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Abstract�—The wireless multiple-unicast problem is considered
over a layered network, where the rates of transmission are
limited by the relaying and interference effect. The deterministic
model introduced in [3] is used to capture the broadcasting and
multiple access effects. The capacity region of the Z-chain relay-
interference network is fully characterized. In order to solve
the problem, we introduce a new achievability scheme based on
�“interference neutralization�” and a new analysis technique to
bound the number of non-interfering (pure) signals.

I. INTRODUCTION
Unlike a wired network, a transmitted signal is broadcast

in a wireless system, and hence causes interference between
simultaneously transmitted signals. The interference can be
used for cooperation, but also causes competition between
distinct information ows. Hence, a fundamental question is
how to manage interference in a wireless network.
In a general multiple unicast setup, many sources transmit

messages, and each is of interest for one of the receivers. The
interference channel problem [1] is the very basic example
of such situation. The best known achievable region for this
problem is due to Han and Kobayashi [1]. Over the past few
decades, several techniques have been devised for transmission
on the interference channels; among them, superposition of
information, power allocation, and interference suppression are
the most well-known ones. Recently, the capacity region of the
interference channel has been characterized for some regimes
by building on an approximate characterization (within 1 bit)
given for the whole regime in [2].
The deterministic approach, studied by Avestimehr, Diggavi,

and Tse [3], simplies the wireless network interaction model
by eliminating the noise. This approach was successfully
applied to the relay network in [3], and resulted in insight
in terms of transmission techniques. These insights also led
to an approximate characterization of the noisy wireless relay
network problem [4].
This model was also applied to a two-layers two-unicast

system, called ZZ network in [5] and the capacity region was
fully characterized under the deterministic model1. Moreover,
a new transmission technique called interference neutralization
was introduced to deal with the interference. In this technique,
the interference caused by the two layers of the network are

1This idea also gives us insight to obtain an approximate (within constant
number of bits) characterization for the Gaussian ZZ network.

used to (partially) neutralize each other. It is shown that in-
terference neutralization is crucial to achieve the performance
of the network for some regime of parameters.
In this paper, we generalize the above mentioned network,

and consider a chain with arbitrary number of Z channels,
and characterize the region of the admissible rates under
the deterministic model. We rst develop a genie-aided outer
bound for the rate-region.
We then show that this rate region is achievable using linear

operations, where decoding a message of rate r is possible if
and only if r non-interfered linearly independent equations
describing the message are available at the receiver. In our
achievability proof, we use a new technique, called analysis
of pure equations, where we keep track of the number of the
equations involving bits of each of the interfering messages
at the relay nodes in the different layers of the network. We
show that among all possible encoding schemes at the layers,
there exists at least one which guarantee to provide the desired
number of proper equations.
The rest of this paper is organized as follows. We de-

scribe the transmission model and the problem in Section II.
The outer bound and the achievability analysis are given
in Sections III and IV, respectively. Finally we conclude in
Section V.

II. THE PROBLEM STATEMENT

Consider the network shown in Fig. 1, in which the trans-
mitters S1 and S2 wish to communicate at rates r1 and
r2 to the destination nodes D1 and D2, respectively. The
network is formed by N layers of Z channels, where the
k-th one connects the relay nodes Ak−1 and Bk−1 to Ak

and Bk, for k = 0, 2, . . . , N , and the relays in layers zero
and N are the transmitters and receivers, respectively. We
denote the parameters of the network by a family of triples,
{(αk, βk, γk)}N

k=1, where αk and βk are the gains of the rst
and second direct links of the k-th layer of the network and
γk is the gain of the cross link of the same layer.
We denote the inputs of the layer k by X

(k)
1 and X

(k)
2 and

received vectors of this layer by Y
(k)
1 and Y

(k)
2 . Transmission

model in the k-th layer of the Z-chain network can be written

!"#$%&&'($)*+*,($-.//0/($123/$4&$5$4%($%&&'

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 20, 2009 at 11:54 from IEEE Xplore.  Restrictions apply. 



S1

S2

D1

D2

α1 α2

β1 β2

αN

γ1 γ2 γN

βN

X
(1)
1 X

(2)
1 X

(3)
1 X

(N)
1

X
(1)
2 X

(2)
2 X

(3)
2 X

(N)
2

Y
(1)
1 Y

(2)
1 Y

(N−1)
1

Y
(N)
1

Y
(1)
2 Y

(2)
2 Y

(N−1)
2 Y

(N)
2

Fig. 1: Transmission model: the Z-chain network.

as

Y
(k)
1 = N

(k)
11 X

(k)
1 + N

(k)
12 X

(k)
2 ,

Y
(k)
2 = N

(k)
22 X

(k)
2 ,

where αk = rank N
(k)
11 , βk = rank N

(k)
22 , and γk = rank N

(k)
12 .

The relay node Ak forms its encoded message for the next
layer, X

(k+1)
1 as a function of its received signal Y

(k)
1 , and

similarly for Bk.
The rate pair (r1, r2) is called admissible if and only if,

for some large enough n, there exist codes of length n to
be used at the relays such that W1 ∈ {1, . . . , 2nr1} and
W2 ∈ {1, . . . , 2nr2} can be transmitted to the destination
nodes, respectively, with vanishing error probability. Charac-
terization of R, the set of all such rate pairs, is the main
question solved in this paper.

III. THE OUTER BOUND
The following theorem provides an outer bound for the

capacity region by upper bounding the individual rates as well
as the sum-rate. The main idea here is to give the relay at the
k-th layer the interfering signal from all the other layers. This
genie-aided side-information is shown to allow the relay node
Ak to decode message W1 if D1 is able to do so.
Theorem 1: Let

RU ! {(r1, r2) : r1 ≤ αk ∀k, (1)
r2 ≤ βk ∀k, (2)
r1 + r2 ≤ Ψk + ΓN − 2γk ∀k, } (3)

where Ψk ! max(αk, γk) + max(βk, γk) and Γk !
∑k

i=1 γi

for k = 1, 2, . . . , N . Then R ⊆ RU .
Proof: Let the rate pair (r1, r2) be achievable using a code

of block length n. Hence the transmitters encode the messages
W1 andW2 into sequences X

(1)
1 [1, . . . , n] and X

(1)
2 [1, . . . , n].

The relays in the rst layer receive sequences Y
(1)
1 [1, . . . , n]

and Y
(1)
2 [1, . . . , n], and perform their encoding functions to

obtain their transmitting sequences X
(2)
1 [2, . . . , n + 1] and

X
(2)
2 [2, . . . , n+1]. Note that the system is casual andX

(2)
i [j] is

only a function of Y (1)
i [1, . . . , j−1]. Similarly, the transmitted

sequences in the k-th layer of the network are X
(k)
1 [k, . . . , n+

k − 1] and X
(k)
2 [k, . . . , n + k − 1]. We may drop the time

indices, and use bold face notation X
(k)
i and Y

(k)
i to denote

the n-tuples for brevity.
We will also denote the interference observed by the relay

node Ak by t(k) = N
(k)
12 X

(k)
2 for k = 1, 2, . . . , N , and use

bold-face symbol t(k) to denote a block of length n.

The proof of the individual rate inequalities goes through
the cut-set bounds. More precisely, (1) is just the evaluation
of the amount of information can be transmitted through the
cut formed by the links {γ1, . . . , γk−1, αk} (the dashed-line
cut in Fig. 2). Similarly, the bound in (2) can be obtained by
bounding the maximum information can be passed through
the cut specied by the links of gains {βk, γk+1, . . . , γN} (the
dotted-line cut in Fig. 2). The proofs of these inequalities are
straight forward and omitted for brevity. We refer the reader
to [6] for more details.
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Fig. 2: Three different kinds of cuts

The sum-rate bound is obtained by bounding the amount
of information can be passed through the k-th layer of the
network, namely, the edges {αk, βk, γk} (the solid-line cut in
Fig.2).
This bound is essentially a genie-aided bound, where a

genie provides the output of all the cross links except the
k-th one (t(1), . . . , t(k−1), t(k+1), . . . , t(N)) at Ak. Intuitively,
we capture the maximum possible interference neutralization,
and argue that having such aid from the genie, Ak can decode
the message W1 if the destination node D1 can do.

n(r1 + r2) ≤ I(Y(k)
1 ,Y

(k)
2 ;X(k)

1 ,X
(k)
2 )

= H(Y(k)
1 ,Y

(k)
2 )

≤ H(Y(k)
1 ,Y

(k)
2 , t(1), . . . , t(k−1), t(k+1), . . . , t(N))

≤ H(Y(k)
1 ) + H(t(1)) + · · · + H(t(k−1))

+ H(t(k+1)) + · · · + H(t(N))

+ H(Y(k)
2 |Y(k)

1 , T<k, T>k), (4)

where we have used T<k = (t(1), . . . , t(k−1)) and T>k =
(t(k+1), . . . , t(N)) for shortening the notations. Note that

H(Y(N)
1 |Y(k)

1 , T<k, T>k) = H(Y(N)
1 − t

(N)|Y(k)
1 , T<k, T>k)

= H(X(N−1)
1 |Y(k)

1 , T<k, T>k)

≤ H(Y(N−1)
1 |Y(k)

1 , T<k, T>k).
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Similarly, it can be shown that

H(Y(N)
1 |Y(k)

1 , T<k, T>k) ≤ H(Y(k)
1 |Y(k)

1 , T>k) = 0. (5)

Combining (5) with Fano�’s inequality, H(W1|Y
(N)
1 ) ≤ nε,

we have

H(W1|Y
(k)
1 , T<k, T>k) ≤ H(W1,Y

(N)
1 |Y(k)

1 , T<k, T>k)

= H(Y(N)
1 |Y(k)

1 , T<k, T>k)

+ H(W1|Y
(N)
1 ,Y

(k)
1 , T<k, T>k) ≤ nε. (6)

We also have

H(X(k)
1 |Y(k)

1 , T<k, T>k) ≤ H(Y(k−1)
1 |Y(k)

1 , T<k, T>k)

= H(Y(k−1)
1 − t

(k−1)|Y(k)
1 , T<k, T>k)

= H(X(k−1)
1 |Y(k)

1 , T<k, T>k).

Similarly,

H(X(k)
1 |Y(k)

1 , T<k, T>k) ≤ H(X(1)
1 |Y(k)

1 , T<k, T>k)

≤ H(W1|Y
(k)
1 , T<k, T>k) ≤ nε.

(7)

where the last inequality is due to (6). Hence,

H(t(k)|Y(k)
1 , T<k, T>k) ≤ H(t(k),X

(k)
1 |Y(k)

1 , T<k, T>k)

= H(X(k)
1 |Y(k)

1 , T<k, T>k)

+ H(t(k)|Y(k)
1 ,X

(k)
1 , T<k, T>k)

≤ nε. (8)

where the last is zero since t(k) = Y
(k)
1 −N

(k)
11 X

(k)
1 . Finally,

H(Y(k)
2 |Y(k)

1 , T<k, T>k) ≤ H(Y(k)
2 , t(k)|Y(k)

1 , T<k, T>k)

= H(t(k)|Y(k)
1 , T<k, T>k)

+ H(Y(k)
2 |Y(k)

1 , T<k, t(k), T>k)

≤ nε + H(Y(k)
2 |t(k))

≤ n(βk − γk)+ + nε. (9)

Replacing (9) in (4) we get

n(r1 + r2) ≤ n max(αk, γk) +
∑

i"=k

nγi + n(βk − γk)+ + nε′

which yields in (3) after some simplications.

IV. ACHIEVABILITY
The goal of this section is to show that any rate pair

(r1, r2) ∈ RU is achievable. We will show that such rate pair
is achievable using only linear operations, hence, the signal at
any relay or destination node would be a linear combination
of the input bits of W1 = [b1(1), b1(2), . . . , b1(r1)]T and
W2 = [b2(1), b2(2), . . . , b2(r2)]T , the binary representations
of the input messages. It is clear that destinations can decode
if and only if the nodes D1 (D2) can obtain exactly r1

(r2) linearly independent equations which only involve the
unknown bits of W1 (W2) from the set of received equations.
In order to show achievability, we introduce a new interference

management scheme we term interference neutralization. Here
the interfering signal is eliminated when mixed over the air,
without necessarily decoding it. This was also used in the ZZ

network in [5], and is crucial in this work as well.
We focus on a special class of encoding schemes, where

the relay nodes Bk�’s, rst decode the corresponding message
W2, and then encode it again and send exactly r2 linearly
independent equations describingW2. The encoding scheme at
Bk can be chosen such that the message received at Ak+1 gets
more interference, or (a part of) its interference get neutralized.
We choose r2 nodes among the top βk available nodes for
transmission, opportunistically, such that the message can be
decoded at Bk+1 and the desired interfering situation happens
at Ak+1.
Also the relay nodes Ak transmit exactly r1 equations,

where some of them may only involve bits from W1 and the
others involve bits of bothW1 andW2. However, the equations
are chosen such that the induced equations on each of W1 and
W2 are linearly independent, i.e., it transmits a vector

X
(k)
1 =

[

U Q
V 0

] [

W1

W2

]

(10)

where the matrices Q and
[

UT V T
]T are full-rank.

Transmission of W2 from S2 to D2 through Bk needs to
only send linearly r2 independent equations since no interfer-
ence can affect the message. We call a linear equation pure if
it only involves the bits of W1 as the unknown variables. Let
pk denote the number of linearly independent pure equations
received at the relay node Ak for k = 1, . . . , N −1. Similarly
p0 = r1 and pN denote the number of pure equations at S1

and D1, respectively. In fact Ak has pk pure equations and
r1 − pk mixed equations involving the unknown bits of both
W1 and W2. It may also have some equations which only
involve unknown bits of W2. Such equations can be used for
interference suppression as well as interference neutralization.
The value of pk depends on both the number of pure

equation in the previous layer, pk−1, as well the encoding
strategy used at the relay nodes Ak−1 and Bk−1. Therefore,
even for a xed pk−1, different values for pk can be obtained
using different coding strategies. In the following we will study
the evolution of the number of pure equations and show that
if (r1, r2) ∈ RU then there exist coding strategies used at the
relays such that one can obtain pN = r1 pure equations at D1

. It is clear that having r1 linearly independent equations, D1

can reconstruct the bits of W1.
Dene Pk as the set of all possible number of pure equations

at the k-th layer of the network. We dene Mk = maxPk

and mk = minPk as the largest and smallest elements of Pk,
respectively. It is clear that Mk ≤ r1 since the number of
linearly independent equations cannot exceed the number of
variables. Also note that we never send more than r2 equations
from Bk−1, and therefore the number of mixed equations
cannot exceed r2. Therefore, we have r1 − pk ≥ r2 and
therefore mk ≥ (r1 − r2)+.
In the following subsection we will investigate how the pk

changes from one layer of the network to the next one.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 20, 2009 at 11:54 from IEEE Xplore.  Restrictions apply. 



A. Evolution of the number of pure equations

Assume we are at the encoding part of the k-th layer of
the network with parameters (αk, βk, γk), and have pk−1 pure
and r1 − pk−1 mixed equations. We need to nd mk and Mk

that can be achieved for the next layer.
Lemma 1: Given pk−1 linearly independent equations at

the relay node Ak−1, the minimum number of pure equations
achievable at Ak is

min pk|pk−1
= max{0, r1 − r2, pk−1 − γk}.

Proof:Minimizing the number of pure equations is equiv-
alent to maximizing the number of mixed equations. A mixed
equations at Ak can be obtained by either receiving a mixed
equations from Ak−1 whose interference is not neutralized
by the new interference, or combination of a pure equation
from Ak−1 and an interference from Bk−1. Note that we
have r1 − pk−1 mixed equations, and among the pk−1 pure
equations at most γk of them can become mixed in the next
layer. However, sinceW2 has only r2 bits, at most r2 equations
can be affected by the interference. Therefore, the maximum
number of mixed equations would be

max(r1 − pk) = min
{

r1 − pk−1 + min{pk−1, γk}, r2

}

= min{r1, r1 − pk−1 + γk.r2}.

Hence min pk|pk−1
= max{0, r1 − r2, pk−1 − γk}.

Lemma 2: If the relay node Ak−1 sends pk−1 pure equa-
tions, then maximum achievable number of pure equations in
the next layer�’s relay, Ak is

max pk|pk−1
= min{r1, Ψk−r2 +r1−γk−pk−1, pk−1 +γk}.

Proof: A pure equation at the next layer Ak can be
obtained by either receiving a pure equation from Ak−1 at a
sub-node which is not affected by the message fromBk−1, or a
mixed message from Ak−1 whose interference is neutralized2
by another equation received from Bk−1. We denote the
number of these two sets of equations by pk(P) and pk(N),
respectively.
We rst enumerate the rst kind of such messages. The

maximum number of sub-nodes in Ak which can receive
message from Ak−1 and have not occupied by the signal
received from Bk−1 can be found as illustrated in Fig. 3.
The relay node Bk−1 chooses r2 sub-nodes among its top
βk sub-nodes to transmit its message to Bk, and at least
r2 − (βk − γk)+ of them would be among the top γk sub-
nodes, whose message will be also observed by Ak. Among
them, at most (γk −αk) are out of the range of Ak−1, but the
remaining will have overlap with the sub-nodes in range of
Ak−1. Therefore, at least [r2 − (βk − γk)+ − (γk − αk)+]

+

sub-nodes among the αk sub-nodes of Ak get interfered.

2This is done by pre-coding at Bk−1. Since it can decode the whole vector
X2, it can encode it again such that a desired number of mixed equations get
neutralized.

Ak−1

Bk−1

Ak

Bk

αk

βk

(γk − αk)+

(βk − γk)+

[r2 − (γk − αk)+ − (βk − γk)+]+

Fig. 3: The maximum number of nodes in Ak which are not
affected by interference.

Hence, the maximum number of pure equations of the rst
kind would be

pk(P) = min
{

pk−1, αk−
[

r2 − (βk− γk)+− (γk− αk)+
]+

}

= min
{

pk−1, αk − [r2 + αk + γk − Ψk]+
}

(11)

On the other hand, we have r1 − pk−1 mixed equations,
where at most γk of them can be neutralized by the message
from Bk−1. Thus, the maximum number of the second class
of pure equations at the k-th layer would be

pk(N) = min{r1 − pk−1, γk}. (12)

By adding up (11) and (12) we have

max pk|pk−1
= min

{

pk−1, αk − [r2 + αk + γk − Ψk]+
}

+ min{r1 − pk−1, γk}

= min{r1, Ψk − r2 + r1 − γk − pk−1, pk−1 + γk} (13)

where we have used the fact that pk−1 ≤ r1 ≤ αk, and Ψk ≥
αk + βk ≥ r1 + r2 to simplify the minimization expression.
Note that this value is always achievable by choosing the

transmitting nodes of Bk−1 and the equations they send
properly, such that the required number of nodes Ak do not
affected by interference and a specic number of the rest get
neutralized.
The following theorem summarizes the discussion of this

subsection.
Theorem 2: The set of all achievable numbers of linearly

independent pure equations at the k-th layer of the network is

Pk = {p ∈ + : mk ≤ p ≤ Mk} (14)

where

mk = max{0, r1 − r2, r1 − Γk}, k = 1, 2, . . . , N, (15)

and Mk is obtained using the recurrence relations

Mk = min{r1, Ψk + Γk − 2γk − r2, γk + Mk−1}, (16)
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for k = 1, 2, . . . , N and with the initial condition M0 = r1.
Proof: The Lemmas 1 and 2 determine the minimum and

maximum achievable pk provided that the relay node Ak−1

sends pk−1 pure equations. A similar argument shows that the
extreme values in both lemmas are in fact achievable. Not
surprisingly, it can shown that if pk = u1 and pk = u2 are
achievable for u1 < u2, then any integer u ∈ [u1, u2] is also
achievable.
The minimum and maximum values obtained in Lemmas 1

and 2 depend on pk−1. However depending on the required pk

at the k-layer, one can choose any pk−1 ∈ Pk−1 for encoding
at Ak−1. We will prove (15) using induction over k. For k = 1,
the claim is just rewriting Lemma 1 since m0 = r1. Assuming
(15) for k − 1, we have

mk = min
pk−1∈Pk−1

max{0, r1 − r2, pk−1 − γk}

= max{0, r1 − r2, mk−1 − γk}

= max{0, r1 − r2, r1 − Γk}.

Similarly, using (13) Mk can be obtained as

max
pk−1∈Pk−1

min{r1, r1 + Ψk − r2 − γk − pk−1, γk + pk−1}

= min{r1, r1 + Ψk − r2 − γk − mk−1, γk + Mk−1}. (17)

Replacing mk from (15), we get

r1 + Ψk − r2 − γk − mk−1

= min{r1 + Ψk − r2 − γk, Ψk − γk, Ψk + Γk − 2γk − r2}

where the rst two terms are not less that r1. Therefore

Mk = min{r1, Ψk + Γk − 2γk − r2, γk + Mk−1} (18)

However, solving the last recursive relation and evaluatingMk

is not easy and we leave it as an optimization expression.
B. An achievable path for pN = r1

Next we show implicitly that for (r1, r2) satisfying the outer
bound, r1 ∈ PN , using the recursive form of the evolution of
pure equations obtained in the last subsection. Therefore, this
shows that rate (r1, r2) is indeed achievable.
Lemma 3: Let

p∗k = min

(

r1, min
1≤!≤k

{Ψ! + Γk − 2γ! − r2}

)

. (19)

Then p∗k ∈ Pk for k = 1, 2, . . . , N .
Proof: In order to prove the lemma, we need to show

mk ≤ p∗k ≤ Mk. The rst inequality is straight forward and
shown as follows.

p∗k − mk = min

(

r1, min
1≤!≤k

{Ψ! + Γk − 2γ! − r2}

)

− max(0, r1 − r2, r1 − Γk)

= min

{

r1, r2, Γk, min
1≤!≤k

{Ψ! + Γk − 2γ! − r2} ,

min
1≤!≤k

{Ψ! + Γk − 2γ! − r1} ,

min
1≤!≤k

{Ψ! + 2Γk − 2γ! − r1 − r2}

}

≥ 0

where the last inequality follows from the facts that r1 ≤ α!

and r2 ≤ β! for % = 1, . . . , N .
To show the second inequality we use induction over k,

namely, we show that p∗k ≤ Mk provided that p∗k−1 ≤ Mk−1.
For k = 1, is claim is trivial by just comparing p∗1 and M1 in
(16). Assuming p∗k−1 ≤ Mk−1 and using (16), we have

Mk ≥ min{r1, Ψk + Γk − 2γk − r2, γk + p∗k−1}

= min

{

r1, Ψk + Γk − 2γk − r2,

min
1≤!≤k−1

{Ψ! + Γk − 2γ! − r2}

}

= min

{

r1, min
1≤!≤k

{Ψ! + Γk − 2γ! − r2}

}

= p∗k.

which shows that p∗k does not exceed Mk. Hence p∗k ∈ Pk.
Lemma 4:

p∗N = r1. (20)

Proof: Note that by denition

p∗N = min

(

r1, min
1≤!≤N

{Ψ! − 2γ! + ΓN − r2}

)

.

In order to prove the lemma one has to show that Ψ! − 2γ! +
ΓN − r2 ≥ r1 for 1 ≤ % ≤ N . But such inequality always
holds since (r1, r2) satisfy (3).
Lemmas 3 and 4 together show that r1 ∈ PN , i.e., there

exist encoding schemes used at the relays which can provide
r1 linearly independent pure equations for AN = D1. Then it
is clear that D1 can use such equations to solve for the bits
of W1.

V. CONCLUSION
We studied the deterministic Z-chain network and fully

characterized the capacity region of the network. We believe
that the analysis technique of bounding the number of pure
signals (equations) would be useful for many other interference
network problems.
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