
A 3D Metaphor for Software Production Visualization

Thomas Panas
Software Technology Group

Växjö University, V̈axjö, Sweden
Thomas.Panas@msi.vxu.se

Rebecca Berrigan
Peace Software

Auckland, New Zealand
rebecca.berrigan@peace.com

John Grundy
Department of Computer Science

Auckland University, Auckland, New Zealand
john-g@cs.auckland.ac.nz

ABSTRACT
Software development is difficult because software is com-
plex, the software production process is complex and under-
standing of software systems is a challenge. In this paper we
propose a 3D visual approach to depict software production
cost related program information to support software main-
tenance. The information helps us to reduce software main-
tenance costs, to plan the use of personnel wisely, to appoint
experts efficiently and to detect system problems early.

KEY WORDS
Program Visualization, Information Visualization, Program
Understanding, Reverse Engineering, Software Mainte-
nance.

1 Introduction

Software engineers who are to maintain, extend or reuse
a software system must understand it in the first place. Ob-
taining this understanding of an industrial size system is of-
ten a time consuming process since most legacy systems are
usually sparsely (or inadequately) documented. Estimates
of the proportion of resources and time devoted to main-
tenance range from 50% to 75% [1, 2]. The greatest part
of the software maintenance process, in turn, is devoted to
understanding the system being maintained. Fjeldstad and
Hamlen report that 47% and 62% of time spent on actual
enhancement and correction tasks, respectively, are devoted
to comprehension activities [3].

Due to the above reasons, reverse engineering of legacy
systems has become a vital matter in today’s software in-
dustry. However, increasing program understandability is
not a simple task due to the complexity of software sys-
tems. It is assumed that software complexity is related to
the commonly accepted empirically derived features of soft-

ware like code size, coupling, depth of inheritance, McCabe
complexity related to logical paths and data flow, amongst
others. It is also likely that thecostof related aspects in a
system such as defect levels or the effort required to design,
develop, test and maintain a software product gather more
attention in a business context focused on software produc-
tion.

Therefore, to simplify software complexity and increase
program understandability while correlating with cost pro-
files across the product, reverse engineered programs must
be effectively analyzed and visualized. Since develop-
ers think and perceive information differently, a tool must
support user specific metaphors and views. Currently,
metaphors and views within reverse engineering are re-
stricted to depict program specific data only, i.e. they show
merely information retrieved from code or data analysis.
However, it is important and necessary to establish cost re-
lated analyses and views, which give answers to questions
like: Which components are never executed? Which com-
ponents are often changed? On which components do my
developers currently work? Is the architectural structure
of my system obsolete and hence needs to be refactored?
Therefore, within this paper we present an idea that helps
system maintainers and managers to e.g. decide, which
components in a system are superfluous, which ones cause
high cost due to frequent changes and whether the entire
system needs to be revised.

In Section 2 we give a brief introduction to program visu-
alization for software maintenance. In Section 3 we present
an example, showing a 3D city metaphor for program vi-
sualization. On top of this picture, we present a code pro-
duction focussed metaphor in Section 4. Related work is
summarised in Section 5. A discussion and future work is
presented in Section 6. Finally, the paper is concluded in
Section 7.



2 Program Visualization

Visualization is the presentation of pictures, where each
picture presents an amount of easy distinguishable artifacts
that are connected through some well defined relations. Vi-
sualization itself has a number of specialized foci [4]. How-
ever, in this paper we are merely interested in program vi-
sualization, dealing with static and dynamic code visualiza-
tions.

Within program visualization, the scale and complexity
of software are pressing issues, as is the associated infor-
mation overload problem that this brings. In an attempt to
address this problem the following concepts are considered
to be important [5]:

• Abstractions Program representations resulting from
program analysis contain already for middle size pro-
grams enormous quantities of information. Conse-
quently, to be able to adequately represent and com-
prehend the most relevant program information, the
information assembled needs to be focused. There are
basically three techniques to focus information [6]: In-
formation abstraction, compression and fusion.

• Metaphors The mapping from a program model
(lower level of abstraction) to an image (higher level
of abstraction ) is defined through a metaphor, specify-
ing the type of visualization. Most visualization tech-
niques and tools are based on the graph metaphor (in-
cluding the extensive research on graph layout algo-
rithms). Other initiatives are the representation of pro-
grams as 3D city notations [7], solar systems [8], video
games [7, 9], nested boxes [10, 11], 3D Space [12], etc.

• Visualizations It is not feasible to depict all kinds of
program model phenomena in just one picture when
the model carries too much information. Therefore
each program model is depicted through various views,
guaranteeing that the right subsets of objects and their
relations are depicted and understood. Most effort to
solve software complexity was put into different visu-
alization forms, mainly the graph metaphor, including
UML diagrams, to depict various program class and
architecture views [4, 13, 14, 15].

The success and quality of any visualization depends on
many vital features [4]: Animation, Metaphors, Intercon-
nection, Interaction, Dynamic Scale. However, most vital
for successful program visualization is the retrieval of nec-
essary data for visualization and the availability of a suitable
metaphor.

3 A 3D City Example for Program Develop-
ment Visualization

Metaphors, when depicting real worlds and establishing
social interaction [16], especially in virtual reality [17, 18],
become very important. Essential is therefore the choice of
metaphor to improve the usability of a system. One funda-
mental problem with many graphic designs is that they have
no intuitive interpretation, and the user must be trained in
order to understand them. Metaphors found in nature or in
the real world avoid this by providing a graphic design that
the user already understands. When illustrating a reverse
engineered architecture, it is important for the understand-
ing of a program that the final picture is adjusted for the
individual [19, 20]. Therefore, we are currently developing
a visualization architecture that allows all kind of metaphors
to increase individual program understandability.

Within our unified recovery architecture [6, 21], the se-
lection of metaphor can be undertaken depending on the
user’s requirements and focus in visualizing program in-
formation. Currently, we are implementing a 3D City
metaphor to our architecture to support program under-
standing within three dimensions - this could be changed
for an alternate world in a user dependent fashion. Figure 1
shows a screenshot of the running example, where build-
ings denote components (mainly Java classes) and the city
itself represents a package. Different metaphors between
the source code and the visualization are possible, i.e. com-
ponents must not always be mapped to buildings and pack-
ages to cities. Other compilations are thinkable, where e.g.
buildings are mapped to methods. To support the user with
an intuitive interpretation of a software city and to increase
the overall realism of the metaphor, we added trees, streets
and street lamps to the figure.

Further, the figure illustrates both, static as well as dy-
namic information about a program. From a static point of
view, the size of the buildings give the system maintainers
an idea about the amount of lines of code of the different
components. The density of buildings in an certain area
shows the amount of coupling between components, where
the information for this can easily be retrieved from metric
analysis. The quality of the systems implementation within
the various components is visualized through the buildings
structures, i.e. old and collapsed buildings indicate source
code that needs to be refactored.

From the dynamic standpoint, cars moving through the
city indicate a program run. Cars originating from differ-
ent components leave traces in different colors, so that their
origin and destination can easily be determined. Dense traf-
fic indicates heavy communication between various com-
ponents. Performance and priority are depicted through the
speed and type of vehicles. Occasionally exceptions occur,
where cars collide with other cars or buildings, leading to



Figure 1. 3D City

Figure 2. 3D City from Top

explosions.

A satellite view of our analyzed system can be seen in
Figure 2, where cities (packages) within the architecture are
connected via streets (two-directional calls) or water (uni-
directional calls). Information between cities (packages) is
passed via boats and vehicles. Again, dynamic as well as
static information is illustrated. Clouds in that figure cover
cities that are not of current interest to the user and hence
hidden.

The general idea is to fly interactively through a reverse
engineered software system and depict it within a 3D city.
The user must have full freedom in zooming and navigating
through the system, and even be able to perceive the sys-
tem not only on the usual computer monitor, but also within
a virtual environment. However, the figures represent, so
far, only static and dynamic information about a reverse en-

gineered software system, which is received from the pro-
grams source code. For maintenance, however, we wish
for more information to answer cost related questions, like
where does the main maintenance costs occur in the system.
In order to answer this questions in a picture, we present
next a software production cost related 3D city metaphor.

4 A Metaphor Designed to Highlight Produc-
tion Information

Program visualization can provide a large reduction in
effort associated with program understanding. However, in
order to increase the reactivity of a development environ-
ment with respect to business realities, highly specialized,
visual information should be delivered in a timely fashion
to those people that can effect greatest impact.



Figure 3. 3D City from Top without Business Info

Figure 4. 3D City from Top with Business Info

Developers are mainly interested in information about
functional and non-functional issues of a program, e.g.
which components do I have to modify in order to change
the security aspect of my system. Project managers, need
to know to which parts of the program his team is allo-
cated to, answering questions like, can we meet the next
deadline? Additionally, managers and vendors are inter-
ested in hot spots, which means components that have been
modified frequently, indicating the high cost areas of the
systems maintenance. Designers and maintainers are more
interested in the overall structure of the system, indicating
places, which are of heavy or little use. This helps to decide
which components to remove or how to restructure the sys-
tem in order to achieve a higher performance or reliability.

Although, Figure 2 and Figure 3 help to visualize var-
ious static as well as dynamic aspects of a reverse engi-

neered system and hence increase the understandability of
the system, they do not provide support for the various ad-
ditional demands that developers, designers, vendors and
project managers have. Therefore, we apply a cost focused
metaphor over the 3D city metaphor, to visualize additional
business related information of a system. Figure 4 shows
our approach.

In the figure we illustrate various additional aspects rel-
evant for different types of stakeholders.

• Work Distribution. The components currently being
modified by the staff are indicated in yellow with
the respective names. This gives an idea about the
progress of the maintenance or development team and
can help to estimate the total time needed.

• Recycling. In brown, those parts of the system are



illustrated, which are no longer needed. These parts
have not been used for quite a while and increase only
the total complexity of the system. Those parts should
be further investigated for removal.

• Hot Execution Spots.Components with frequent exe-
cution are indicated by a surrounding fire. In order to
increase the reliability and performance of a system it
is beneficial to investigate these components carefully.

• Aspects. Aspects, from Aspect-Oriented Program-
ming [22, 23], can be depicted in various colors. In
the figure here, distribution is shown in blue and syn-
chronization in green. These spots help out to point out
functional or non-functional cross-cuttings that can be
investigated and further changed by experts.

• High Costs. Buildings with flashes indicate frequent
component modifications. The result is an increased
maintenance cost and hence also an increased cost for
the entire software project.

The list above is not complete. Many more production
related issues exist that could be depicted. Vendors and
managers might see the quality of a software system at once,
by having a short look at the 3D city. Lots of fire, flashes
and mud indicate high cost areas of code and unacceptably
high risk regarding the ongoing health of the system.

Developers might benefit from business process, use-
case, control flow, data-flow, and event-based visualiza-
tions. For example, a dynamic picture of events occurring
on various positions in the city and being handled on other
positions (indicated by e.g. colors) can aid the understand-
ing of event-based software development. Another example
might be an animation of cars driving between the different
cities, marking them in color, to indicate which components
are used when and for which use case.

Further, static and dynamic source code analysis can be
illustrated, showing a changing city, depending on the type
of analysis applied. For example, when applying the con-
cept analysis, which computes maximum sets of objects us-
ing the same set of attributes, different components can be
formed, depending on the user interaction on the concept
lattice. For reverse engineering, component detection can
be optimized by interactively illustrating the changing pic-
ture of the city while the concept lattice of the analysis is
being changed.

Finally, the navigation within the city is important in or-
der to present the 3D city to the user in the most natural
way. Software maintenance should not necessarily require
reading millions of lines of code. Navigating through the
city from top or even from inside a car (program counter),
might make maintenance a game. Complex, huge software
systems could be comprehended much faster.

5 Related Work

At present there exists some work on visualizing source
code in three dimensions, however little effort was made to
depict production relevant information in 3D. Knight and
Munro [7] describe what they call the ’software world’ -
a system being visualized in the world. Cities represent
source files that that may contain one or more classes which
themselves are represented as districts and finally methods
are shown as buildings. Here colors are used on buildings
to encode the type of methods: public or private. However,
the focus of this paper is the application of virtual reality
technology to the problem of visualizing data artifacts and
not production related visualization.

In [24] the authors present a case study, which shows
the possibility of deploying 3D visualizations in a business
context. In the case study a reusable collection of behav-
iors and visualization primitives is presented (3D gadgets),
with the intention to deploy visualization components in a
software architecture. However, the paper focuses on busi-
ness process visualization to validate requirements and to
acquire feedback on design-tradeoffs and not on program
understanding or software maintenance.

6 Discussion and Future Work

As mentioned above, the 3D city is an example metaphor
for our unified visualization architecture, that is currently
being developed. The architecture supports any kind of re-
verse engineering, following three basic steps: analysis of
a program, focusing (which means filtering, folding, fus-
ing, etc. of program information), and the visualization of
retrieved source code information. For the visualization, a
mapping between the data representations and the final pic-
ture is needed. Hence, we need metaphors.

Currently, we are about to finish our unified recovery
architecture that allows us to plug in various visualiza-
tions, including metaphors and layout algorithms, provid-
ing the best fit system view for an individual user. The
step to follow is to implement the 3D city metaphor in e.g.
OpenGL4Java, in order to perform tests and evaluations.
The present study about the 3D city is based on our 3DStu-
dio Max implementation.

The unified recovery architecture permits the visual cor-
relation of code structure information and development
house operational information in a single viewscreen. The
choice of metaphor can also be altered depending on the rel-
ative importance of each aspect of the code (or cost related
to the code) to the viewer at hand. Once these tools are ro-
bust and readily configurable the test will be to undertake a
medium scale industrial trial where scalability, performance
and time constraints will test the ability of the visualization
tool to provide valuable information to the organization.



7 Conclusion

In this paper, we have illustrated our 3D city metaphor
that we are currently developing for our unified recovery
architecture. Further, we have discovered the need to depict
more than just static or dynamic program information for
increasing a programs understandability and maintainabil-
ity. We need to depict production cost related information
of a system that shows the right stakeholder the right infor-
mation using minimal time and effort. In general we have
tried to present a vision where software maintenance must
not always be labor intensive, trying to understand and alter
undocumented legacy code, but also fun, when navigating
through a software city in 3D.

References

[1] B. W. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[2] B. Lientz, E. Swanson, and G. E. Tompkins. Characteristics
of application software maintenance.Communications of the
ACM, 21(6), June 1978.

[3] R. K. Fjeldstad and W. T. Hamlen. Application program
maintenance study: Report to our respondents. InProceed-
ings GUIDE 48, Philadelphia, April 1983.

[4] J. Stasko, J. Domingue, M. H. Brown, and B. A. Price, edi-
tors. Software Visualization. MIT Press, 1998.

[5] C. Knight. Visual Software in Reality. PhD thesis, University
of Durham, 2000.

[6] T. Panas, W. L̈owe, and U. Aßmann. Towards the unified
recovery architecture for reverse engineering. InInt. Conf.
on Software Engineering Research and Practice, Las Vegas,
June 2003.

[7] C. Knight and M. C. Munro. Virtual but visible software. In
IV00, pages 198–205, 2000.

[8] P. Damien. Building program metaphors. InPPIG’96 Post-
Graduate Students Workshop at Matlock, UK, September
1996.

[9] K. Kahn. Drawing on napkins, video-game animation, and
other ways to program computers.Communications of the
ACM, 39(8):49–59, 1996.

[10] J. Rekimoto and M. Green. The information cube: Using
transparency in 3d information visualization, 1993.

[11] S. P. Reiss. An engine for the 3d visualization of program
information.Visual Languages and Computing (special issue
on Graph Visualization), 6(3), 1995.

[12] J. Rilling and S.P. Mudur. On the use of metaballs to visu-
ally map source code structures and analysis results onto 3d
space. InNinth Working Conference on Reverse Engineering
(WCRE’02). IEEE, October 2002.

[13] T. Ball and S. G. Eick. Software visualization in the large.
IEEE Computer, 29(4), 1996.

[14] C. Lewerentz and F. Simon. Metrics-based 3d visualization
of large object-oriented programs. In1st Int. Workshop on
Visualizing Software for Understanding and Analysis, June
2002.

[15] P. Eades.Software Visualization. World Scientific Pub Co,
1996.

[16] C. Russo dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud,
and J.P. Paris. Metaphor-aware 3d navigation. InIEEE
Symposium on Information Visualization, pages 155–65. Los
Alamitos, CA, USA, IEEE Comput. Soc., 2000.

[17] G. Fitzpatrick, S. Kaplan, and T. Mansfield. Physical spaces,
virtual places and social worlds: A study of work in the vir-
tual. InCSCW’96. ACM Press, 1996.

[18] K. Vaananen and J. Schmidt. User interfaces for hyperme-
dia: how to find good metaphors? InCHI ’94 conference
companion on Human factors in computing systems, pages
263–264. ACM Press, 1994.

[19] J.F. Hopkins and P.A. Fishwick. The rube framework for per-
sonalized 3d software visualization. InSoftware Visualiza-
tion. International Seminar. Revised Papers (Lecture Notes
in Computer Science Vol.2269). Springer-Verlag, pages 368–
380. Berlin, Germany, 2002.

[20] S. North. Procession: using intelligent 3d information visu-
alization to support client understanding during construction
projects. InProceedings of Spie - the International Society
for Optical Engineering, volume 3960, pages 356–64. USA,
2000.

[21] VizzAnalyzer. http://www.msi.vxu.se/˜tps/
VizzAnalyzer , 2003.

[22] G. Kiczales, K. Lieberherr, H. Ossher, M. Aksit, and T. El-
rad. Discussing Aspects of AOP.Communications of the
ACM, 44(10), October 2001.

[23] T. Panas, J. Andersson, and U. Aßmann. The editing as-
pect of aspects. In I. Hussain, editor,Software Engineering
and Applications (SEA 2002), Cambridge, November 2002.
ACTA Press.

[24] B. Scḧonhage, A. van Ballegooij, and A. Eliens. 3d gadgets
for business process visualization - a case study.


