
- 1 -

The Effect of a Perceptual Syntax on the 

Learnability of Novel Concepts 

Pourang Irani 

Department of Computer Science 

University of Manitoba 

Winnipeg, MB - R3T 2N2 

Canada 

irani@cs.umanitoba.ca

Colin Ware 

Data Visualization Research Lab 

University of New Hampshire 

Durham, NH - 03824 

USA

colinw@cisunix.unh.edu

Abstract
Language theorists argue that the reason why spoken 

language is acquired so rapidly is that we have an innate 

predisposition for understanding linguistic structures.  

Theories of perception also hold that there may be deeply 

seated mechanisms for decomposing visual objects and 

analyzing them into both component parts and the 

structural interrelationships of those parts.  We propose 

the theory that diagrams that activate the mechanisms for 

structural object perception should be similarly easy to 

learn.  This builds on previous work in which we have 

developed diagramming principles based on the theory of 

structural object perception.  We call these geon diagrams.  

We have previously shown that such diagrams are easy to 

remember and to analyze. To evaluate our hypothesis that 

geon diagrams should also be easy to understand we 

carried out an empirical study to evaluate the learnability 

of geon diagram semantics in comparison with the well-

established UML convention.  The results support our 

theory of learnability.  Both “novices” and “experts” 

found the geon diagram syntax easier to apply in a 

diagram-to-textual description matching task than the 

equivalent UML syntax.  

Keywords -- Pedagogy, software engineering, software 

engineering visualization, UML diagrams, perception, geon 

theory, semantic learning, object recognition. 

1. Introduction
In software engineering, conceptualizing the design of a 

system is an important element of the entire development 

process. This activity is supported by the use of sketches 

and diagrams to capture various aspects and semantics of 

the system being modeled. These visualizations mainly 

depict entities and their inter-relationships in any given 

system. The diagrams are characterized by nodes 

representing entities, objects, or units, and by 

interconnected links representing relationships of various 

kinds. Nodes are represented using outline forms such as 

boxes and circles, and links are depicted with lines of 

different characteristics. Many forms of diagramming 

techniques have been developed for modeling software 

engineering problems such as those available through the 

Unified Modeling Language (UML) [10]. The wide spread 

use of UML for modeling software systems is a result of 

the rich set of semantics it is capable of modeling through 

its diagrams. These diagrams help software architects, 

programmers, project managers, and, more recently, end-

users communicate with one another. Although the 

semantics provided in these diagrams are general and 

complete, the choice of graphical notations appear to be 

somewhat arbitrary so that only an expert in the field can 

easily read and understand them. As a result, these 

notations may be even less effective as teaching aids. 

To some extent, learning and using software 

engineering semantics is analogous to learning semantics in 

a natural language. Chomsky’s theory that language 

understanding is based on innate deep cognitive structures 

is now widely, if not universally, held [2][11].  One of the 

main pieces of evidence for the theory is the very rapid 

acquisition of language exhibited by young infants in the 

second year of life. This accelerated learning has been 

attributed to the idea that the infant is predisposed to 

extract meaning from utterances because deep grammatical 

structure of those utterances is innately understood [4]. 

It has also been argued that there is a similar deep 

structure in vision, although the purpose of this structure is 

not communication but perception of the environment.  The 

perceptual theory of Marr contains visual primitives such 

as “blobs”, “bars”, and “terminations” [9].  These are 

interpreted according to a kind of visual syntax thereby 

enabling us to understand 3D structured objects. 

Jackendoff [7] argues that the rules of visual structure are 

similar to verbal language rules.  He further proposes that 

there are cognitive “correspondence rules” between the 

visual meaning of a 3D structure and linguistic structure.   

This provides a natural link between visual structure and 

linguistic structures that may help explain why certain 

kinds of diagrams are easy to understand.  Others have also 

argued that mapping information representations into the 

appropriate perceptual representations should make the 

information easier to understand [8][14][15][16]. 
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What has not been previously addressed is the 

implications from Jackendoffs theory that perception based 

visual syntax and semantics should also support accelerated 

learning.  In our previous work [5][6] we have used the 

theories of Biederman and Marr to create rules for the 

construction of diagrams. We have shown that such 

diagrams are easier to remember and analyze than diagrams 

with a non-perception based syntax.  Here we argue that 

such diagrams should be easier to learn and apply to 

matching of verbal descriptions to corresponding diagrams. 

Note, this is different from our previous work in which we 

showed a) that such diagrams could be easily recognized as 

having been seen before [5] and b) that the syntax of the 

diagrams could be remembered [6]. Since our argument is 

based on the perceptual validity of our diagrams we review 

structural object recognition theory and the set of 

diagramming conventions that we have derived, based on 

the theory. 

2. Structural Object Recognition Theory 
Biederman and his co-workers [1] elaborated the 

theories of structural object recognition proposed by Marr 

[9]. According to Biederman’s theory, object recognition is 

accomplished in a hierarchy of processing stages. Objects 

are initially decomposed into edges, then into component 

axes, oriented blobs, and vertices.  Extracting the three-

dimensional primitives such as cones, cylinders and boxes 

(geons) follows this. Biederman defines a family of 36 

geons that are derived from image properties on the 

silhouette contours in the 2D plane, by symmetry, 

parallelism, and curvature. 

The extraction of the structure that specifies how the 

geon components interconnect follows the decomposition 

stage. This structure (or skeleton), known as the geon 

structural description (GSD), consists of geons, their 

attributes, and their relations with adjacent geons. It is 

primarily the structural description that contributes to 

viewpoint invariance, i.e. if two views of an object result in 

a similar GSD, then they should be treated as equivalent by 

the object recognition system. Finally, object recognition is 

achieved. Figure 1 illustrates a subset of geons and some 

simple objects constructed with them. 

Figure 1. (a) Geons are object primitives in Biederman's theory.  (b) 

When connected in a particular structural relationship they can define 

an object. (c) Different connections of the same geons can result in 

different objects as the figure shows geons 5 & 7 can give two different 

objects.

3. Perceptual Semantics 
The structural description does not only consist of 

topology but includes a set of connection rules between 

geons. As illustrated in Figure 1, identical geons with 

different connectivity between them can define two very 

distinct objects (Figure 1.c). Thus in defining diagrams we 

need perceptual rules for connection that extend beyond 

topology. If we can understand these rules then we can map 

the semantics of diagrams onto geon structures in ways that 

will make diagrams more easily interpreted. 

Biederman suggests that any given GSD is composed of 

a modest set of readily discriminable relations among 

geons. These relations can be determined from any 

viewpoint, preserve their two-dimensional silhouette 

structure, and are categorical [1]. The following set of 

relational rules is based on the set proposed by Biederman:  

RR1: Similarity - Shape of primitives plays a 

primary role while color and texture are surface 

properties of geons that play a secondary role in 

entry-level classification. 

RR2: Verticality - Geon A can be ON-TOP-OF, 

BOTTOM-OF or BESIDE geon B.  

RR3: Centering - Objects can be connected on or 

off-center. For example, human arms are off-

centered while a human head is connected at the 

center-top of the torso.  

RR4: Connection relative to elongation - Most 

geons are elongated, and connecting to the long 

face versus the short face has important semantic 

implications.  

RR5: Relative size - One geon is larger or smaller 

than another, e.g. legs vs. arms. 

RR6: Containment - An important perceptual task 

is identifying objects enclosed within larger 

components or PART-OF relationships.  

RR7: Multiples – An exact amount of counters is 

not necessary to identify multiples. 

We identify the image in Figure 2 with that of a human 

body by recognizing the connections and relationships 

defined by rules RR1 – RR7. For example, the head is on-

top-of (RR2) the torso. The arms are connected to the long 

face of the elongated geon representing the torso (RR4) and 

the legs are connected to the short face of the torso geon. 

Legs are relatively larger than arms (RR5). A belly is part-

of the torso (RR6). Multiple fingers are identifiable by 

means of showing several (RR7). 

Proceedings of the Eighth International Conference on Information Visualisation (IV’04) 
1093-9547/04 $ 20.00 IEEE 



- 3 -

Figure 2. Relational rules extracted by the visual system for 

identifying a human ‘object’. 

4. PERCEPTUAL SYNTAX 
Reviewing our argument, Geon Diagrams enable us to 

map both data structures and certain kinds of semantics 

into a kind of 21/2 D diagramming convention.  Figure 3 

illustrates the relationships between deep linguistic and 

visual structures to diagram semantics. Similarly to 

Jackendoff’s definition of “correspondence rules” between 

deep innate linguistic structures and semantics, we created 

in previous work [6] a set of “geon correspondence rules” 

that link Biederman’s deep visual structures to 

diagramming semantics. According to Jackendoff’s theory 

these kinds of diagramming structures should make 

accelerated learning possible, similar to the accelerated 

learning that occurs with verbal language.    

Figure 3. Theoretical concepts contributing to the correspondence 

rules for geon diagrams.   

In our previous work, the syntax of Biederman’s 

relational description rules were extended to include a 

mapping of semantics to data elements [6]. We focused on 

semantics found in software modeling diagrams 

specifically those in the category of UML class diagrams: 

1-generalization ("is-a"), 2-aggregation ("has-a"), 3-

dependency, 4-multiplicity ("many-of"), and 5-relationship 

strength. We applied the relational rules (RR1-RR7) 

defined above to construct a set of representations (or 

“geon correspondence rules”) for each of the five 

semantics.  

We suggest that certain types of "naturally" occurring 

“geon correspondence rules” can be used to map diagram 

semantics that will facilitate their comprehension. Here we 

describe the subset relevant to software engineering 

semantics: 

GCR1: Generality, Inheritance - Geons with same 

structural geometrical composition (or shape) can 

be used to denote objects of the same kind 

(derived from RR1). 

GCR2: Support, Dependency - If geon A is on-

top-of geon B this suggests that geon A is 

supported by geon B.  In addition gravity 

determines that structures are perceived as either 

being stable or unstable (derived from RR2).  

GCR3: Enclosure, Aggregation - shows that Geon 

A is contained within Geon B. Syntactically this 

can be shown as an internal component attached to 

the same primitive geon on the outside (derived 

from RR6). 

GCR4: Ordinality, Multiplicity - to show multiple 

associations between two entities a series of 

attachments can best denote such a relationship 

(derived from RR7). 

GCR5: Strength of connection - Using a thicker 

connection as opposed to a thinner one can denote 

a stronger relationship between two entities 

(derived from RR5). 

We evaluated the “geon correspondence rules” defined 

above and from these produced the following perceptual 

syntax for each of the five semantics. We summarize the 

resulting syntax in Figure 4 (details are provided in [6]). 

Figure 5 illustrates an example of how these rules 

describe related entities of a Space Center. The Space 

Center has-many Buildings (containment with multiple 

connecting lines), and has-many Spacecraft. A Gas Station 

and a Lab are two different types of buildings (same shape 

primitive as Building). The Gas Station has Fuel 

(containment with connection). Shuttles are also a type of 

Spacecraft (same shape primitive). Shuttles have-many 

Wings, and has-one Engine. The Engine depends on Fuel 

(depicted on-top-of the Fuel entity). 
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Generalization Objects of the same kind 

can be represented using 

same shaped primitives.

A is-a B (GCR1). 

Dependency This relationship is best 

represented by showing 

the dependent on-top-of

the depended. A 

depends-on B (GCR2). 

Aggregation To show that one entity is 

composed of another can 

be shown using 

containment. B is

contained in A (GCR3). 

Multiplicity This attribute of a 

relationship can be 

depicted using multiple 

connecting lines

(GCR4).

Relationship Strength Relatively thicker 

connections can be used 

to show stronger 

relationships (GCR5). 

Figure 4. Perceptual notation for software modeling semantics based 

on “geon correspondence rules”.

We should note here that the emphasis of the geon 

diagram syntax is mostly placed on the “correspondence 

rules” described above and not simply on its 21/2D

representation. The additional dimension of the geon 

diagram is not exploited for enriching the display by 

superimposing 2D diagrams such as in [3] or for combining 

dynamic and static representation such as in [13], but 

instead for highlighting the connectivity between the 

different entities in a diagram.  

Figure 5. Representing some related entities in a system describing a 

Space Center.

In our previous study we compared the comprehension 

of the perceptual syntax to that of UML class diagrams 

containing the chosen semantics. Subjects unfamiliar with 

either notation were asked to describe geon and UML 

diagrams based on multiple-choice answers. The subjects 

made almost five times as many errors in identifying the 

relationships in the UML diagram (53.6%) in comparison 

to the geon diagram (11.5%) [6].  

While our previous results showed that the geon 

correspondence rules were easier to recall and more 

intuitive than UML correspondence rules, they did not say 

anything about their ability to help people match a diagram 

to a problem domain.  The remainder of this paper 

describes the experiment that we conducted to compare 

how easily students could learn and apply our diagram 

semantics compared to UML diagram semantics. To find 

out if our correspondence rules helped at this level, we 

required subjects to match diagrams to informally written 

descriptions of sample problem models. 

5. Experiment
We hypothesized that it should be possible to learn, 

recall and apply diagram semantics, more accurately to 

diagrams created with the perceptual notation presented 

above in comparison with an equivalent UML graphical 

notation. We measured the error rate for subjects 

attempting to match diagrams to informal written 

descriptions of a set of entities and their relationships 

modeling various real-world problem domains. 

5.1 Method for the Experiment 
Diagrams. Five problem descriptions incorporating the 

semantics of generalization, dependency, one-to-many, and 

aggregation were constructed. The semantics in the 

problems were clearly presented using their common 

terminology. For example, to describe related entities of a 

neighborhood the following text was provided: "The 

neighborhood depends on the city for clean water, sewage 

and garbage disposal. Many families live in this 

neighborhood. The neighborhood has a school and a 

pharmacy. It also has several types of stores: a grocery 

store, a convenience store, and a bakery." The problem 

descriptions were created with a comparable number of 

relationships. For each problem description, a set of four 

UML diagrams and a set of their four equivalent geon 

counterparts were created. Only one of the four diagrams 

accurately depicted the relationships in the corresponding 

problem description. The remaining three diagrams mis-

represented several relationships. All four diagrams in each 

set were randomly numbered from 1 to 4. The geon and 

UML diagrams corresponding to the problem description 

given above are shown in Figure 6.  
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Figure 6. Sample UML and equivalent Geon diagram for representing 

entities of a neighborhood.

Training. All the subjects were collectively given an 

hour-long instruction on the various semantics and their 

respective notations. The training included an introduction 

to object oriented modeling, a description of each semantic 

with its UML and geon diagram notation, and sample UML 

and geon diagrams of complete systems with objects and 

their relationships. The emphasis during the training was 

placed on the concept underlying each semantic. One slide 

was dedicated to the description of each semantic and 

included the notation of both diagramming systems, first in 

UML and then in geon. Equal amount of time was spent 

describing each type of notation. There were 13 slides all 

together. Figure 7 is a sample slide used for describing the 

concept of inheritance. After describing each individual 

semantic and its associated notation, complete UML and 

geon diagrams illustrating the use of the semantics were 

presented. The subjects were asked to return a week later 

for the experiment. At the testing stage they were tested 

individually. 

Figure 7. Sample slide used for explaining the concept of inheritance. 

Task. For this experiment we used a diagram-to-

problem matching paradigm. After reading each problem 

description, the subject was asked to match one of the four 

diagrams created for that problem. The subject marked on 

the hand-out sheet the number of the matching diagram. 

The problem descriptions were available to the subjects 

while reading the diagrams, and so they could occasionally 

consult the description. Therefore we were not testing 

subject memory of a given problem text.  

Subjects were restricted to two minutes for matching a 

diagram to a problem description. A within-subject design 

was used where half the subjects matched the UML 

diagrams first and the other half matched the geon 

diagrams first.  

Twenty-six paid volunteers participated in the 

experiment.  Twelve subjects had previous exposure to 

UML diagrams through a third year software engineering 

course (experts) offered by the Faculty of Computer 

Science at the University of New Brunswick. The other 

fourteen subjects had never been exposed to UML or 

software engineering semantics (novices).  

5.2 Results of the Experiment 
Results are summarized in Table 1, which reports error 

rates by level of experience and type of diagram. The 

results are obtained by averaging each subject's scores. A 

One-Sample T-Test (or Sign Test) statistically shows that 

subjects performed better with the geon diagrams (p < 

0.0001). A Two-Sample T-Test (or Mann-Whitney Test) 

shows that subjects' level of experience is not a relevant 

factor in comparing the performance between the two types 

of diagramming notation (p-values are 0.704 and 0.425 

respectively).

Proceedings of the Eighth International Conference on Information Visualisation (IV’04) 
1093-9547/04 $ 20.00 IEEE 



- 6 -

 Geon UML 

Novices 22.3% 44.3% 

Experts 2.9% 25.9% 

Combined 14.6% 36.2% 
Table 1.  Average error rates of matching Geon and UML diagrams to 

problem descriptions. 

The most striking result is the performance of expert 

subjects with respect to the interpretation of Geon diagrams 

(error rate 2.9%). This suggests that although subjects may 

be well versed in UML, they still preferred and performed 

better in interpreting the Geon diagrams. These subjects 

also performed better than the novice subjects with respect 

to both the Geon and UML scores. Overall, combining the 

results we can say that there were more than twice as many 

errors in analyzing and matching the UML diagrams than 

the Geon diagrams.  

6. Conclusion
In this paper, we described an experiment that 

evaluated the learnability of software engineering (in 

particular object-oriented) concepts with diagrams created 

using perceptual structures. These diagrams were created 

using a set of “geon correspondence rules” that were 

constructed from deeply ingrained perceptual structures 

used in structural object recognition [ ].  In this paper we 

mapped the semantics used for object-oriented class 

modeling onto the set of “geon correspondence rules” and 

compared their learning expressiveness to that of the de

facto standard diagramming notations provided in UML. 

The results obtained from the experiment described 

here, show that the mapping of software engineering 

semantics onto “geon correspondence rules” can be used as 

guidelines for making effective diagrams. In particular we 

see that the geon diagrams are well suited for learning a 

subset of object-oriented concepts such as those necessary 

for modeling class structures. In comparing the learnability 

of matching problems to diagrams, we found that subjects, 

regardless of their experience in software modeling, were 

capable of learning and applying the perceptual syntax with 

fewer errors. The results were particularly significant in 

showing that with very little training, experts (subjects 

experienced only with UML diagrams and semantics 

through a software engineering course at the university) 

performed better with the geon diagrams. The use of a 

diagrammatic notation that requires minimal training may 

be particularly useful in instances where end users are 

involved in the development process and therefore need to 

quickly learn the diagrammatic notations. 

One apparent drawback of the geon diagrams is the 

amount of space required by the geon notation compared to 

that required by the more conventional UML diagrams. 

However, in pedagogic environments, the educator has 

control over the size of diagrams, and typically a diagram 

used for elucidating a given concept does not require a high 

level of complexity. In certain cases the more complex the 

diagram, the harder it might be for grasping the particular 

concept being taught.  Therefore the geon notation is well 

suited for small sized problems, such as those used for 

teaching a specific set of concepts, for example, design 

patterns. 

It is worth noting, that we cannot claim to have shown 

that the learnability of geon diagrams is necessarily due to 

an innate grammar of perception (although we regard this 

as plausible).  Alternatively, it may be that we have 

acquired an ability to interpret structured objects through 

years of perceptual interpretation of the world.  The ease of 

learning the geon diagramming notation might come from 

transfer of this learned visual syntax and semantics, not 

from anything that is innate.  In either case, our results 

provide a strong argument that perception-based diagrams 

are easier to learn.  The experiment described in this paper 

focused on only one aspect of learning, i.e. matching 

problem descriptions to diagrams. While this constitutes a 

justifiable starting point for this line of research, further 

experimentation needs to be conducted in order to 

determine whether the geon notation can facilitate the 

process of software modeling by allowing the user to create 

proper abstractions of a problem. Our effort to elucidate a 

larger set of geon correspondence rules for other semantic 

concepts and discover which are most effective is part of 

an ongoing project to find better ways of integrating 

diagrams into the process of problem solving. 

Finally, beyond investigating the use of geon diagrams 

for modeling problems for deriving the proper software 

class structures, the methods applied in this study for 

developing the notations and evaluating the learnability of 

their concepts will be extended to other software 

engineering semantics. In particular, we are interested in 

developing perceptual notations for the class of behavioral 

diagrams in UML. This will involve extending the geon 

notation to include dynamic (animated) representations and 

developing notations for semantics such as sequences, state 

transitions, and flow of activity. We hope that these 

notations can then be integrated into existing modeling 

environments that can then be used for facilitating 

pedagogy in software engineering. 
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