

π
(

m
K σ2

i,T

)

2

√
3

)

=
π

2

√
3,

where the last equality follows from (19).

However, the support setT is unknown before taking
the measurements. Furthermore, the same quantizer has to
be employed for different choices ofi and T according to

Assumptions II. Thus, for everyR, i andT , E

[

∣

∣

∣
Yi − Ŷi

∣

∣

∣

2
]

≥
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Di,T (R). As a result

lim inf
R→∞

22R

K
ET

[

EY

[

∥

∥

∥Ŷ −Y

∥

∥

∥

2

2

]]

= lim inf
R→∞

22R
(

N
T

)

∑

T

1

m

m
∑

i=1

m

K
EY

[

(ŷi − yi)
2
]

≥ lim inf
R→∞

22R
(

N
T

)

∑

T

1

m

m
∑

i=1

Di,T (R)

=
π

2

√
3.

Since the above derivation is valid for allK, m andN , the
claim in (17) is proved.

The result in (10) for uniform quantizers can be proved
using similar arguments.

Remark 6. Our work is based on the fundamental assumption
that the sparsity levelK is known in advance and that the
statistics of the sparse vectorx is specified. Very frequently,
however, this is not the case in practice. If we relax Assump-
tions I and II further by assuming thatK is sufficently large,
it will often be the case that the statistics of the measurement
Yi is well approximated by a Gaussian distribution. Here,
note that differentYi variables may have different variances
and these variances are generally unknown in advance. The
problem of statistical unmatch has been previously addressed
in quantization theory [15, Chapter 8]. Particularly, non-
uniform quantizations with slightly under-estimated variance
perform better than those with over-estimated variance [15,
Chapter 8.6].

B. Reconstruction Distortion

It is well known from CS literature that the reconstruction
distortion is dependent on the distortion in the measurements.
Consider the quantized compressive sensing scenario, where

Ŷ = q (Y) = ΦX+E,

and whereE ∈ R
m denotes the quantization error. LetX̂ be

the reconstructed signal based on the noisy measurementsŶ.

Then the reconstruction distortion is defined as
∥

∥

∥X− X̂

∥

∥

∥

2

2
.

For the BP method, the reconstruction distortion is upper
bounded by (see [7])

∥

∥

∥X− X̂

∥

∥

∥

2

2
≤ c2lp ‖E‖22 ,

where

c2bp =
2/

√
3√

1− δ4K − 1√
3

√
1 + δ4K

.

A similar upper bound on the reconstruction distortion is
derived in [5] for the SP algorithm, and is of the form

∥

∥

∥X− X̂

∥

∥

∥

2

2
≤ c2sp ‖E‖22 ,

where

csp =
1 + δ3K + δ23K
δ3K (1− δ3K)

.

Consider Assumptions I. For the optimal scalar quantizer,
the reconstruction distortion can be upper bounded by

lim
R→∞

lim
(K,m,N)→∞

22R

K
E

[

∥

∥

∥
X− X̂

∥

∥

∥

2

2

]

≤
{

c2sp
π
√
3

2 for the SP algorithm

c2bp
π
√
3

2 for the BP algorithm
. (20)

For the optimal uniform quantizer, an upper bound for the
reconstruction distortion is given by

lim
R→∞

lim
(K,m,N)→∞

22R

KR
E

[

∥

∥

∥
X− X̂

∥

∥

∥

2

2

]

≤
{

c2sp
4
3 for the SP algorithm

c2bp
4
3 for the BP algorithm

. (21)

The upper bounds on the reconstruction distortion increase
for the scenario described in Assumptions II. The upper
bounds for optimal quantizers and optimal uniform quantizers
are lower bounded by (20) and (21), respectively.

IV. RECONSTRUCTIONALGORITHMS FORQUANTIZED CS

We present next modifications of BP and SP algorithms that
take into account quantization effects.

To describe these algorithms, we find the following notation
useful. LetŶ be the quantized measurement vector. FromŶ,
the corresponding quantization regions for each coordinate of
Ŷ can be easily identified. Let̂Yi ∈ Rki

, whereŶi is the ith

entry of Ŷ andRki
is the corresponding quantization region

as given by (6). We represent the Cartesian product set of the
Rki

s by R: a vectory is in R if and only if y ∈ R
m and

yi ∈ Rki
for all i = 1, 2, · · · ,m.

Similar to the standard BP method, the reconstruction
problem can be now casted as

min ‖x‖1 subject to Φx ∈ R, (22)

which again can be efficiently solved by linear programming
techniques.

In order to adapt the SP algorithm to the quantization
scenario at hand, we describe first a geometric interpretation of
the projection operation in the SP algorithm. Giveny ∈ R

m

and ΦT ∈ R
m×|T |, the projection operation in (2) is used

to find a linear combination of the columns ofΦt that best
approximatesy (in the l2-norm), that is,

min
x∈Rk

‖y −Φtx‖22 . (23)

Let x∗ be the solution of the quadratic optimization problem
(23). Then functions (2-4) are equivalent toproj (y,Φt) =
Φtx

∗, resid (y,Φt) = y −Φtx
∗ andpcoeff (y,Φt) = x∗.

The modified SP algorithm is based on the above geometric
interpretation. For quantized compressive sensing, one does
not know the exact value ofY. The only information available
is thatY ∈ R. Following the geometric interpretation of the
projection operation, one may intuitively use

min
x∈Rk,y∈R

‖y −Φtx‖22 (24)
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to replace the optimization problem in (23). But there exists
a problem associated with this approach. Note that

‖y −Φtx‖22 =

∥

∥

∥

∥

[I −Φt]

[

y

x

]∥

∥

∥

∥

2

2

and the matrix[I −Φt] does not have full column rank.
Consequently, the quadratic optimization problem (24) may
not have a unique solution. To solve this difficulty, we use the
following definition.

Definition 7. For givenΦt ∈ R
m×k, Ŷ andR, define

O :=
{

(x,y) ∈ R
k ×R :

‖y −Φtx‖2 ≤ ‖y′ −Φtx
′‖2 ∀ (x′,y′) ∈ R

k ×R
}

,

whereR is the closure ofR, and

(x∗,y∗) = argmin
(x,y)∈O

∥

∥

∥y − Ŷ

∥

∥

∥

2
.

It can be verified thatx∗ andy∗ are well defined.
Based on Definition 7, we redefine the projection operation

for the modified SP algorithm as follows. For given measure-
mentsŶ ∈ R

m, codebookC andΦT ∈ R
m×|T |, we obtain

R and then computex∗ andy∗. Then the modified projection
functions are defined by

y(q)
p = proj(q)

(

Ŷ,ΦT

)

:= ΦTx
∗, (25)

y(q)
r = resid(q)

(

Ŷ,ΦT

)

:= y∗ −ΦTx
∗, (26)

and
x(q)
p = pcoeff(q)

(

Ŷ,ΦT

)

:= x∗, (27)

where the superscript(q) emphasizes that these definitions
are for the quantized case. Finally, we replace theresid
and pcoeff functions in Algorithm 1 with the new functions
resid(q) andpcoeff(q). This gives the modified SP algorithm
for reconstruction from quantized measurements.

Remark 8. Both the modified BP algorithm in (22) and the
modified SP algorithm work for vector quantization as well.

Remark 9. As discussed in [7], [5], it is often the case that
the energy of quantization error, or an upper bound on the
error energy, is known before reconstruction. This case canbe
coped with by replacing the quantization regionR with the
l2-ball

{

y :
∥

∥

∥
y − Ŷ

∥

∥

∥
≤ c
}

wherec > 0 is the error energy.
On the other hand, the subspaceR used in this paper provides
finer information aboutY than thel2-ball and therefore allows
for better reconstruction performance.

V. EMPIRICAL RESULTS

We performed extensive computer simulations in order to
compare the performance of different quantizers and different
reconstruction algorithms empirically. The parameters used in
our simulations werem = 128, N = 256 and K = 6.
Given these parameters, we generated realizations ofm×N
sampling matrices from the standard i.i.d. Gaussian ensemble
and normalize the columns to have unitl2-norm. We also
selected a support setT of size|T | = K uniformly at random,
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Figure 1: Distortion in the measurements.

generated the entries supported byT from the standard i.i.d.
Gaussian distribution and set all other entries to zero. We let
quantization rates vary from2 to 6 bits. For each quantization
rate, we used Lloyd’s algorithm (Section II-B) to obtain a
nonuniform quantizer and employed brute-force search to find
the optimal uniform quantizer. To test different quantizers
and reconstruction algorithms, we randomly generatedΦ and
x independently thousand times. For each realization, we
calculated the measurementsY, the quantized measurements
Ŷ and the reconstructed signalŝX.

Fig. 1 compares uniform and uniform quantizers with
respect to measurement distortion. Though the quantization
rates in our experiments are relatively small, the simulation
results are consistent with the asymptotic results in Theorem
3: nonuniform quantization is better than uniform quantization
and the gain increases with the quantization rate. Fig. 2a
compares the reconstruction distortion of the standard BP and
SP algorithms. The comparison of the modified algorithms
is given in Fig. 2. The modified algorithms reduce the recon-
struction distortion significantly. When the quantizationrate is
6 bits, the reconstruction distortion of the modified algorithms
is roughly only one tenth of that of standard algorithms.
Furthermore, for both standard and modified algorithms, the
reconstruction distortion given by SP algorithms is much
smaller than that of BP methods. Note that the computational
complexity of the SP algorithms is also smaller than that of
BP methods, which shows clear advantages for using SP al-
gorithms in conjuction with quantized CS data. An interesting
phenomenon happens for the case of the modified BP method:
although the nonuniform quantization gives smaller measure-
ment distortion, the corresponding reconstruction distortion is
actually slightly larger than that of uniform quantization. We
do not have solid analytical argument to completely explain
this somewhat counterintuitive fact.
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