
- 1 -

The Effect of a Perceptual Syntax on the

Learnability of Novel Concepts

Pourang Irani

Department of Computer Science

University of Manitoba

Winnipeg, MB - R3T 2N2

Canada

irani@cs.umanitoba.ca

Colin Ware

Data Visualization Research Lab

University of New Hampshire

Durham, NH - 03824

USA

colinw@cisunix.unh.edu

Abstract
Language theorists argue that the reason why spoken

language is acquired so rapidly is that we have an innate

predisposition for understanding linguistic structures.

Theories of perception also hold that there may be deeply

seated mechanisms for decomposing visual objects and

analyzing them into both component parts and the

structural interrelationships of those parts. We propose

the theory that diagrams that activate the mechanisms for

structural object perception should be similarly easy to

learn. This builds on previous work in which we have

developed diagramming principles based on the theory of

structural object perception. We call these geon diagrams.

We have previously shown that such diagrams are easy to

remember and to analyze. To evaluate our hypothesis that

geon diagrams should also be easy to understand we

carried out an empirical study to evaluate the learnability

of geon diagram semantics in comparison with the well-

established UML convention. The results support our

theory of learnability. Both “novices” and “experts”

found the geon diagram syntax easier to apply in a

diagram-to-textual description matching task than the

equivalent UML syntax.

Keywords -- Pedagogy, software engineering, software

engineering visualization, UML diagrams, perception, geon

theory, semantic learning, object recognition.

1. Introduction
In software engineering, conceptualizing the design of a

system is an important element of the entire development

process. This activity is supported by the use of sketches

and diagrams to capture various aspects and semantics of

the system being modeled. These visualizations mainly

depict entities and their inter-relationships in any given

system. The diagrams are characterized by nodes

representing entities, objects, or units, and by

interconnected links representing relationships of various

kinds. Nodes are represented using outline forms such as

boxes and circles, and links are depicted with lines of

different characteristics. Many forms of diagramming

techniques have been developed for modeling software

engineering problems such as those available through the

Unified Modeling Language (UML) [10]. The wide spread

use of UML for modeling software systems is a result of

the rich set of semantics it is capable of modeling through

its diagrams. These diagrams help software architects,

programmers, project managers, and, more recently, end-

users communicate with one another. Although the

semantics provided in these diagrams are general and

complete, the choice of graphical notations appear to be

somewhat arbitrary so that only an expert in the field can

easily read and understand them. As a result, these

notations may be even less effective as teaching aids.

To some extent, learning and using software

engineering semantics is analogous to learning semantics in

a natural language. Chomsky’s theory that language

understanding is based on innate deep cognitive structures

is now widely, if not universally, held [2][11]. One of the

main pieces of evidence for the theory is the very rapid

acquisition of language exhibited by young infants in the

second year of life. This accelerated learning has been

attributed to the idea that the infant is predisposed to

extract meaning from utterances because deep grammatical

structure of those utterances is innately understood [4].

It has also been argued that there is a similar deep

structure in vision, although the purpose of this structure is

not communication but perception of the environment. The

perceptual theory of Marr contains visual primitives such

as “blobs”, “bars”, and “terminations” [9]. These are

interpreted according to a kind of visual syntax thereby

enabling us to understand 3D structured objects.

Jackendoff [7] argues that the rules of visual structure are

similar to verbal language rules. He further proposes that

there are cognitive “correspondence rules” between the

visual meaning of a 3D structure and linguistic structure.

This provides a natural link between visual structure and

linguistic structures that may help explain why certain

kinds of diagrams are easy to understand. Others have also

argued that mapping information representations into the

appropriate perceptual representations should make the

information easier to understand [8][14][15][16].

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

- 2 -

What has not been previously addressed is the

implications from Jackendoffs theory that perception based

visual syntax and semantics should also support accelerated

learning. In our previous work [5][6] we have used the

theories of Biederman and Marr to create rules for the

construction of diagrams. We have shown that such

diagrams are easier to remember and analyze than diagrams

with a non-perception based syntax. Here we argue that

such diagrams should be easier to learn and apply to

matching of verbal descriptions to corresponding diagrams.

Note, this is different from our previous work in which we

showed a) that such diagrams could be easily recognized as

having been seen before [5] and b) that the syntax of the

diagrams could be remembered [6]. Since our argument is

based on the perceptual validity of our diagrams we review

structural object recognition theory and the set of

diagramming conventions that we have derived, based on

the theory.

2. Structural Object Recognition Theory
Biederman and his co-workers [1] elaborated the

theories of structural object recognition proposed by Marr

[9]. According to Biederman’s theory, object recognition is

accomplished in a hierarchy of processing stages. Objects

are initially decomposed into edges, then into component

axes, oriented blobs, and vertices. Extracting the three-

dimensional primitives such as cones, cylinders and boxes

(geons) follows this. Biederman defines a family of 36

geons that are derived from image properties on the

silhouette contours in the 2D plane, by symmetry,

parallelism, and curvature.

The extraction of the structure that specifies how the

geon components interconnect follows the decomposition

stage. This structure (or skeleton), known as the geon

structural description (GSD), consists of geons, their

attributes, and their relations with adjacent geons. It is

primarily the structural description that contributes to

viewpoint invariance, i.e. if two views of an object result in

a similar GSD, then they should be treated as equivalent by

the object recognition system. Finally, object recognition is

achieved. Figure 1 illustrates a subset of geons and some

simple objects constructed with them.

Figure 1. (a) Geons are object primitives in Biederman's theory. (b)

When connected in a particular structural relationship they can define

an object. (c) Different connections of the same geons can result in

different objects as the figure shows geons 5 & 7 can give two different

objects.

3. Perceptual Semantics
The structural description does not only consist of

topology but includes a set of connection rules between

geons. As illustrated in Figure 1, identical geons with

different connectivity between them can define two very

distinct objects (Figure 1.c). Thus in defining diagrams we

need perceptual rules for connection that extend beyond

topology. If we can understand these rules then we can map

the semantics of diagrams onto geon structures in ways that

will make diagrams more easily interpreted.

Biederman suggests that any given GSD is composed of

a modest set of readily discriminable relations among

geons. These relations can be determined from any

viewpoint, preserve their two-dimensional silhouette

structure, and are categorical [1]. The following set of

relational rules is based on the set proposed by Biederman:

RR1: Similarity - Shape of primitives plays a

primary role while color and texture are surface

properties of geons that play a secondary role in

entry-level classification.

RR2: Verticality - Geon A can be ON-TOP-OF,

BOTTOM-OF or BESIDE geon B.

RR3: Centering - Objects can be connected on or

off-center. For example, human arms are off-

centered while a human head is connected at the

center-top of the torso.

RR4: Connection relative to elongation - Most

geons are elongated, and connecting to the long

face versus the short face has important semantic

implications.

RR5: Relative size - One geon is larger or smaller

than another, e.g. legs vs. arms.

RR6: Containment - An important perceptual task

is identifying objects enclosed within larger

components or PART-OF relationships.

RR7: Multiples – An exact amount of counters is

not necessary to identify multiples.

We identify the image in Figure 2 with that of a human

body by recognizing the connections and relationships

defined by rules RR1 – RR7. For example, the head is on-

top-of (RR2) the torso. The arms are connected to the long

face of the elongated geon representing the torso (RR4) and

the legs are connected to the short face of the torso geon.

Legs are relatively larger than arms (RR5). A belly is part-

of the torso (RR6). Multiple fingers are identifiable by

means of showing several (RR7).

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

- 3 -

Figure 2. Relational rules extracted by the visual system for

identifying a human ‘object’.

4. PERCEPTUAL SYNTAX
Reviewing our argument, Geon Diagrams enable us to

map both data structures and certain kinds of semantics

into a kind of 21/2 D diagramming convention. Figure 3

illustrates the relationships between deep linguistic and

visual structures to diagram semantics. Similarly to

Jackendoff’s definition of “correspondence rules” between

deep innate linguistic structures and semantics, we created

in previous work [6] a set of “geon correspondence rules”

that link Biederman’s deep visual structures to

diagramming semantics. According to Jackendoff’s theory

these kinds of diagramming structures should make

accelerated learning possible, similar to the accelerated

learning that occurs with verbal language.

Figure 3. Theoretical concepts contributing to the correspondence

rules for geon diagrams.

In our previous work, the syntax of Biederman’s

relational description rules were extended to include a

mapping of semantics to data elements [6]. We focused on

semantics found in software modeling diagrams

specifically those in the category of UML class diagrams:

1-generalization ("is-a"), 2-aggregation ("has-a"), 3-

dependency, 4-multiplicity ("many-of"), and 5-relationship

strength. We applied the relational rules (RR1-RR7)

defined above to construct a set of representations (or

“geon correspondence rules”) for each of the five

semantics.

We suggest that certain types of "naturally" occurring

“geon correspondence rules” can be used to map diagram

semantics that will facilitate their comprehension. Here we

describe the subset relevant to software engineering

semantics:

GCR1: Generality, Inheritance - Geons with same

structural geometrical composition (or shape) can

be used to denote objects of the same kind

(derived from RR1).

GCR2: Support, Dependency - If geon A is on-

top-of geon B this suggests that geon A is

supported by geon B. In addition gravity

determines that structures are perceived as either

being stable or unstable (derived from RR2).

GCR3: Enclosure, Aggregation - shows that Geon

A is contained within Geon B. Syntactically this

can be shown as an internal component attached to

the same primitive geon on the outside (derived

from RR6).

GCR4: Ordinality, Multiplicity - to show multiple

associations between two entities a series of

attachments can best denote such a relationship

(derived from RR7).

GCR5: Strength of connection - Using a thicker

connection as opposed to a thinner one can denote

a stronger relationship between two entities

(derived from RR5).

We evaluated the “geon correspondence rules” defined

above and from these produced the following perceptual

syntax for each of the five semantics. We summarize the

resulting syntax in Figure 4 (details are provided in [6]).

Figure 5 illustrates an example of how these rules

describe related entities of a Space Center. The Space

Center has-many Buildings (containment with multiple

connecting lines), and has-many Spacecraft. A Gas Station

and a Lab are two different types of buildings (same shape

primitive as Building). The Gas Station has Fuel

(containment with connection). Shuttles are also a type of

Spacecraft (same shape primitive). Shuttles have-many

Wings, and has-one Engine. The Engine depends on Fuel

(depicted on-top-of the Fuel entity).

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

- 4 -

Generalization Objects of the same kind

can be represented using

same shaped primitives.

A is-a B (GCR1).

Dependency This relationship is best

represented by showing

the dependent on-top-of

the depended. A

depends-on B (GCR2).

Aggregation To show that one entity is

composed of another can

be shown using

containment. B is

contained in A (GCR3).

Multiplicity This attribute of a

relationship can be

depicted using multiple

connecting lines

(GCR4).

Relationship Strength Relatively thicker

connections can be used

to show stronger

relationships (GCR5).

Figure 4. Perceptual notation for software modeling semantics based

on “geon correspondence rules”.

We should note here that the emphasis of the geon

diagram syntax is mostly placed on the “correspondence

rules” described above and not simply on its 21/2D

representation. The additional dimension of the geon

diagram is not exploited for enriching the display by

superimposing 2D diagrams such as in [3] or for combining

dynamic and static representation such as in [13], but

instead for highlighting the connectivity between the

different entities in a diagram.

Figure 5. Representing some related entities in a system describing a

Space Center.

In our previous study we compared the comprehension

of the perceptual syntax to that of UML class diagrams

containing the chosen semantics. Subjects unfamiliar with

either notation were asked to describe geon and UML

diagrams based on multiple-choice answers. The subjects

made almost five times as many errors in identifying the

relationships in the UML diagram (53.6%) in comparison

to the geon diagram (11.5%) [6].

While our previous results showed that the geon

correspondence rules were easier to recall and more

intuitive than UML correspondence rules, they did not say

anything about their ability to help people match a diagram

to a problem domain. The remainder of this paper

describes the experiment that we conducted to compare

how easily students could learn and apply our diagram

semantics compared to UML diagram semantics. To find

out if our correspondence rules helped at this level, we

required subjects to match diagrams to informally written

descriptions of sample problem models.

5. Experiment
We hypothesized that it should be possible to learn,

recall and apply diagram semantics, more accurately to

diagrams created with the perceptual notation presented

above in comparison with an equivalent UML graphical

notation. We measured the error rate for subjects

attempting to match diagrams to informal written

descriptions of a set of entities and their relationships

modeling various real-world problem domains.

5.1 Method for the Experiment
Diagrams. Five problem descriptions incorporating the

semantics of generalization, dependency, one-to-many, and

aggregation were constructed. The semantics in the

problems were clearly presented using their common

terminology. For example, to describe related entities of a

neighborhood the following text was provided: "The

neighborhood depends on the city for clean water, sewage

and garbage disposal. Many families live in this

neighborhood. The neighborhood has a school and a

pharmacy. It also has several types of stores: a grocery

store, a convenience store, and a bakery." The problem

descriptions were created with a comparable number of

relationships. For each problem description, a set of four

UML diagrams and a set of their four equivalent geon

counterparts were created. Only one of the four diagrams

accurately depicted the relationships in the corresponding

problem description. The remaining three diagrams mis-

represented several relationships. All four diagrams in each

set were randomly numbered from 1 to 4. The geon and

UML diagrams corresponding to the problem description

given above are shown in Figure 6.

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

- 5 -

Figure 6. Sample UML and equivalent Geon diagram for representing

entities of a neighborhood.

Training. All the subjects were collectively given an

hour-long instruction on the various semantics and their

respective notations. The training included an introduction

to object oriented modeling, a description of each semantic

with its UML and geon diagram notation, and sample UML

and geon diagrams of complete systems with objects and

their relationships. The emphasis during the training was

placed on the concept underlying each semantic. One slide

was dedicated to the description of each semantic and

included the notation of both diagramming systems, first in

UML and then in geon. Equal amount of time was spent

describing each type of notation. There were 13 slides all

together. Figure 7 is a sample slide used for describing the

concept of inheritance. After describing each individual

semantic and its associated notation, complete UML and

geon diagrams illustrating the use of the semantics were

presented. The subjects were asked to return a week later

for the experiment. At the testing stage they were tested

individually.

Figure 7. Sample slide used for explaining the concept of inheritance.

Task. For this experiment we used a diagram-to-

problem matching paradigm. After reading each problem

description, the subject was asked to match one of the four

diagrams created for that problem. The subject marked on

the hand-out sheet the number of the matching diagram.

The problem descriptions were available to the subjects

while reading the diagrams, and so they could occasionally

consult the description. Therefore we were not testing

subject memory of a given problem text.

Subjects were restricted to two minutes for matching a

diagram to a problem description. A within-subject design

was used where half the subjects matched the UML

diagrams first and the other half matched the geon

diagrams first.

Twenty-six paid volunteers participated in the

experiment. Twelve subjects had previous exposure to

UML diagrams through a third year software engineering

course (experts) offered by the Faculty of Computer

Science at the University of New Brunswick. The other

fourteen subjects had never been exposed to UML or

software engineering semantics (novices).

5.2 Results of the Experiment
Results are summarized in Table 1, which reports error

rates by level of experience and type of diagram. The

results are obtained by averaging each subject's scores. A

One-Sample T-Test (or Sign Test) statistically shows that

subjects performed better with the geon diagrams (p <

0.0001). A Two-Sample T-Test (or Mann-Whitney Test)

shows that subjects' level of experience is not a relevant

factor in comparing the performance between the two types

of diagramming notation (p-values are 0.704 and 0.425

respectively).

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

- 6 -

 Geon UML

Novices 22.3% 44.3%

Experts 2.9% 25.9%

Combined 14.6% 36.2%
Table 1. Average error rates of matching Geon and UML diagrams to

problem descriptions.

The most striking result is the performance of expert

subjects with respect to the interpretation of Geon diagrams

(error rate 2.9%). This suggests that although subjects may

be well versed in UML, they still preferred and performed

better in interpreting the Geon diagrams. These subjects

also performed better than the novice subjects with respect

to both the Geon and UML scores. Overall, combining the

results we can say that there were more than twice as many

errors in analyzing and matching the UML diagrams than

the Geon diagrams.

6. Conclusion
In this paper, we described an experiment that

evaluated the learnability of software engineering (in

particular object-oriented) concepts with diagrams created

using perceptual structures. These diagrams were created

using a set of “geon correspondence rules” that were

constructed from deeply ingrained perceptual structures

used in structural object recognition []. In this paper we

mapped the semantics used for object-oriented class

modeling onto the set of “geon correspondence rules” and

compared their learning expressiveness to that of the de

facto standard diagramming notations provided in UML.

The results obtained from the experiment described

here, show that the mapping of software engineering

semantics onto “geon correspondence rules” can be used as

guidelines for making effective diagrams. In particular we

see that the geon diagrams are well suited for learning a

subset of object-oriented concepts such as those necessary

for modeling class structures. In comparing the learnability

of matching problems to diagrams, we found that subjects,

regardless of their experience in software modeling, were

capable of learning and applying the perceptual syntax with

fewer errors. The results were particularly significant in

showing that with very little training, experts (subjects

experienced only with UML diagrams and semantics

through a software engineering course at the university)

performed better with the geon diagrams. The use of a

diagrammatic notation that requires minimal training may

be particularly useful in instances where end users are

involved in the development process and therefore need to

quickly learn the diagrammatic notations.

One apparent drawback of the geon diagrams is the

amount of space required by the geon notation compared to

that required by the more conventional UML diagrams.

However, in pedagogic environments, the educator has

control over the size of diagrams, and typically a diagram

used for elucidating a given concept does not require a high

level of complexity. In certain cases the more complex the

diagram, the harder it might be for grasping the particular

concept being taught. Therefore the geon notation is well

suited for small sized problems, such as those used for

teaching a specific set of concepts, for example, design

patterns.

It is worth noting, that we cannot claim to have shown

that the learnability of geon diagrams is necessarily due to

an innate grammar of perception (although we regard this

as plausible). Alternatively, it may be that we have

acquired an ability to interpret structured objects through

years of perceptual interpretation of the world. The ease of

learning the geon diagramming notation might come from

transfer of this learned visual syntax and semantics, not

from anything that is innate. In either case, our results

provide a strong argument that perception-based diagrams

are easier to learn. The experiment described in this paper

focused on only one aspect of learning, i.e. matching

problem descriptions to diagrams. While this constitutes a

justifiable starting point for this line of research, further

experimentation needs to be conducted in order to

determine whether the geon notation can facilitate the

process of software modeling by allowing the user to create

proper abstractions of a problem. Our effort to elucidate a

larger set of geon correspondence rules for other semantic

concepts and discover which are most effective is part of

an ongoing project to find better ways of integrating

diagrams into the process of problem solving.

Finally, beyond investigating the use of geon diagrams

for modeling problems for deriving the proper software

class structures, the methods applied in this study for

developing the notations and evaluating the learnability of

their concepts will be extended to other software

engineering semantics. In particular, we are interested in

developing perceptual notations for the class of behavioral

diagrams in UML. This will involve extending the geon

notation to include dynamic (animated) representations and

developing notations for semantics such as sequences, state

transitions, and flow of activity. We hope that these

notations can then be integrated into existing modeling

environments that can then be used for facilitating

pedagogy in software engineering.

7. Acknowledgements
The first author gratefully acknowledges the support of

an NSERC PGS-B award. Discussions with Jane Fritz have

helped focus some of the ideas. The authors are thankful to

Maureen Tingley for her help with the statistical analysis of

the data.

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

- 7 -

8. References
[1] Biederman, I., Recognition-by-Components: A Theory

of Human Image Understanding, Psychological

Review, 94:2, 115-147, 1987.

[2] Chomsky, N., Aspects of the theory of syntax,

Cambridge, Mass: MIT Press, 1965.

[3] Gil, Y. and Kent, S., Three Dimensional Software

Modelling, In Proceedings of ICSE98, IEEE Press,

September 1998.

[4] Hornstein, N., and Lightfoot, D., Explanation in

Linguistics, Longmans, London, 9-31, 1981.

[5] Irani, P., and Ware, C., Diagramming Information

Structures using 3D Perceptual Primitives, ACM

Transactions on Computer Human-Interaction, 10:1,

2003.

[6] Irani, P., Ware, C. and Tingley, M., Using Perceptual

Syntax to Enhance Semantic Content in Diagrams,

IEEE Computer Graphics & Applications, 21:5, 76-85,

2001.

[7] Jackendoff, R., On Beyond Zebra: The relation of

linguistic and visual information, Cognition, 26, 89-

114, 1987.

[8] Kosslyn, S. M., Elements of Graph Design, W.H.

Freeman, New York, 1994.

[9] Marr, D., Vision: A computational investigation into

the human representation and processing of visual

information, San Fransisco, CA: Freeman, 1982.

[10]Object Management Group, Unified Modeling

Language (UML™), version 1.4, September 2001.

[11]Pinker, S., The Language Instinct, New York:

William Morrow, 1994.

[12]Pullum, G., Learnability, hyperlearning, and the

poverty of the stimulus. Jan Johnson, Matthew L. Juge,

and Jeri L. Moxley (eds.), Proceedings of the 22nd

Annual Meeting: General Session and Parasession on

the Role of Learnability in Grammatical Theory, 498-

513. Berkeley, California. 1996.

[13]Radfelder, O. and Gogolla, M., On better

understanding UML diagrams through interactive

three-dimensional visualization and animation,

Advanced Visual Interfaces, 292-295, Palermo, Italy,

May 2000.

[14]Tversky, B., Kugelmass, S. and Winter, A., Cross-

cultural and developmental trends in graphic

productions. Cognitive Psychology. 23, 515-557,

1991.

[15]Ware, C., Information Visualization: Perception for

Design, Morgan Kaufmann, 2000.

[16]Zacks, J. and Tversky, B., Bars and lines: A study of

graphic communication, Memory and Cognition, 27,

1073-1079, 1999.

Proceedings of the Eighth International Conference on Information Visualisation (IV’04)
1093-9547/04 $ 20.00 IEEE

	footer1:

