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Abstract—In this work, we consider achievable secrecy rates X, . Z%K A
for symmetric K-user (K > 3) interference channels with Wi @ﬁ % Wi
confidential messages. We find that nested lattice codes and
layered coding are useful in providing secrecy for these chrmels. N 7
Achievable secrecy rates are derived for very strong intedrence. X PN
In addition, we derive the secure degrees of freedom for a rage W, @A%(@% W,

of channel parameters. As a by-product of our approach, we

\
v

also demonstrate that nested lattice codes are useful for Kser

K //,< . * Z
symmetric interference channels without secrecy constrats in &;ys )
that they yield higher degrees of freedom than previous redts. Ws @ﬁﬁ Ws
I. INTRODUCTION Fig. 1. K-User Symmetric Interference Channél, = 3

In a wireless environment, interference is always present.

Traditionally, interference is viewed as a harmful phykicg, messages not intended for it. We first derive achievaidsra
phenomenon that should be avoided. Yet, from the secreqyng nested lattice codes for very strong interferencethiaf
perspective, if interference is more harmful to an eavesEBo . estigate the secure degrees of freedom of the sum rate for
it can be a resource to protect confidential messages. %o fujlis channel. We show that positive secure degrees of freedo
appreciate and evaluate the potential benefit of intert&ren, e 5chievable, made possible by the fact that users caggprot
to secrecy, the fundamental model to s_tudy is thellntertmferbach other via cooperative jamming [11]. Inspired by [9], a
channel with confidential messages. This model with twosIS§fyered encoding and decoding scheme is used. The achieved
has been investigated extensively up to date, e.g., [1-[3] secure degrees of freedom is roughly half of the achievable
The K-user (v > 3) interference channel, when all linkgegrees of freedom in the model without secrecy constraints
cqefﬂments are i.i.d. fad_lng, has been studied both with an .4 is achievable for both weak and strong interferencemegi
without secrecy constraints [4], [5]. In these referendBs, The key ingredient is a tool first introduced in [12] which
key ingredient for achievability is interference alignmem  o16\s us to bound the secrecy rates under nested lattieescod
temporal domain. For the case without secrecy constraintspg g5 by-product of our approach, we also show that for the
reference [4] proves the degree of freedom characterizadio 556 without secrecy constraints, a degree of freedom highe
be k/2 for the sum rate. - _ than found in [8], [9] is achievable. The main reason leading
For the static channel without secrecy constraints, [6Y&ho thjs improvement is the use of the nested lattice codesddste
the degrees of freedom can not excéég?, though whether o sphere-shaped lattice codes as in [9]. This leads tordifte
this bound is achievable remains elusive except for when tElScodabiIity conditions and power allocation among défer
channel gains of the intended links are algebraic irratiand layers.
the other channel gains are rational numbers [7]. RefeseenceThe rest of the paper is organized as follows: In Section
[8], [9] show K/2 can be approached asymptotically for g we describe the system model. In Sectlod Ill, we derive
static K -user symmetric channel if the channel gain of thghe very strong interference condition and the correspandi
interfering link goes td) or co. Both [8] and [9] employ the achjevable secrecy rates. Sectlof IV presents the acliéevab
idea of interference alignment in the signal space: Ret@enjegrees of freedom for the sum rate and the sum secrecy rate

[8] uses the)-bit expansion and reference [9] uses the latticghg compares it with previous results. Sectigh V concludes
code with a sphere as the shaping set [10]. the paper.

For the static channel with confidential messages, the prob-
lem of finding the secure degrees of freedom has largely Il. SysTeEm MODEL
remained unaddressed so far. In this paper, we focus orWe consider the Gaussian interference channel shown in
the K-user (¢ > 3) interference channel with confidentialFigure[1 for K = 3. The average power constraint for each
messages, where each receiver is an eavesdropper witlttrespaurce node; is P. Z;,i = 1, ..., K are independent Gaussian
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random variables with zero mean and unit variance. Thith the knowledge ot} +t§v mod A., nodel can recon-

channel gain coefficient betwee$} and D; is b, while the struct X2V + X2 mod A.. After subtracting this term from

channel gain coefficient betweef) and D;, i # j is 1. Y{¥ mod A, the rest part of the interference signal is
Nodes; tries to send a secret messageto nodeD,, while N N

keeping it secret from all the other receiving nodes, j # (le +2 ) mod A, )

i. Hence, forWs, ..., Wk, node D, is viewed as a potential Then, it can be shown [14, (89)] [13, (27)] that if
eavesdropper. Let the signal received By over N channel

2
uses b&;V. The corresponding secrecy constraint is given by: VPH1<P (%)
1 1 then this signal can be approximated b
Jim < H (Wa, oo, Wi [Y]Y) = lim NH(WQ,...,WK) 9 p]': N Y
The secrecy constraints due to ndde, ..., Dy are defined in 11at is to say:
a similar fashion. Jim Pr(0X{ + 2 #0X{ + 2 mod A) =0 (7)
—00

IIl. A CHIEVABLE SECRECY RATES UNDER VERY STRONG Finally, the destination tries to decode from (8). Based
INTERFERENCE on [14, Theorem 5], the probability of decoding error will go

In this section, we summarize several key steps of the zero asN — oo, if

achievabili roof and derive the very strong interfeenc

condition. tli/of clarity, we focus o :y3. Thegscheme is R < C(°P) ®)

applicable toK > 3 as well. In summary, if [8),[(5) and{8) hold, then the decoding error
We note that the achievable scheme is similar to that pfobability at nodel should vanish asV — oc.

the many-to-one interference channel [13]. However, beeau _ _

of the increased connections in the network, the very strofry Eduivocation Rate

interference condition shall differ from that of [13]. The computation of the equivocation rate is the same as
[13], as shown below:
A. Source Node N ONION N
Let (A, A.) be a nested lattice structure R, whereA, is H (t?vv t?v|Y1Nv di}\;l :Nl’ 2]\7]3). €)
the coarse lattice. The modulus operatiomod A. is defined >H (3, 5", XY, 2, d)Y i =1,2,3) (10)
asx _Inod AC_: x —argmingea, d(z,y), whered(z,y) is th_e =H (té\[7 XN+ XN dN i=1,2, 3) (11)
Euclidean distance betweanandy. The fundamental region . . .
V(A.) of the latticeA, is defined as the s€t: : # mod A, = In [12, Theorem 1], it is proved that we can find an integer
). Ty, 1 <T < 2%, such thatY}’ + X4 is uniquely determined

The th source node constructs its input to the channel ov&Y {X3" + X4 mod A, T1}. Using this result,[{11) equals
N channel u.sestY, as follows: Lett; € AN V(A.). Letd; H (Y Y| XN + XY mod A, Ty, dY,i=1,2,3) (12)
b he diherngnojeg tat s unformly dstoued )y 1, + ) met A Tho?,i=1,2,3) (19

We assume the dithering noiggis known by all destination ~ =H (£2', 3 [t3 + 3 mod A, T1) (14)
nodes. =H ()t} [t} + ¢} mod A.) + H (Ty [t} , t]))

B. Destination Node — H (Ty|ty" + t3' mod A.) (15)

Because of the symmetry of the channel, without loss of =H (tév’tév“év + 13 mod Ac) — H (Th) (16)

generality, we focus on the first destination nofle. The The first term in[IB) can be bounded as follows:
destination first decodes the modulus sum of the interferenc

and then decodes its intended message. H (3,35 + t5' mod A.) (17)
The signal received by); over N channel uses is: =H (tév|t§f + 4 mod Ac)
YN = bXN + (XY + XV + 2N ) +H (t3[t5, 65" + 3 mod A.) = H (t5') = NR (18)

Node 1 tries to decodel + t mod A.. Although XN where R is the rate of the codebook computed &s =

1
is not Gaussian, it can be approximated by a Gaussian distrilog2 [ANY (A ) ) ]
bution asN —s oo, as shown in [14, (82)] or [13, (15)-(21)]. Hence the mutual information leaked to the eavesdropper is

Hence we can apply the analysis in [14, Theorem 5], that tR@unded as:

probability of decoding error will go t® as N — oo when T v, aN,i=1,2,3) < N(R+1)  (19)
R < 0.5log, (1 + #) (3) [Intuitively, this means each pair of users have to pay 1 in
2 b*P+1 rate to confuse the eavesdropper. Under a symmetric setting



each user lose&5R+0.5 in rate. This leaves room éf5R— A. Source Node
0.5 for each user to send the secret message, which leads tpe to symmetry, we focus on source noteThe trans-

the following theorem: mitted signal is the sum of signals from different layerseTh

Theorem 1: For any R, P, b such that[(B),[(5) andX8) hold, signal from theith layer overN channel usesX?, is given
a secrecy rate df).5R — 0.5]" is achievable for each user. Ifpy

M
p_1 P+ L -3 N _ N
b? < min{ R PIG 4} (20) Xi = ;Xl,i (25)
thenR = C(b2P). where, like [9], the total number of leveld/ is to be

Remark 1: Under this condition orb2, it can be verified determined by total powel ; is the signal for theth level,

@) and [3) become redundant. Hence the secrecy rate is gi¥dHch is given by:
when R is selected to b& (> P). X1 = (tY; +dY;) mod A, (26)
Remark 2: Reference [15] considers the 3 user symmetric

interference channel without secrecy constraints. A ifie Where dy; is the dithering noise uniformly distributed over
V (A¢,;). We assume the dithering noise for each level at each

esource node is independent from each othier.is taken from
the Voronoi code bool\; NV (A.;), where the variance of
V (A.,;) is chosen to beP;. Let the rate of this codebook be

VP -1 1) Ry; for the kth user.

P B. Destination Node
Comparing [(2L) with[(20), we noticé {R0) is slightly looser. 1) grong Interference Regime: Like [9], we first examine
Hence, using a nest lattice structure allows a slightly widghe case where the destination node decodes the interéerenc
range of channel parameter under which the channel has Vit and then decodes the intended signals. The case where
strong interference. the destination decodes the intended signals first can be
analyzed in the similar fashion. Due to symmetry, we focus
D. K>3 on destination nod®; . For theith layer, the destination node
Theoren(]L can be extended to the case with more thard@&codes the modulus sum of the interference, subtracteit, t
users. In this case, The achievable rate becomes decodes the signal from source ndtie Suppose decoding for
" all layersj, j > i, are successful, and the modulus operation at
[R R log, (K — 1)] (22) layer j incurs negligible distortion for signals at lower layers.
K-1 K-1 Then the remaining signal after subtracting the decodethisg

Equation [[8) becomes can be approximated by:

strong interference condition of [15] can be expressed as

b2 <

1 P Vi = bX{ + X3+ X3
R <0.5log ( + ) (23)
P\K-1"1»P+1 + 3 (xS X))+ 2 @
1<j<i 1<j<i

Hence, the very strong interference conditibnl (20) becomes
Define A; such that

— \/P—c—i—ﬂ—cJrl
bzgmin{Ppl . 21 (24) A= > @P)+ > (PP +1 (28)

’ P -

1<j<i 1<j<i

wherec = £=3. The decoder then decodg¥; + tY, mod A.,. The decoding

Remark 3: It is then interesting to look at the behavior ofrror will decrease exponentially with the dimension of the
the secrecy rate when the number of us&rs— oo in the |attice IV if the lattice is designed properly and

very strong interference channel. From](22), the secrey ra
will converge toR. This means the cost of secrecy per user
vanishes. A similar phenomenon is also observed in [13] for
the many-to-one interference channel.

R; <0.51og, (29)

[
Pr,iPs,i
Pri+Ps,;

where P ;, Ps,; are the power of the interference and the
IV. SECUREDEGREES OFFREEDOM signal respectively:

In this section, we derive the achievable secure degrees Pr; = b2P; + A;, Ps,; =2P, (30)
of freedom for a given channel gain Like [9], a layered .

. . . . This means that
lattice structure is used. However, instead of the sphlerica
code, the nested lattice code is used in order to leverage the R; < 0.5log, <l + L) (31)
representation theorem [12] to bound the secrecy rate. 2 P+ A



After decoding (té\fi + té\fi) mod A.;, node D; subtracts Therefore

(té\[Z + dévz + té\fi + dévl) mod A.; from le,\i mod A, ;. The . i—1

signal after the subtraction is given by: P =a(af+1) (43)
R The power expended by each user is given by
Vi =0xT+ Y (X2 + X3)

M M
S peyop=lft) ol (44)
+ bX{) +2ZY) mod A, (32) =1
1;1( l’J) ! Sincea3 > 0, we havelim;_, o, P = oo.
Under this power allocationR; ; is given by
When '
0.5 1 P 0.5 b2 P;
Pi> Pr 33) fui=gle (gt ppig ) Tale 1T
Y/ can be approximated by X (45)
== (0.51log, ( ”1) - o.5> (46)
DX+ D (XN + XN+ D (bX) + 2 (34) 2 < A

1<j<i 1<j<i M
Therefore>" Ry ; = 1 (0.51og, (Anr41) — 0.5M).

The decoder then decodég; from (34). The decoding error z; 1i =3 2 (Aar) )
will decrease exponentially with the dimension of the ¢atti L€t fix denote the rate of thd: user. Hence i, =

N if the lattice is designed properly as in [14] and > Ri. k = 1,2,3. If there is no secrecy constraints, the
1=1
12p degree of freedom is given by
i <051 e 35 3
R; <0.5log, Plfl’iplf}i (35) S Ry ear
r s Jim —= 15— lim o T (47)
—00 —00
where 1log, (2:13) 2
P, =4, P, =VP, (36) . 1.5
" & =15-— (48)
This means that logy (B + 1)
b2P, Let R. i denote the rate of thie user. When there are secrecy
R; <0.5log, (1 I > (37) constraints, each layer can support a secrecy raj@oR; ; —

0.5]7. The secure degrees of freedom is given by

The decoder will then subtrad(t{’; + d{'; mod A.;) from 5 M
(34) and proceed to decode the lower layers. R 3 x (Z(O.5R1,Z— - O.5)>
We next derive the power allocation among different layers. lim 121—3 > lim izll
Like [9], we chooseP; such that the right hand sides 6f131) 7> 1 log (Z P») Moo 7 log, (3P)
. 2 2 7
and [3T) are equal. This means that i=1 49)
49
1 P b2 P
L A (38) 3 3.75
2 PD. . . - - @@ 50
| 2 " V2P + A A, 17 oz, (@B 1) (50)
Itis easy to check thal (B8) leads to: We still need to check if the conditioR {33) are met. Under
9 _3p2 4 /A 1202 X bt the current power allocation, we have
po 2o VAT D (39) 1
4b A= (af+1) (51)
For P; to be a real number, we requide— 12b% + b* > 0. (33) means
This, along with the fact thatl; > 0, means
P> b*P + A; (52)
b <6 —4V2 (40) ,
Hence we require
which is about0.34315. Define (1= 1)a>1 (53)
— ) >
2 —3b% + V4 — 120 + b* ) _
a= e ;o B=b"+2 (41) which holds when [{40) holds. In summary, we have the
following theorem:
ThenP, = o and Theorem 2: If v < 6 — 41/2, the following degrees of
freedom for the sum rate is achievable:
Pi=a|B ) Pi+1],i>1 (42) r 1.5 (54)

1<j<i - log, (a8 +1)
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Fig. 2.

Degrees of freedom (DOF)

10°

code. The blue dotted line denotes the degrees of freedom
achieved by theQ-bit expansion method in [8], which is

£ (1 -1log, (2K)), whereK = 3 in Figure[2. The blue lines

are the degrees of freedom achieved by our proposed scheme
using the nested lattice code. We see that it consistently
outperforms the scheme from [9] whéR < 6 — 4/2 or
when3/2 < b? < 8.

V. CONCLUSION

In this work, we have considered the symmetficuser
(K > 3) interference channel with or without confidential
messages. We have derived the very strong interference con-
dition and the achievable secrecy rates. We have also derive
the achievable degrees of freedom for the sum rate and the
secrecy sum rate. Both results use nested lattice codes and
are shown to outperform previous results. We conclude that
nested lattice codes are useful for providing secrecysfarser
interference channels with confidential messages, anciwepr

upon the previous constructions in degrees of freedonkfor
Moreover, the following degrees of freedom for the surdiser interference channels without secrecy constraints.

secrecy rate is achievable:

+ [1]

3 3.75 (55)

4 log, (af +1)
2) Weak Interference Regime: When the intended signal 2
is strong enough, the destination should decode it first, an

then decode the interference later. In this cdsd, (30) @8y (3
become &l

Psi=bP; (56) g
Pé,i =2F; (57)

Pr; =2P;, + A,
P]/Z = Aia
5

—

Equation [[(38) becomes
) | . P,
This meansP; is given by [48) witha given below [7

—

1+ (58) [6

—

a =025 (b2 T/ 4) (59)
(8]
and 3 remains a$?® + 2.
In order for the modulus operation to introduce negligible

distortion to lower layers, we require [9]

P> Py, (60)

This translates intev > 1. This mean$? > 3/2. Hence, we [10]
have the following theorem: [11]
Theorem 3: If b2 > 3/2, then the degrees of freedom given
by (52) andsecure degrees of freedom given by (55) are
achievable, where: is given by [59) and3 = v? + 2. (12
3) Numerical Results: As shown in Figurél2, wheh? —
oo or b2 — 0, the secure degrees of freedom convergé,to
which is half the secure degrees of freedom achievable in tﬁg]

model without secrecy constraints.

Also compared in Figurigl 2 are the degrees of freedom when
there are no secrecy constraints. The black dashed lines slglo‘r’]
the degrees of freedom from [9] using a sphere shaped lattice

[13]
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