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Abstract 
This paper introduces a number of refinements to the 
Parallel Coordinates visualisation metaphor for multi-
dimensional data. Firstly, the traditional set of poly-lines 
are replaced with a collection of smooth curves across the 
attribute axes, allowing individual data elements to be 
traced under certain limitations; normally impossible due 
to the ‘crossing problem’. Then the notion of spreading 
out points on axes with a few discrete values is 
introduced, which leads onto a simple focus+context 
technique when the user selects values on such axes. 

1. Introduction 

During the 1980’s and early 90’s, Inselberg and 
Dimsdale [1] introduced Parallel Coordinates, a 
representation of multi-dimensional information or data, in 
which multiple dimensions are allocated one-to-one to an 
equal number of parallel axes on-screen. An object in a 
data set is then mapped as a series of points, one per axis, 
with the position of each point on the axis being 
dependent on their value in the associated dimension. The 
points are then joined together by line segments from one 
axis to its immediate neighbour, forming a poly-line across 
the set of axes. This process is then repeated for each 
object in the information set. 

Parallel Coordinates allows similar objects to be seen 
as having similar shapes and the basic technique has since 
been modified with a variety of additional features. For 
example, Siirtola’s [2] version of Parallel Coordinates 
allows sub-ranges within dimensions to be brushed or 
selected to highlight particular groups of objects, and 
these groups can in turn be combined or filtered with other 
selections on other dimensions. The axes could also be 
rearranged to enable the user to order the dimensions as 
they saw fit. Fua et al [3] developed hierarchical parallel 
co-ordinates that showed representative paths for groups 
of similar objects, and used colour shading cues to 
indicate the spread of the object groups represented by 
these single lines, thus reducing the clutter and overhead 
of displaying the full set of co-ordinates. Falkman [4] 
extended the technique to 3 dimensions with a parallel 
plane visualisation, though unfortunately this also 

combined the difficulty of following lines in dense parallel 
co-ordinate displays with the occlusion problems of 3D 
representations. Further interactions such as angular 
brushing have also recently been proposed by Hauser et al 
[5], which picks out objects with specific trends between 
two dimensions rather than objects which are grouped 
together by value in just one dimension. However, one 
remaining problem is that if two objects share the same 
value in a particular dimension, they will share the same 
point on the corresponding axis, and as such their 
respective poly-lines will appear to merge and then 
separate again. Without additional cues such as colour, it 
is impossible to determine which line is which after the 
merge and separation effect. Such a situation is shown in 
the line diagrams and parallel coordinate screenshot in 
Figures 1 and 2, with a close-up of the affected area in 
Figure 3. 

2. Motivation 

OPAL is an EC-funded research project whose aim is 
to help businesses quickly form or select project groups 
that fit the skill requirements and attribute profiles for 
project tenders. Part of this process will involve selecting 
individuals according to data carried on their CVs or 
elicited from online interviews and interactions. Thus, 
each person will have an associated information profile 
that forms an instance of a multi-dimensional data set, and 
so parallel coordinates were investigated as a possible 
interface metaphor for this data. 

In Inselberg and Dimsdale’s original work on parallel 
co-ordinates the information used was from geometrical 
spaces, and as such the dimensions visualised tended to be 
continuous; mostly representing real or extended vector 
spaces; and homogenous, in that the units for one 
dimension tended to be the same for other dimensions. In 
doing so, information was also encoded into the lines 
between the axes; they didn’t just act as visual markers for 
following values and objects from one axis to the next. 
Hence, a line that sloped upwards from the X to the Y-axis 
on the parallel co-ordinates represented a point with a 
higher Y than X value. The intersection of two lines 
between axes in parallel co-ordinates represented 
information about the line between two points in 



geometrical space. However, when dealing with discrete, 
heterogenous data dimensions, such as those found in 
information visualisation, these meanings are lost. A poly-
line that slopes upwards from axis A to axis B does not 
mean that a particular object has a higher value in 
dimension B than A, as the number of discrete points on 
both axes may differ, and the units used on each 
dimension may be impossible to compare in any 
meaningful way. Dimensions themselves may have no 
particular ordering to enforce on an axis’ scale, relying 
instead on an arbitrary scale such as alphabetical or 
numerical ranking. As such, if for abstract information 
sets, the lines have lost their usefulness apart from 

representing continuity, we may as well attempt to use 
their ability to represent that continuity more fully. 

 

 
 

Figure 3. Detail of Figure 2. 
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Figure 1. Crossover uncertainties result when lines share a point on an axis. 

 
 

 
 

Figure 2. A crossover ambiguity in our CV data set. 



3. Parallel Coordinate Curves 

This paper demonstrates a static method for resolving 
the difficulty of following lines that share common points 
on axes, the ‘cross-over’ problem. Our solution is based 
on the use of curves and the Gestalt principle of good 
continuation (Wertheimer [6]). Simply put, using a 
smoothly graduating curve over the parallel co-ordinates 
instead of a zig-zagging line allows users to discern 
individual paths through these knots for reasonable 
numbers of lines.  

Curves have been used in parallel co-ordinate 
visualisations previously by Theisel [7], to show 
correlations between non-adjacent axes. In their work, 
additional axes could be placed between two adjacent 
axes, and the values of the objects on these dimensions act 
as control points for curves, pulling the curve towards 
them. Nesbitt and Friedrich [8] used Gestalt principles to 
improve the animation of dynamic graphs, and Bartram 
[9] used the Gestalt ‘law of common fate’ (objects moving 
in a similar manner appear to be grouped) to use 
animation as a filtering and brushing technique on a 
scatter plot style visualisation. 

In our approach though, we use curves solely to help 
differentiate poly-lines that cross at axes, an occurrence 
that increases dramatically when using axes with a few 
discrete values. This technique works well in isolation on 
a few lines as does brushing, but performs more strongly 
in conjunction with brushing to distinguish object 
representations. Indeed, as a spatial variable, curvature can 
be used in conjunction with any of the previous filtering 
and brushing methods that distinguish poly-lines with 
colour variables. The continuous curve approach also has 
the benefit of reducing the need to have the pixel-accurate 
steady mouse hand that is sometimes necessary with the 
brushing interaction techniques in parallel coordinate 
displays. Figures 4 and 5 show the effect of applying 
curves to the same data shown in Figures 1 and 2 
respectively. Note that the technique will not work for 
large numbers of crossings, as the situation in those 
circumstances is more akin to the general line-crossing 
problem shown in graph drawing by Purchase [10]. 

Our instance of a parallel coordinate visualisation runs 
over a data set of CVs, showing simple, singular attributes 
such as expected wage, work sector and highest 
educational qualification achieved. Some of these 
dimensions, such as educational level, have only a few 
discrete points, upon which many objects share a value. In 
the visualisation, this maps to poly-lines converging upon 
a few points on these particular axes. 

In standard parallel co-ordinates, finding which 
entering line maps to which exiting line is a matter of 
chance. For N poly-lines converging and then diverging to 
and from a particular point, a user would have a 1 in N 

chance of following a particular poly-line correctly 
without additional cues. With a reasonable number of 
curves, the human visual processing system can follow the 
most likely smooth path across the point of intersection, 
the gradients of the curves giving visual clues as to the 
relationships, and shapes such as asymptotic inflections 
can be rapidly dismissed as candidates. The smooth curves 
produced in our visualisation enable simple situations 
such as 4 or 5 crossing curves to be quickly resolved 
visually without brushing, and if the situation is more 
complicated, exploratory brushing can at least then be 
concentrated on the more likely candidates. 

In theory, a series of n points can be connected by a 
single curve described by a polynomial series reaching a 
highest power of n-1. However, Java 1.4 supplies ready-
made classes for quadratic and cubic curves, so we use 
these and seamlessly link them together to produce the 
higher order curve over the n attribute values. This also 
circumvents the problem that discovering a polynomial 
that passes exactly through a set of n points involves 
solving a system of n+1 linear equations. This is described 
as computationally expensive by Davies and Samuels in 
their introductory text [11], a situation that is usually 
inappropriate for any rapid, interactive system. Their text 
also contains a more formal, mathematical explanation of 
the basics of curve drawing. 

The curve segments contain two endpoints, which map 
to the points on the axes, and either one or two control 
points, which influence the shape of the curve. 
Mathematically, two control points produce a cubic 
equation using their co-ordinate values as factors, whilst 
one control point produces a quadratic equation that 
describes the shape of the curve. Visually, the control 
points appear to pull the curve towards them. Smoothness 
between adjoining curve sections (i.e. making the tangents 
at the end points of abutting curves parallel) is achieved 
by making sure the last control point of the preceding 
curve segment, the joint endpoint co-ordinate that sits on 
the attribute axis, and the first control point of the 
following curve segment form a straight line. 

With the curved representations, the parallel coordinate 
display now resembles the oscilloscope-style plots of 
Andrews’ curves [12] for multi-dimensional data, though 
Andrews produced his representations using a continuous 
Fourier-style function over the relevant data points. 

The decision on whether to use a quadratic or cubic 
curve for a particular section is made on the basis of the 
general shape formed by that section and the two adjacent 
sections. If the vertical displacement to be covered by the 
current section is outside the range delimited by the 
displacements for the adjacent sections then an inflection 
has been detected and a cubic curve will be used. Though 
a series of quadratic curves would always be sufficient to 
produce a smooth curve, a cubic section can provide an 



inflection that would otherwise need to be drawn by a 
combination of two adjacent quadratic curves, as shown in 
Figure 7. In these circumstances, drawing solely with 
quadratic curves can sometimes produce wildly oscillating 
curves whose paths go off-screen. 

 
   

Figure 6. Close up of Figure 5. Brushing 
confirms the continuation. 

 
 

 

  
 
 

 

Figure 4. Curves make the crossings easier to resolve 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. As per Figure 2, but with curves instead of straight lines 
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One other feature of using curved sections in parallel 

co-ordinates is an apparent increase in the number of 
objects displayed in the visualization. For instance, in the 
left-hand side of Figure 8 there appears to be only one line 
between the second and third axes, but in the curved 
representation on the right-hand side there are now two 
curved sections in the same area. This occurs because 
curves are a function not only of the steepness of the 
original line between two adjacent axes, but also of the 
gradient of the previous line section (as to ensure a smooth 
curve over all the axes, the last and first control points of 
the preceding and following curves respectively must lie 
on a straight line with the shared endpoint). Thus, two 
objects that had the same values on two adjacent axes and 
would overlay exactly when using straight lines, would 
now diverge slightly in the middle of this section if they 
had different values on the directly preceding axis. This 
can be viewed as either a useful or distracting effect, 
depending on circumstance; distracting in that it increases 
the number of perceived objects on screen, but useful in 
that it gives a more realistic presentation of the amount of 
data that is present. 

 
 
 
 

 
Figure 8. Curves mean that object 

representations tend to resolve from each other 
over shared values 

Understandably, drawing curves takes more time and 
processing than drawing simple straight lines. However, 
by using efficient repainting techniques, such as only 
redrawing curves that have changed state to or from the 
background state, and only recalculating curves when 
coordinates change due to axis reordering, disabling or 
flipping, the rate of interaction for tasks such as brushing 
is still high, which has been tested on data sets of up to 
4,000 items on a 2 GHz PC. 

4. Spreading points and Focus & Context 

Although the curves clearly aided the separation of 
items, it was found that with many curves it became 
difficult to differentiate them if they were bunched close 
together along their paths. Methods of separating such 
curves were needed, and two complementary techniques 
were developed, which can also be applied to traditional 
parallel co-ordinates. 

Firstly, it was noticed grouping was greater around 
coordinates on axes with relatively few values, as the 
curves converged on a few designated points on that axis, 
with much of the axis composed of empty space in 
between. Thus, if there was empty space available, we 
decided to ‘spread’ the point out to become a short line 
along the axis, with a bounding box to clarify that this 
length still formed one and the same value. 

Figure 9 demonstrates the effect this has, with instead 
of one complicated crossing point, many simpler crossing 
points being formed. The spread is calculated by moving 
the axial crossing point for each line to a point in the 
bounding box that is proportional to its average position in 
the preceding and following axes. Thus the curve at the 
bottom of the bounding box in Figure 9 is placed there 
because it crosses close to the bottom bounds of the 
preceding and following axes. Also, as the crossing points 
tend to drift away slightly from the axis, it is also possible 
to follow straight-line co-ordinates through these 
situations for small numbers of items, as in Figure 10. 

 

          
Figure 9. Before and after spreading is 

introduced at an axis point. 

 
Figure 10. Spreading with 
traditional straight line 

representations. 

Following on from this, in 
some axes it was noticed that 
there was not enough space to 
perform the spread effect even 
when that axis had a relatively 
small number of discrete values, 

Figure 7. Cubic sections can stop curves 
oscillating by allowing them to perform 

inflections between axes. 
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due to a space being necessary between the points 
themselves to show visual separation. It was then decided 
to implement a simple focus+context technique on the 
axes, with ranges of selected values being given more 
space to the detriment of unselected items. This would 
give the selected items the necessary space to perform the 
spreading technique. It would also further separate curves 
on axes that already had enough space to spread out 
shared points. 

An example of the difference this makes is shown in 
Figure 11, where a chosen data point has expanded under 
the focus and context effect and a previously impenetrable 
knot of crossings has been loosened to the point where 
individual curves can be discerned. 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

 

 
Andrienko and Andrienko [13] described a related 

problem in that exceptional outliers could skew a scale 
such that the vast majority of data points on an axis were 
squeezed into a minority of the space. Their solution 
involved a statistical analysis of the attribute data, dividing 
the axes into portions according to quartiles or standard 
deviations from the mean of the data. These scaled points 
were also aligned across the different axes, so that a line 
drawn through the mean or first/third quartile points for all 
attributes formed a straight line across all the 
corresponding axes on-screen. 

5. Future Work 

Initial user testing has begun by observing a handful of 
representative users acting on sample tasks with the 
visualisation. They were able to follow curves across 
screen for individual elements given reasonable numbers 
of items. This was especially apparent if the item in 
question was an outlier with an unusual path across the 

axes. Further feedback has resulted in a number of 
suggestions that may be incorporated into future 
development, such as having on-screen formal 
descriptions of the current selection and its result (i.e. 
“where SALARY < 60000 and SECTOR = Finance: 125 
Matches”.) 

Interaction with the parallel coordinate view may well 
be served better by using a mixture of curved and straight-
line representations for the data items, with selected and 
brushed items being represented by the curves, and 
background items by traditional poly-line representations. 
This would not only reduce clutter on-screen, as the 
straight-line descriptions of background items will tend to 
overlap, but the speed of the interaction may also be 
slightly improved as only a subset of items need to be 
drawn as the more computationally expensive curves. This 
method will be investigated in the course of future work. 

6. Conclusions 

This work successfully combines a number of 
techniques for use with parallel coordinate visualisations 
that allow individual paths, and thus elements in an 
information set, to be distinguished when samples of the 
information set have been selected. These include using 
curves to produce paths with continuous gradients across 
axes, spreading out points on axes that have few discrete 
values, and a simple focus and context technique for then 
giving further space to points of interest on axes. The 
latter two techniques can also be used on standard parallel 
co-ordinates that display using straight lines, and all can 
be used in conjunction with the common colour coding 
techniques used when selecting and brushing items in 
parallel coordinate visualisations. 

Early user testing has shown that curves can be 
followed across axes on-screen without the need to use 
brushing, an interaction technique for which pixel-perfect 
accuracy is sometimes needed. Following curves was 
easiest when the elements were outliers and had the most 
distinct curvatures, and these elements in many tasks are 
the most interesting cases to examine. Future work will 
consist of refining the technique with users, and to 
discover when the use of curves is most appropriate. 
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