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Abstract—Data visualization provides a powerful way for
analysts to explore and make data-driven discoveries. However,
current visual analytic tools provide only limited support for
hypothesis-driven inquiry, as their built-in interactions and
workflows are primarily intended for exploratory analysis. Visu-
alization tools notably lack capabilities that would allow users to
visually and incrementally test the fit of their conceptual models
and provisional hypotheses against the data. This imbalance
could bias users to overly rely on exploratory analysis as
the principal mode of inquiry, which can be detrimental to
discovery. In this paper, we introduce Visual (dis)Confirmation,
a tool for conducting confirmatory, hypothesis-driven analyses
with visualizations. Users interact by framing hypotheses and
data expectations in natural language. The system then selects
conceptually relevant data features and automatically generates
visualizations to validate the underlying expectations. Distinc-
tively, the resulting visualizations also highlight places where
one’s mental model disagrees with the data, so as to stimulate
reflection. The proposed tool represents a new class of interactive
data systems capable of supporting confirmatory visual analysis,
and responding more intelligently by spotlighting gaps between
one’s knowledge and the data. We describe the algorithmic
techniques behind this workflow. We also demonstrate the utility
of the tool through a case study.

Index Terms—Visual analytics, hypothesis-driven reasoning,
sensemaking

I. INTRODUCTION

Visualization plays an increasingly important role in sup-
porting data-driven science and decision making [1], [2].
Visualization tools enable people to interactively explore large
amounts of information and look for patterns that might sug-
gest new findings. These tools effectively facilitate a bottom-
up discovery process, where apparent signals in the data are
interpreted in a new way yielding unexpected insights.

Yet, in addition to engaging in exploratory analysis (bottom-
up), analysts also conduct confirmatory analyses (top-down),
where they explicitly test their beliefs and predictions against
the data [3]. In fact, analysts often switch between these two
modes of discovery during sensemaking [4]. However, while
current visualization tools have built-in workflows to scaffold
exploratory analysis, they provide no affordances for users
to explicitly test hypotheses and models they have in mind.
Visualization designers almost exclusively focus on supporting
data-driven tasks (e.g., browsing clusters or finding anoma-
lies [5]). The most common visualization design patterns (such
as Shneiderman’s “overview first” paradigm [6]) emphasize
the data as a starting point, but neglect the role that existing

user hypotheses and mental models might play into the anal-
ysis. Accordingly, the prevailing theory of visual analytics is
that of a “model building” activity [7], where mental or formal
models are seen as products that are constructed from data in
an almost purely bottom-up fashion.

The overemphasis on data-driven tasks in visual analytics
serves to privilege exploratory analysis as the principal mode
of discovery, while thoroughly understating the need for
confirmatory analysis. This imbalance can be dangerous to
discovery [8], as it prevents people from explicitly testing
their beliefs, leaving them with potentially faulty models [3].
Crucially, cognitive science shows that it can be difficult for
one to recognize ‘holes’ and deficiencies in their conceptual
models just by looking at data in a bottom-up fashion [9].
Instead, to repair one’s model and ascertain a better under-
standing, one needs to actively test their belief against the
data, and explicitly look for places where their models and
the data disagree [3]. Successful scientists naturally employ
confirmatory workflows [10]. However, techniques for high-
lighting model-data discrepancies—so as to encourage users
to attend to them—are absent from visualizations.

To support a richer and more diverse analytic discourse,
visualization tools must allow analysts to proactively share
and externalize their models. This can be done using natural
language (e.g., by speaking or typing hypotheses and data
expectations directly into the interface). The system can then
interpret these formulations, select relevant data attributes and
features, and visualize the fit of these models to the data.
Such workflow would allow users to interactively test their
predictions, identify deficiencies in their models, and actively
revise those models to reconcile mismatches.

In this paper, we describe an example of such a visualization
tool, which we dub Visual (dis)Confirmation. The tool employs
natural language processing (NLP) to parse hypotheses and
extract the implied data relations, trends, and values. It then
interactively generates pertinent visualizations in the form
of familiar data charts. Encoded in these charts is a visual
representation of the user’s expectation alongside the actual
data. This enables the user to validate or disconfirm hypotheses
they might have, by visually relating the two encodes. We
describe the design and implementation of the system. We
then illustrate through a case study how the system might be
used in a realistic analysis. We conclude with a discussion of
challenges and future research directions.
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II. RELATED WORK

Visual analytics tools are primarily intended to support
sensemaking. Accordingly, these tools are often designed to
mimic the natural workflow of analysts. Several models exist
to explicate how people analyze and make sense of informa-
tion. One of the most popular is Pirolli and Card’s, which
posits that people generally start by filtering the source data
for relevant information, highlighting nuggets of evidence, and
re-expressing that evidence to a way that aids reasoning [4].
In this model, the analysts iteratively funnels the data into
increasingly sparser and more structured representations (re-
ferred to as the ‘Schema’). From the Schema, the analyst can
more easily generate hypotheses or makes decisions. While the
model allows for feedback, it is generally regarded as bottom-
up and data-driven sensemaking.

Pirolli and Card’s model serves as the design basis for
many visualization tools (e.g., Jigsaw [11]). Yet, an equally
important (but less known) model is Klein et al’s Data-
Frame theory, which posits that, when analysts make sense
of data, “they often begin with a perspective, viewpoint,
or framework—however minimal” [3]. This initial “frame”,
which can take the form of a narrative, timeline, or hypothesis,
defines the main relationships one expects to see in the data.
Here, sensemaking is primarily a confirmatory activity: the
analyst iteratively questions his/her frame by testing its fit
against the data. Poor fit can lead one to revise the frame
or, alternatively, adopt an entirely new frame.

It is believed that analysts often mix the two types of
workflows, switching between data-driven (bottom-up) and
confirmatory (top-down) analyses [4]. However, most visual-
ization tools have been designed to solely support the former.
Such designs can be problematic, as they could discourage
analysts from deliberately testing their expectations, which
is essential to refining one’s model [12]. For instance, in
cognitive experiments, subjects who did not explicitly test
their working hypothesis failed to correct their mental model
and missed the chance of discovery [9]. By contrast, those
who frequently tested their predictions against the data were
able to attend to discrepancies and, accordingly, revise their
model to reach the correct conclusion. Unfortunately, no such
confirmatory workflows exist in current visualization tools—a
missed opportunity. Our work aims to fill this gap.

Another area that we build upon is natural language inter-
faces, which represents an emerging method for interacting
with visualizations [13]. There are tools now that allow
users to speak or type their queries and, accordingly, receive
pertinent data plots [14]–[16]. In addition to communicating
queries, natural language interfaces may also allow us to
tap into users’ mental models. Understanding what users are
thinking enables us to create more effective (and potentially
confirmatory) visualizations. We contribute techniques to parse
hypotheses and data expectations, and convert them to concept
graphs so that they can be processed algorithmically. These
techniques are based on an empirical study we conducted to
inform the design of the system [17].

III. SYSTEM DESIGN

In this section, we introduce Visual (dis)Confirmation, an
interactive tool supporting confirmatory visual analysis. The
tool allows users to specify hypotheses and expectations about
data in natural language. It then translates these hypotheses
to concept maps, and generates visualizations to validate (or
disconfirm) the implied data relations. We describe the user
interface and discuss the implementation of the system.

A. User Interface

Fig. 1 illustrates the user interface. The tool allows the user
to “upload” a dataset in CSV format. Alternatively, the user
can choose from two default datasets about world development
and health risk factors in the US (1). The user initiates the anal-
ysis by typing an expectation or hypothesis in natural language
(2). For instance, when analyzing economic development data,
the user can enter “I expect New Business Density in Ireland
to be lower than France, Australia, Netherlands Sweden, and
Spain.” To aid the user in specifying data attributes, the
interface auto-completes words corresponding to attributes
and provides suggestions. Additionally, the interface auto-
completes geographic locations (e.g., country and city names)
and other named entities within the dataset. A map in the form
of a rotating globe is also included to facilitate geo-referencing
(3), enabling the user to easily specify expectations about
localities. The interface also remembers past expectations and
their resulting visualizations (4), giving the user quick access
to his/her analysis history.

The system parses the user’s natural language hypothesis
(see Section III-B for a description of the NLP pipeline),
and generates a corresponding concept map. The concept
map encodes the expected data relations using a node-link
diagram (5); nodes denote attributes, geographic locations
(e.g., countries), temporal features (e.g., years or full dates), or
numeric quantities. Different node shapes (ellipses, rectangles,
or clouds) are used to distinguish between different concept
types (attributes, named entities, or entities that are external to
the dataset). Labeled edges connect the concepts explicating
the relationships expected among them. For instance, in the
above hypothesis, the attribute of interest (“New Business
Density” is depicted with an ellipsoid node, whereas the
different countries (Ireland, France, etc...) are each depicted
with rectangular concept nodes. The implied relationship (in-
equality in this example) is expanded and encoded as edges
between the countries involved. Note that in this particular
example the expected relation is qualified to a single year,
hence the conditional edges in the concept map (labeled ‘in’).

The concept map constitutes a re-expression of the user’s
natural language hypothesis in a non-ambiguous format. While
the two representations (natural language and concept map) are
somewhat synonymous, our goal in including the latter is to
provide feedback to the user on how his/her hypothesis was
interpreted by the system. Moreover, the node-link concept
diagram is editable, allowing the user to revise his/her formu-
lation or correct errors introduced by the NLP process. It is
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Fig. 1. User interface of the Visual (dis)Confirmation tool showing its various components: Dataset upload and selection (1), a text box for hypothesis/expectation
entry in natural language (2), a map widget to aid the selection of geographic locations (3), history of prior queries (4), a concept map representing the implied
relationship in the entered expectation (5), and a chart area to display the resulting visualization (6).

also possible for the user to specify hypotheses manually by
creating the corresponding concept maps from scratch.

Once the user is finished specifying a hypothesis, he/she
clicks the “Process Graph” to initiate the validation process
(see Section III-C). The result of the validation is a data chart
visualizing the attributes referenced in the expectation (6).
Distinctively, charts generated with Visual (dis)Confirmation
explicitly incorporate what the user expects into the visu-
alization, highlighting the gap between the expectation and
the data. For instance, in the bar chart shown in Fig. 1,
Ireland is highlighted. Furthermore, countries that violate the
expected inequality (France, Spain, and the Netherlands, in
this instance) are spotlighted (see Fig. 1).

B. Expectation Parsing and Concept Map Generation

The first step in validating user’s hypotheses is to parse
their data expectations and generate an equivalent concept
map. We developed an NLP pipeline using the Stanford
CoreNLP toolkit [18]. The pipeline is depicted in Fig. 2 and
illustrated through an example. The first step is cleaning the
provided expectation (Fig. 2-A). This includes expansion of
abbreviated words (“I’d” to “I would”) to ensure grammatical
completeness, removal of special characters (such as quotes),
and transformation of quantitative units (e.g., ‘3 million’) to
their numeric equivalent (e.g., 3,000,000). These steps are
achieved using a Named Entity Recognizer [18].

Second, after basic transformations and cleanups, the text
is parsed using a Stanford Dependency Parser to extract the
relationships among the words. The dependency parser allows
us to find compound nouns, which often correspond to data
attributes or geographic locations. Words belonging to a single
compound noun are concatenated to facilitate matching against
name entities in the dataset (B).

Third, the sequence is tokenized into n-grams. The resulting
tokens are checked for exact match against features in the
dataset, including attributes and geographic locations (C). If
no exact matches are found, cosine and semantic similarity is
performed over all tokens and against all named entities in the
dataset. Matching tokens are added as concept nodes (D).

Using a typology developed from an earlier empirical
study [17], we identify the data model implied by the expec-
tation. The system currently supports 4 major types and 13
subtypes (depicted in Fig. 3). Each model is represented by a
template containing a number of ‘slots’ that can be filled with
specific attributes, locations, time periods, and other qualifiers,
as specified by the user’s hypothesis. For a given expectation,
we identify the most closely related template by inspecting the
stem words along with their position in the sentence (E). For
instance, the expectation in Fig. 2 can be matched against the
V1 template (in Fig. 3). We employ template-specific heuristics
to fill template slots with the corresponding concept nodes.
Here, the X slot in V1 is mapped to ‘total population’, V is
mapped to 3 million, the geographic location is mapped to
Ireland, the time period to 2008—2012, and the inequality
is set to ‘less’. Note that the system does not require user
input to match the exact wording of the template. Rather,
template matching is performed through a process of constraint
satisfaction, which provides verbal flexibility while allowing
the selection of the closest model. Once the template is ‘filled’,
relationship edges are added to the concept map according to
the model implied by the template (F).

The pipeline relies on user hypotheses (partially) matching
one or more predefined templates in our typology (Fig. 3). In
practice, the templates capture over 91% of the expectations
we have observed empirically [17]. Thus, despite the assump-
tions, we expect the pipeline to correctly process a majority
of expectations users may want to test.



I’d expect total population in Ireland to be less 
than 3 million between 2008 and 2012

(A)
Cleaning &

Transformation 

(B)
Dependencies

(C)
Attributes and 
data feature 

matching

(D)
Concept 

table
(E)

Template
matching

(A)
Cleaning &

Transformation
 

I would expect 
total population 
in Ireland to be 
less than 
3,000,000 between 
2008 and 2012

I would expect 
‘total population’ 
in Ireland to be 
less than 
3,000,000 between 
2008-2012

I would expect 
‘total population’ 
in Ireland to be 
less than 
3,000,000 between 
2008-2012

P
ip

el
in

e 
st

ag
e

O
ut

pu
ts

U
se

r i
np

ut

total population
ireland

2008 - 2012

attribute
geo-location
time
window

node type

less | greaterAttribute 

 value

3,000,000 quantitative
value

than

in locations in

time window

(F)
Concept map

generation

total
population

2008-2012

Ireland

in

in

3,000,000

less than

(G)
Concept map

parsing and data 
generation

location year actual
total pop.

expected
total pop.

2008

2009

2010

2011

2012

4,458,000

4,521,000

4,549,000

4,571,000

4,589,000

3,000,000

3,000,000

3,000,000

3,000,000

3,000,000

Ireland

Ireland

Ireland

Ireland

Ireland

(H)
Chart

generation

5
mil

expectation
3

mil

(G)
Concept map
parsing & data 

filtering

(H)
Visualization 

generation and 
annotation

I’d expect total population in Ireland to be less 
than 3 million between 2008 and 2012

Fig. 2. A pipeline for visual hypothesis validation. Data expectations, specified in natural language, are first translated to concept maps (steps A through F).
The concept maps are then used to filter the dataset for relevant records and features (G). Lastly, the actual and expected data are compared, and discrepancies
are annotated onto the resulting visualization (H).

C. Model Validation and Visual Feedback

The previous part of the pipeline concludes with the gen-
eration of a concept map that encodes the user’s hypothesis.
To test the expectation implied and generate an appropriate
validation chart, the concept map is analyzed as follows:

The concept graph is traversed depth-first starting from
the root node, which by convention corresponds to a data
attribute (e.g., “total population”). Traversal enables the system
to determine the subset of data points that relate to the encoded
expectation. This is achieved by simulating a source-sink flow
model onto the concept graph; root nodes act as data sources
whereas leaf nodes serve as sinks. Intermediate nodes act as
filters (e.g., “Ireland”, “2008-2012”), progressively restricting
the ‘flow’ of data to, for instance, specific countries or time
periods, as indicated by nodes in the graph. Ultimately this
process yields a table of data points (a subset from the full
dataset) comprising records that are necessary to validate
the user’s hypothesis. Concurrent with the traversal process,
the system generates ‘expected’ data values at every step,
comparing them against the actual data. When mismatches
occur, annotations are added to the visualization to highlight
the discrepancy. In the above example, because the actual
population of Ireland is higher than expected, a horizontal line
is added to the chart with its Y value at 3 million, along with
an annotation reading “expected to be less”.

To determine an appropriate output visualization, the system
considers the number of attributes involved and the size of
the resulting data table, employing a rule set of established
practices for chart selection. The system then generates a
visualization specification in the Vega grammar [19]. For
example, the expectation in the example above involves one
location, one attribute, and multiple years. Therefore, the
system chooses a line chart as the most appropriate to represent
the relevant data. The Vega specification includes both the
actual data and the mismatch annotations. The latter are
encoded with a salient color (e.g., bright red) so as to draw
attention to model-data discrepancies.

IV. CASE STUDY

To illustrate the utility of the system for confirmatory visual
analysis, we present the following case study.

A socio-economic researcher is interested in confirming her
hypothesis that life expectancy is linearly associated with eco-
nomic growth indicators. She further believes this correlation
will be strongly pronounced in recent years, following an
economic recovery. But she suspects that this recovery has not
been shared equitably among the developed economies. Based
on her prior experience, she enters the following expectation
into the system: “I expect GDP per capita to be positively
correlated with male life expectancy in 2014”. The system
parses the sentence and produces a concept map along with a
scatterplot showing the two attributes, and annotating a linear
positive expectation for reference (see Fig. 4-A).

From the scatterplot, she finds that, while there is a relation-
ship between the two attributes, it is not strictly linear when
compared to the expectation. She thinks there might be another
economic indicator, Gini, that is better correlated with life
expectancy. Her hypothesis is that Gini, which accounts for the
dispersion of wealth in society, will better reflect her mental
model, although the correlation is expected to be negative this
time (lower Gini index is more equitable distribution). She
writes “I expect Gini index is negatively correlated with male
life expectancy in 2014”.

The system produces a concept map and a corresponding
scatterplot shown in Fig. 4-B. Here, the researcher sees that
the data reasonably fits her revised model. Nevertheless, she
notices that the fit is less satisfying at the upper echelons
of life expectancy, where a number of countries exhibit very
similar expectancy levels despite having different Gini values
(between 25–35). She identifies these countries by hovering
over their respective points in the scatterplot, and selects six
of them: France, Ireland, United States, Australia, Sweden and
Netherlands. She believes the higher life expectancy in these
countries (than can be explained by Gini alone) is partially
driven by a relatively high labor participation. She thus expects
the six countries to have an unemployment level that is well
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below 10%: “I expect the total unemployment in Australia,
France, Ireland, Netherlands, Sweden, and United States to
be lower than 10%”. In response, the system generates a line
graph (Fig. 4-C), showing indeed that her expectation is met
throughout the 9 years.

Observing a downward unemployment trend that accelerates
in 2014, she decides to dig further. She focuses on an attributes
that could indicate investment activities. Believing that Ireland,
in particular, had been struggling to attract new businesses, she
chooses to compare the island nation with the six other coun-
tries, typing: “I expect business density registrations in Ireland
to be lower than France, Australia, Netherlands, Sweden, and
United States in 2014”. A bar graph is generated (Fig. 4-D)
with Ireland highlighted. Additionally, the bar chart contains
annotations where the system found unexpected differences.
Looking at the annotation, she finds that, counter to what she
thought, there were two countries with lower new business
activity (France and the Netherlands in this case). Not sure
what to make of these results, she decides to repeat her
analysis of unemployment, but this time she focuses on women
labor participation. Additionally, she also widens the focus to
include additional countries: “I expect female unemployment
in 2014 in France, Australia, Netherlands, Sweden, United
States, Ireland, and Spain to be less than 10%.” The striking
feature of the resulting chart (Fig. 4-E) is Spain (highlighted
in red), as it significantly exceeded the expectation.

In a final analysis, she wonders whether rural population is
decreasing in the these countries: “I expect the rural population
in Ireland, France, Australia, Netherlands, Sweden, and United
States to be decreasing.” She finds that all countries indeed
have decreasing trends, although Ireland still stands as an
outlier with a higher rural population (Fig. 4-F).

This example case study illustrates how various data models
can be quickly, visually, and interactively validated. Visual
(dis)Confirmation currently supports a variety of data expec-

tations, including trends, inequalities, and correlations. Its key
feature is the ability to highlight counter examples, drawing
more scrutiny to data instances that violate user assumptions.

V. LIMITATIONS AND FUTURE WORK

Visual (dis)Confirmation represents the first attempt at creat-
ing a visual analytics tool that explicitly scaffolds model- and
hypothesis-based reasoning. While the system is functional,
there are a number of limitations that can be addressed
with future research. First, the system relies on a predefined
typology of expectations that we synthesized in a Wizard-of-
Oz study. Although the typology is expansive, it is somewhat
inflexible, and can limit the types of models and hypotheses
that can be validated. Second, the system currently supports a
limited number of charts (bar, line graphs, and scatterplots).
Support for additional visualizations (e.g., node-link diagrams,
parallel coordinates) can improve the utility of the system,
by allowing a wider variety of models to be validated. The
annotation strategy, which is used to highlight model-data
discrepancies can also be improved. For instance, annotations
could be placed considering the emerging visual structure of
the emerging visualization to avoid occlusions, as opposed to
simple superimposition as in the current system. Lastly, while
we have conducted preliminary testing of the tool, there is a
need for formal evaluation to ensure usability and utility.

VI. CONCLUSION

Current visualization tools facilitate exploratory data anal-
ysis, but fall short at fully supporting hypothesis- and model-
based reasoning. We presented Visual (dis)Confirmation, a
tool for confirmatory visual analysis. Users interact with the
system by framing hypotheses and expectations in natural
language, prior to seeing the data. In response, the system
selects conceptually relevant data features and automatically
generates visualizations to validate the underlying hypothe-
ses. The resulting visualizations highlight places where one’s
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Fig. 4. A series of confirmatory visualizations generated in a hypothesis-
driven case study.

model disagrees with the data, so as to stimulate concep-
tual reflection and model revision. We described algorithmic
techniques for parsing expectations and converting them to
meaningful confirmatory visualizations. We also demonstrated
the utility of the system through a case study. Lastly, we
discussed challenges and future research opportunities to en-

able a richer, bidirectional discourse between people and data
through visualization.
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