

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Proceedings: Sixth International Conference on Information Visualisation.

 IEEE, 2002. 535 - 540

DOI: http://dx.doi.org/10.1109/IV.2002.1028826

Copyright: © 2002 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/IV.2002.1028826

Tailoring Dynamic Ontology-Driven Web Documents by Demonstration

José A. Macías and Pablo Castells
Universidad Autónoma de Madrid (Spain)

{j.macias, pablo.castells}@uam.es

Abstract

In this paper we present DESK, an authoring tool for
the automatic customisation of the front-end of web
applications as a result of changes that users perform
in dynamically generated HTML pages. Our
authoring tool uses domain knowledge and
presentation knowledge stored in PEGASUS, an
automatic web page generation system for rendering
ontology-driven knowledge. DESK automatically
detects the differences between original and modified
web pages and uses heuristics to infer additional
knowledge for modelling the context of each change.
DESK uses an explicit user model to identify which
user can perform each kind of change to the web
presentation.

1. Introduction

The dynamic generation of web pages has
become commonplace for even the simplest WWW
applications today. Since the mid-90’s a significant
progress has been achieved in the development of
systems and tools that simplify the automatic
generation of pages, in exchange for affordable
limitations on the expressive power provided to
developers [1, 13, 14]. With these tools the developer
inputs structured knowledge and multimedia resources
in a very simple format, and the system takes care of
the generation of HTML code on the fly at runtime. In
general, such tools generate the code according to a
fixed page design that the developer cannot modify.

On the other hand, maintaining knowledge-based
web applications is not an easy task for unskilled users
due to the complexity and abstraction needed for
knowledge modeling inside of this kind of systems.
Most of these applications take care automatically of
the final web page creation, but it is up to the

developers to maintain and process changes that affect
the structure and appearance of the application. For
this reason, easy-to-use authoring tools are needed to
provide developers with an easy paradigm to change
contents and final presentation, as well as to provide
the user with a specific language for modeling the
final design [3, 4].

In this paper we present DESK (Dynamic web
documents by Example using Semantic Knowledge),
an authoring tool for modifying information
presentation and/or contents in knowledge-based web
applications. Our authoring tool aims at providing
end-users with an easy and flexible paradigm to make
changes to knowledge visualisation by using
techniques of Programming By Demonstration [2, 5,
6]. This means that the user only has to perform
changes to a web page and supply DESK with the
original and the modified web pages. Afterwards our
authoring tool detects the changes made by the user,
locates their context, and finally carries out these
changes. Changes may affect contents (domain model)
and/or presentation (presentation model) of web
applications.

DESK is based on PEGASUS [3, 4, 10], a system
for the dynamic generation of web documents in
information systems such as digital libraries, touristic
guides, educational applications, on-line museums,
and so forth. PEGASUS supports the generation of
web presentations, and integrates the management of
contents with dynamic aspects like adaptation to users
and dependencies between knowledge properties and
structure and an explicit model of web page design.

2. Related work

The development of WYSIWYG authoring tools
for dynamic web page generation is an inherently
difficult problem. Some authoring tools for the
development of adaptive hypermedia systems [1]

include interactive editors for introducing contents as
well as defining complex knowledge structures [9],
but not to design presentations and relations between
different models such as domain model, user model,
platform model and so on.

We have created DESK to fill this gap, using the
Programming By Demonstration paradigm [2, 5, 6] to
allow the page modification by a non-expert user. In
programming by demonstration the system infers
procedural information from examples of what the
user wants to achieve. The programming by
demonstration paradigm has an intrinsic ambiguity
because general information has to be derived from
particular cases provided by the user. To solve such
ambiguity some strategies have been used, such as
monitoring all user interaction (vs. watching only the
initial and the final state), using multiple examples
(e.g. negative examples), or interactively asking the
user to help or decide.

DESK operates taking only one example of the
initial and final states. This means that the user does
not have to use a specific web editor that monitors all
his/her actions. Given that DESK gets a limited
amount of information from the user to infer from, the
tool uses the domain model to locate the context of the
changes carried out by the user.

The extraction of structured information, like the
difference and context model used by DESK, from a
semi-structured document (HTML code) is very
similar to the way wrappers operate [8, 12]. Wrappers
provide a uniform access to the information stored in
heterogeneous repositories like data bases, files and so
forth.

3. Knowledge representation in PEGASUS

PEGASUS makes minimum assumptions about
how instructional knowledge is represented [9, 10]. It
is our purpose to provide semantic web designers with
a simple specification paradigm for non-trivial
adaptive presentation constructs, which can be used
with different web management systems. In order to
allow for different approaches, PEGASUS supports
the definition of made-to-measure domain ontologies
for the description and conceptual structuring of
subject matter (as in [11]). Once the ontology is
defined, designers build web presentations by creating
domain objects and relating them together using the
conceptual vocabulary defined by the ontology. A web
presentation is designed by defining an explicit
presentation model where presentations are associated
to ontology object classes and relations.

3.1 Domain model

Once the ontology has been defined, the domain
model is constructed by creating semantic networks of
domain objects, using the classes and relations defined
in the ontology. For example, assuming classes like
Talk and Speaker have been defined for storing
information about conferences and events, the follow-
ing example shows how an instance of a Talk might
be defined (the ontology for our example is inspired
on an ontology published at the DAML web site [7]).

<Talk ID="DESK"
 title="DESK Autoring Tool"
 uri="desk.html" date="20/03/2002"
 duration="20 min.">
 <Abstract>
 <AtomicFragment> DESK is an
 Authoring tool for making
 modifications to web pages...
 </AtomicFragment>
 </Abstract>
 <Speakers>
 <Speaker ID="JAMI"
 name="Jose Antonio Macías"
 organization="UAM"
 home_page=
"http://www.ii.uam.es/~jamacias"
 email="j.macias@uam.es">
 <Picture>
 <AtomicFragment url="jami.jpg" />
 </Picture>
 <Biography>
 <AtomicFragment
 url="jami.html" />
 </Biography>
 </Speaker>
 <Speaker ID="PCA"
 name="Pablo Castells "
 organization="UAM"
 home_page=
"http://www.ii.uam.es/~castells"
 email=
"pablo.castells@uam.es">
 <Picture>
 <AtomicFragment url="pca.jpg" />
 </Picture>
 <Biography>
 <AtomicFragment url="pca.html" />
 </Biography>
 </Speaker>
 </Speakers>
 <Bibliography>
 <BibItem ref="Macias2001a" />
 <BibItem ref="Macias2001b" />
 <BibItem ref="Castells2001" />
 <BibItem ref="Castells1999" />
 </Bibliography>

</Talk>

XML attributes like title and duration
belong to properties of the current knowledge unit,
whereas Picture, Speaker and Abstract, for
instance, are relationships between knowledge units.

3.2 Presentation model

In PEGASUS, the separation of content and
presentation is achieved by defining a presentation
template for each class of the ontology. Templates
define what parts (attributes and relations) of a
knowledge item must be included in its presentation
and in what order, their visual appearance and layout.

Templates are defined by using an extension of
HTML based on JavaServer PagesTM (JSP), that
allows inserting control statements (between <% and
%>) and Java expressions (between <%= and %>) in
the HTML code. In these templates, the designer can
use all the presentation constructs of the HTML
language (lists, tables, frames, links, forms, etc.), and
insert, using very simple Java expressions, the domain
items to be presented. For instance, a fragment of a
very simple template for class Talk could be as
follows:

<table><tr><td><h2><%=date%></h2></td>
 <td><h1><%=title%></h1> </td></tr>
 <tr><td><h2><%=duration%></h2></td>
 <td><h2><%= Abstract %></h2></td></tr>
 <tr> <td> <h2>
 <%= this.getTalksRelated() %>

 <%= Bibliography %></h2></td>
 <td><%=uri%><center>Speakers</center>
 <%= Speakers %>
</td></tr></table>

The designer uses this template by referencing
attributes and relations as shown in boldface.
Then PEGASUS accesses these values and represents
the internal information by extracting it from the
domain model. Figure 1 shows a web page generated
using this template.

The goal of DESK is to enable the designer to
change the presentation procedure by editing an
HTML page like the one shown in Figure 1, instead of
editing an abstract specification like the presentation
template shown above.

3. DESK as an authoring tool

DESK enables the user to modify both domain
knowledge and page design by editing HTML code
from the pages generated by PEGASUS, without
using the specific modelling language of PEGASUS.

DESK follows the inverse of the path followed by
PEGASUS, starting from the HTML code to end
analysing the constructor models. DESK achieves this
changes by using different types of heuristics and
programming by demonstration techniques for
reasoning on both domain and presentation model, and
deducing changes from contents or page design
depending on the differences shown between the
modified and the original document.

PEGASUS can be seen as implementing a
transformation over a domain model D and a
presentation model P, that results in the creation of a
web page. For a knowledge unit x ∈ D, PEGASUS
generates a web document DHTML. If we represent
such transformation as a function f (D, P, x) → DHTML,
DESK represents the inverse function f-1

D, P, x (DHTML,
D’HTML) → D’, P’, where D’HTML represents the
document modified by the user, and D’ and P’ are the
domain and presentation models after being modified
by DESK.

Figure 1. Web page generated for a
knowledge unit of class Talk

In general terms, the inverse path that DESK
follows has a higher level of ambiguity than the direct
path generated by PEGASUS, because for a change to
the document by the user several interpretations are
possible and different generalisations can be consider-
ed. DESK solves this ambiguity by using heuristics
like extracting structured knowledge from the domain
model of PEGASUS. Sometimes this is not enough
and the system can make mistakes. The purpose of
this work is not to build a system that never fails, but
to make a useful authoring tool capable of inferring
correct actions in a reasonable number of cases.

Figure 2. DESK Architecture

DESK can successfully infer the following types
of changes in documents:
• Insertion, deletion and modification of HTML

fragments along the presentation template.
• Insertion, deletion and modification of HTML

tags surrounding domain elements along the
presentation template.

• Deletion of both text and multimedia references
in the domain model.
DESK identifies what kinds of changes have to

be accomplished, taking into account the profile of the
user. Currently DESK cannot deal with other changes
than the ones listed above. In particular, it cannot
modify the domain structure (relationships between
knowledge units), or include new unit parts inside of a
presentation's template.

Figure 2 shows the architecture of DESK. To
begin with, the designer or any authorised user
modifies the HTML generated by PEGASUS and
sends to DESK the HTML page modified as well as
the original one. Once DESK has received both pages,
the first module of DESK tries to find out all known
differences between both the original and modified
page, reporting a structured difference model. The
next module tries to find out the context of the
previously modelled differences, using both the
domain and the presentation model to build a
structured context model of each difference, capturing
details like the location of each modification, class and
attributes involved, domain objects in the presentation

template. Finally a third module tries to manage and
carry out each change, using the previously generated
context model. This module also modifies the
information contained in the domain and presentation
model, updating the presentation correctly.

The change management module uses the user
profile information to detect if a user could change or
not the presentation depending on her/his role in the
system. The next time the user navigates over the
presentation, the changes will show according to the
modifications made previously. In the next section we
present an example to illustrate all the steps we have
just described.

4. Explicit DESK models

As described before, DESK manipulates different
types of models, coded in XML, where the
information generated in each step is modelled and
stored. In addition to the domain model used by
PEGASUS, DESK builds and manages both a
difference model and a context model.

4.1 Difference model

In the most basic sense, the difference model
encodes structured information about the syntactic
differences found during the comparison of the files
sent to DESK by the user.

<DifferenceModel>
 <Diff id="1">
 <Original line="38" action="change">
 <h1> DESK Authoring Tool </h1>
 </Original>
 <Modified line="38" action="change">
 <h2> <u> DESK Authoring Tool
 </u> </h2>
 </Modified>
 </Diff>
 <Diff id="2">
 <Original line="38" action="change">
 <h2> 20/03/2002 </h2>
 </Original>
 <Modified line="38" action="change">
 <h2> 21/03/2002 </h2>
 </Modified>
 </Diff>
 <Diff id="3">
 <Modified line="60" action="adition">
 <blockquote>
 <h2> Related Bibliography </h2>
 </blockquote>
 </Modified>
 </Diff>
........
</DifferenceModel>

This code shows a fragment of the XML
specification used to represent the difference model.
For each difference, DESK generates a Diff element
witch codes the original and modified states of the
text. Each element has an attribute called action,
which indicates what kind of change is being done
(addition, deletion, and change). In this
example we can see how the user has changed the
appearance of the literal DESK Authoring Tool
(<Diff id="1">), adding a HTML-tag and
reducing the text size to <H2> HTML-tag. The
second modification (<Diff id="2">) shows us
how the user has changed the date of the speech, from
20/03/2002 to 21/03/2002, and finally the third
modification (<Diff id="3">) reflects how the
user has added a new line of HTML code.

4.2 Context model

The context model provides semantic information
about the differences found in the difference model.
This way it is possible to locate exactly where the
changes have to be applied in the domain and
presentation models.

<ContextModel>
 <DiffContext id="1">
 <Context class_name="Talk"ID="DESK"
 attribute_name="title" />
 <Tags text_found=

 "DESK Authoring Tool">
 <h1/> <u/> </Tags>
 </DiffContext>
 <DiffContext id="2">
 <Context class_name="Talk" ID="DESK"
 attribute_name="date" />
 <ReplaceBy> 21/03/2002 </ReplaceBy>
 </DiffContext>
 <DiffContext id="3">
 <Location place="after">
 <%= Bibliography %> </Location>
 <Insert> <blockquote>
 <h2> Related Bibliography </h2>
 </blockquote>
 </Insert>
 </DiffContext>

</ContextModel>

The XML code above shows the context model
coming from the difference model. This model is built
using the domain model for extracting information
(e.g. attributes and classes where the modified literal
is represented) located in the knowledge units. In this
example, the appearance of the text "DESK
Authoring Tool" is reflected on DiffContext
number 1, where the class Task and attribute title
is found in the domain model to describe such a
difference. As we can see in the second difference
context (<DiffContext id="2">) a change in
the domain model has been modelled, locating the
precise attribute and class where the difference
happens. But in the third case (<DiffContext
id="3">), the change has been found in the
presentation model (the presentation template), where
the new HTML code will be inserted right after the
element Bibliography (<Location place=
"after">). This information is crucial because there
is not a straight relation between the modified page
and the original one, the location of insertions,
deletions and changes being inferred directly by
DESK.

After the difference and context model have been
created, a third module will apply the context model to
carry out every modification in the presentation as
well as in the contents.

Once the changes in the presentation have been
done, DESK returns a special report page showing a
summary of the whole process, informing about any
special events, errors, or warnings that might arise
along the process. DESK also asks the user for
confirmation, and prompting him/her for help if
necessary to resolve ambiguities or taking hard
decisions.

5. Conclusions

Our authoring tool provides automatic support
for the customization of dynamic web documents
based on comparing the pages generated by the system
with a modified version provided by the end-user.
DESK is based on PEGASUS, a system used to
represent the semantic information structured by
models that allow a clear separation between contents
and presentation. DESK uses domain information
stored in PEGASUS and presentation models for
finding the context of changes made by user. Our
authoring tool also determines whether the user is
enabled to do these modifications depending on a user
model. With DESK the user only needs to take care of
editing HTML pages using any standard HTML
editing tool such as PageMaker or Netscape
Composer. Using rich structured models for
representing differences and context makes each step
easier and allows undoing changes. In the future we
will use such models to store historic information
about changes. At present, we are extending DESK to
deal with more complex cases, like those involving
presentation elements that are generated from JAVA
expressions (as opposed to HTML literals) in
presentation templates. We are also working on
augmenting DESK with a WYSISYG editor where all
user actions are monitored during the edition process,
thus providing the tool with more complete
information to reason about, allowing for a more
precise and correct response.

Acknowledgements

The work reported in this paper is being partially
supported by the Spanish Interdepartmental
Commission of Science and Technology (CICYT),
projects numbers TEL1999-0181 and TIC2001-0685-
C02-01.

References

1. Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based
Education for all: a Tool for the Development of
Adaptive Courseware. Computer Networks and ISDN
Systems, 30, 1-7, 1998.

2. Castells, P., Szekely, P.: Presentation Models by
Example. En: Duke, D.J., Puerta A. (eds.): Design,
Specification and Verification of Interactive Systems
'99. Springer-Verlag, 1999, pp. 100-116.

3. Castells, P., Macías, J.A.: Un sistema de presentación
dinámica hipermedia para representaciones
personalizadas del conocimiento. Actas del 2º
Congreso de Interacción Persona-Ordenador
(Interacción 2001). Salamanca, Junio 2001.

4. Castells, P. Macías, J.A.: An Adaptive Hypermedia
Presentation Modeling System for Custom Knowledge
Representations. Proceedings of the World Conference
on the WWW and Internet (WebNet’2001). Orlando
(Florida), October 2001.

5. Communications of the ACM. The Intuitive Beauty of
Computer Human Interaction. Special issue on
Programming by Demonstration, 43, 3, March 2000.

6. Cypher A. (ed.). Watch What I Do: Programming by
Demonstration. The MIT Press, 1993.

7. DAML - The DARPA Agent Markup Language
Homepage, http://www.daml.org.

8. Huang, Anita W.: Aurora: A Conceptual Model for
Web-Content Adaptation to Support the Universal
Usability of Web-based Services. Conference on
Universal Usability (CUU 2000). Arlington VA, USA,
2000.

9. Macías, J.A. and Castells, P. Interactive Design of
Adaptive Courses. In Computers and Education –
Towards an Interconnected Society, M. Ortega and J.
Bravo (eds.). Kluwer Academic Publishers, Dordrecht
(The Netherlands), 2001.

10. Macías, J. A., Castells, P.: Adaptive Hypermedia
Presentation Modeling for Domain Ontologies. To
appear in proceedings of 10th International Conference
on Human-Computer Interaction (HCII ’2001). New
Orleans, Louisiana, 2001.

11. Murray, T.: Authoring Kowledge Based Tutors: Tools
for Content, Instructional Strategy, Student Model, and
Interface Design. Journal of the Learning Sciences 7, 1,
1998, 5-64.

12. Muslea, I.: Extraction Patterns for Information
Extraction Tasks: A Survey. Proceedings of AAAI
Workshop on Machine Learning for Information
Extraction. Orlando, Florida, july 1999.

13. Vassileva, J.: Dynamic Course Generation on the
WWW. Actas 8th World Conference on Artificial
Intelligence in Education (AIED’97). Kobe, Japón,
1997, 498-505.

14. Weber, G. and Specht, M.: User modeling and
Adaptive Navigation Support in WWW-based Tutoring
Systems. Proceedings 6th International Conference on
User Modeling (UM97). Sardinia, Italy, 1997.

