Software Visualisation Techniques Adapted and Extended
for Asynchronous Hardware Design

Lilian Janin, Doug Edwards
School of Computer Science
The University of Manchester
Manchester M13 9PL
{lilian.janin, doug.edwards}@ cs.man.ac.uk

Abstract

Asynchronous circuit design shows many similari-
ties with software design. This is due to the modular
construction style associated with asynchronous cir-
cuits, where each asynchronous module can be
designed as a standalone object communicating with
other modules. We propose a visualisation system for
asynchronous circuit design tools, based on clustered
graph visualisation and coordinated views. The novelty
of our approach is to apply classical software visuali-
sation techniques to a hardware environment and take
advantage of properties specific to our asynchronous
design flow. This system is based on a control and data
flow graph representation of the asynchronous circuit
compiled from a high-level description by a syntax-
directed transparent process and transferable to the
final hardware circuit by a direct synthesis process.
Compared to software compilation flows, this transpar-
ent design flow offers opportunities for visualisation,
with representations at different stages being easily
mapped onto each other to combine their visualisation
qualities. Each representation also exhibits properties
based on some physical attributes of the final hardware
circuit, allowing us to render some abstract properties
on top of real-world-based ones. This paper shows how
the handshake circuit graph is used as the underlying
structure onto which properties extracted from other
structures are mapped, and then how this structured
graph is used as the central piece in a coordinated
views environment. These visualisation techniques
have been exercised by designers optimising the design
of a fully asynchronous ARM processor.

Keywords: Software visualisation, coordinated views,
program comprehension, asynchronous circuits

1. Introduction

Asynchronous circuits are electronic systems able
to operate without global synchronisation between their
different parts. They are usually designed as sets of stan-
dalone modules communicating and synchronising
themselves locally with a restricted set of neighbours,
forming a control and data flow graph. The aim of the
visualisation system described in this paper is to provide
a visualisation environment for asynchronous circuit
tools, able to be used in three situations: first, as a pro-
gram comprehension environment, able to represent a
large circuit at different scales with the appropriate
communications between the viewed objects. Second,
as a debugging environment, able to help the designer
locate asynchronous-specific bugs such as deadlocks.
And third, as an educational environment, able to depict
step by step the communication protocols between
modules or the parallel activity in simple circuits.

One of the hardware description languages for
describing asynchronous circuits at a high-level is the
Balsa language [1]. The compilation of a Balsa descrip-
tion into a hardware circuit (a process called synthesis)
is based on the handshake circuit intermediate represen-
tation, which offers excellent opportunities for visuali-
sation:

* Handshake circuits are graphs, very amenable to vis-
ualisation.

* Balsa is based on a syntax-directed compilation,
where source code constructs are transparently trans-
lated into similar components in the handshake cir-
cuit, themselves translated into sets of hardware
logic. The structure of the final hardware and the in-
termediate handshake circuit are very similar to the
original description’s structure. This is an excellent
opportunity for coordinated views and multi-level
analysis.

* The original Balsa description, the best reference to
the designer’s mental image of his circuit, has a well
defined, precise and hierarchical structure made of
nested procedures and block statements. This pro-
vides invaluable information for building an efficient
representation for circuit comprehension.

» Storey [13] defines a visualisation as coherent if the
maintainer can construct from the given visualisation
a mental model which corresponds to something in
the real world. The advantage of visualising reverse
engineered code of a VLSI design is that the code de-
scribes something concrete, the electronic circuit be-
ing built. It is therefore possible to use this real-world
structure as an underlying base, and either transfer
this structure onto the other structures being visual-
ised, or use other sources of information to reshape
(for example by clustering) the real-world structure.

This paper explains how a visualisation system
based on the handshake circuit paradigm can take
advantage of these opportunities for displaying fine-
grained parallelism efficiently and for constructing an
environment suitable for program comprehension,
debugging and education purposes.

First, the handshake circuit graph is used as the
underlying structure onto which properties extracted
from other structures are mapped. Then, this structured
handshake circuit graph, exposing the properties of the
different structures, is used as the central piece in a coor-
dinated views environment. These techniques are aimed
at visualising large circuit designs (e.g. processor cores)
and therefore large amounts of information.

2. Related work

The visualisation system presented in this paper is
based on two main techniques: clustering information
by merging multiple sources into one common structure
and using coordinated views for information explora-
tion. Other visualisation systems based on these tech-
niques have been studied for software visualisation.
This section introduces those related to this research.

2.1. Data clustering by organising knowledge
from multiple sources

Clustering is the process of discovering groupings
or classes in data, based on a chosen semantics. Cluster-
ing techniques have been referred to in the literature as
cluster analysis, grouping, clumping, classification, and
unsupervised pattern recognition [2, 8]. Two forms of
clustering can be distinguished: structure-based cluster-
ing, which refers to clustering that uses only structural
information about the graph, and content-based cluster-

ing, which uses the semantic data associated with the
graph elements to perform clustering. An advantage of
structure-based clustering is that clusters retain the
structure of the original graph, which can be useful for
user orientation in the graph itself. However, this class
of methods often leads to the clustering of elements
poorly related in their properties. Content-based cluster-
ing can yield groupings which are more appropriate for
a particular application by using application-specific
data and knowledge [9, 11].

By far the most common clustering approach in
graph visualisation is to find clusters that are disjoint or
mutually exclusive, as opposed to clusters that overlap
(found by a process called clumping). Disjoint clusters
are simpler to navigate than overlapping -clusters
because a visit of the clusters only visits the members
once. It should be noted, however, that it is not always
possible to find disjoint clusters, for instance in the case
of language-oriented or semantic topologies [6]. This is
one of the strengths of the techniques presented here
using Balsa.

If clustering is performed by recursively applying
the same clustering process to groups discovered by a
previous clustering operation, the process is referred to
as hierarchical clustering [8]. Hierarchical clustering
can be used to induce a hierarchy in a graph structure
that might not otherwise have a hierarchical structure.
Michaud et al. have described Shrimp [7], which gathers
various sources of information together (source code
artifacts and relationships, architectural abstractions,
documentation and history information, metrics and
analysis information) and visualise them together. The
difference between their work and the one presented
here is that they limit their study to static information,
while dynamic simulation data is also used here to
deduce some clusters. Hierarchical clustering is applied
here to the originally flat handshake circuit.

2.2. Information exploration with coordinated
views

In VLSI design, designers are used to working with
raw data: source files opened in a standard editor, simu-
lation traces displayed as wave forms, etc. Keeping
these standard views is important, and the only way to
bring designers to use new visualisation techniques is to
provide them as optional but easily accessible elements.
One way to achieve this is to use coordinated views in
order to link well-understood items from the standard
views to structures coming from the new visualisation
techniques.

Favre [3] describes such a collection of views rep-
resenting the same information in different manners. In

his research, a component-based software is represented
by three techniques: first, by representing the network
graph of its components. Then, by displaying a list
structure containing the object-oriented hierarchical
structure. And finally, by showing the source code.
Other views are also available to display either the inter-
nal representation or the external representation of a
selected component. The drawback of this study is the
lack of communication between views, restricted to the
selection of a component.

When dynamic information is visualised and vari-
ous views are representing the program’s state during a
given timestep, these views need to be synchronised to
represent the same timestep. The Vista architecture [14]
is an example of such an organisation where every view
is connected to, and controlled by, a server process
(called Visualization Manager). In this architecture
however, views do not send any feedback to the visual-
ization manager. They therefore do not communicate
with each other either.

Software debuggers like DDD [15] or VIPS [12]
follow the same idea of sharing the time variable
between views: the source code view indicates the cur-
rently executed line, while another view can show the
current value of some data. But DDD goes further by
adding some real communication between views: from
the source code view, one can select a variable and
choose to add it in the other view for tracing. The other
way around, other views such as the stack view and the
thread view can send some feedback and cause changes
in the source code view.

The best reference about collaborating views is
Shrimp [7], showing some real similarities with this the-
sis’s work. Four sources of information are collected
and represented in multiple views, some of them being
network graphs representing the structure of the system.
They implement a technique called control integration,
which implies the ability for one tool to control another
tool, either by directly activating a functionality or by
event notification. The difference with this work is that
Shrimp is targeted at exploring static information. The
execution of the visualised Java program is not repre-
sented.

3. Handshake circuit visualisation

Handshake circuits are used as an intermediate for-
mat during the Balsa synthesis process. The difficulty
with handshake circuits compiled from Balsa descrip-
tions is their large size: it is not uncommon for hand-
shake circuit graphs to have thousands of edges and
vertices, usually referred to as “huge graphs” in the lit-
erature. Specific methods for structuring the graph

before visualisation are therefore needed. Trying to
reproduce the designer’s mental image of his circuit is
generally a good starting point.

The following references to the designer’s mental
image can be obtained from the Balsa development
flow:

e The written Balsa source code.

* The generated handshake circuit — a good designer
will be able to anticipate the generated circuit when
writing Balsa code.

* The execution/simulation trace: During the design of
a circuit, the designer always anticipates the amount
of information flowing on the different channels/bus-
es and bases his circuit’s architecture on this infor-
mation.

* The visualisation software interface with the user:
Human interaction can be used to designate impor-
tant regions of the circuit and to correct software
guesses about the architecture, etc.

All these elements coming from the designer’s
mind to create the circuit are gathered together to struc-
ture the raw handshake circuit graph, hopefully making
for an intelligible representation.

3.1. Static multiscale visualisation

Static visualisation is based on clustering tech-
niques to structure large handshake circuit graphs into
more manageable groups, by analysing and combining
the sources of information available: the Balsa source
code, the compiled handshake circuit and the simulation
trace.

Combining multiple sources of information offers
the following benefits:

¢ This information can be used to cluster some compo-
nents from one source by using the information from
another source. Clustering eventually allows the
number of elements to be processed at a time to be re-
duced by processing them by group instead of indi-
vidually.

* Sources usually used to visualise at different scales
are combined to make a graph viewable at any scale.

* More clues are available to reconstitute the design-
er’s mental image of the circuit.

A static view of the handshake circuit is constructed
from the hierarchical graph obtained after clustering.
This graph view enjoys the above-mentioned benefits.

Starting from the raw handshake circuit graph, this
section shows how clusters of handshake components
can be formed by using other related sources of infor-
mation and how they can be used for understanding and

debugging asynchronous circuits, in particular from the
point of view of concurrency visualisation.

These methods correspond to static allocations of
the groups: although they may need some information
taken from the simulation in order to be determined, the
clusters do not change dynamically during the simula-
tion.

3.1.1. Description-based clustering. The network of
handshake components is derived from the high level
description of the circuit in Balsa, which itself is organ-
ised by structural information such as procedures, func-
tions, instruction blocks and local variables. Given the
close relationship (due to transparent syntax-directed
translation) between the Balsa description and the gen-
erated handshake circuit, it is logical to try to transfer
this high-level structure onto the lower-level handshake
circuit in order to partition this huge network into more
manageable chunks.

A Balsa description contains procedures and local
sub-procedures inside these procedures (as well as the
other local structures: functions, instruction blocks and
local variables), resulting in nested groups and sub-
groups in the graph of the handshake circuit. Experi-
ments on large circuits show that functional grouping
applied to procedures and functions usually divides a
graph of n elements into groups of about ./» elements.
Reasonably large networks of ten thousand handshake
components are therefore divided into groups of about
hundred elements. However, this number is an average:
many groups are smaller than a hundred elements, while
a few groups can reach thousand items or more, which
is still too large for an efficient visualisation.

Some experiments have been made about using
every level of instruction block (i.e. blocks of instruc-
tions contained between language keywords, such as the
division: if <block> then <block> else <block> end) in
the clustering process. This unfortunately results in a
huge, and thus difficult to manage, quantity of nested
groups where the original circuit gets divided into small
groups of usually less than five elements: the clusters
themselves are wasting the entire visualisation area and
are as difficult to organise as the original flat graph. This
technique has also been applied while limiting the clus-
tering depth or by setting a minimal number of elements
per group, but with limited success.

In practice, groups based on procedures appear to
be the most useful ones during visualisation. These
groups improve the readability of the graph in a general
manner by highlighting a structure to which the
designer is familiar. This is an important part of the
mental image reconstitution.

3.1.2. Circuit-based clustering. Circuit-based cluster-
ing uses the handshake circuit information to group
components together. Due to the transparent compila-
tion of Balsa, the information present in the handshake
circuit can always be found in more or less the same
form in the original Balsa description, but some charac-
teristics are better reflected by handshake components
and channels than others. Three types of clustering
methods are exposed here, the first one being also
detectable at the description level, and the last one being
highly specific to handshake circuits.

Design pattern clustering: The term design pattern is
used here with the same meaning as in object-oriented
software development. It describes a commonly-recur-
ring structure of communicating components that solves
a general design problem within a particular context [4].

This idea of exploiting design patterns for asyn-
chronous circuit design with Balsa has not been thor-
oughly exploited yet. However, in the context of thread
visualisation, one particular design pattern appears in
every medium-to-large circuit. It describes the way con-
current data-processing asynchronous blocks are
designed in order to be initialised when the circuit is
switched on and subsequently run forever, processing
inputs and generating outputs. Each block is made of an
initialisation part followed by either some calls to other
blocks following the same pattern, or a forever loop con-
taining the functional body of the module, as repre-
sented in Figure 1. The successive blocks are used to
perpetrate the activation signal down to the various
functional bodies, and are constituting an activation
tree. Functional bodies executed inside their forever
loops are at the leaves of the tree. Variable and channel
initialisations are also at the leaves of the tree, but typi-
cally have a less important role.

When compiled into a handshake circuit, this pat-
tern appears as recognisable sets of components, shown
in Figure 1b:

* Both the pattern_tree and the pattern_leaf groups are
starting with a 2-output Sequence handshake compo-
nent, whose first output activates a Concur compo-
nent used for variable and channel initialisations.

* In the case of the pattern_tree group, the second out-
put is used to propagate the activation signal to the
next modules via a Wirefork handshake component.

* In the case of the pattern_leaf group, the second out-
put is connected to a Loop handshake component
(forever loop) controlling the module’s functional
body, and processing input/outputs.

When detected as being part of a pattern, the sets of
components can be treated specifically. In the current

procedure Pattern_tree (inputs; outputs) is
local -- local variable definitions

begin
-- parallel initialisation of local variables and channels
variable := 0 ||
channel :=0;

-- sequentially followed by sub-procedure calls
SubProcedureia (inputs, outputs) ||
SubProcedure1b (inputs, outputs)

end

procedure Pattern_leaf (inputs; outputs) is
local -- local variable definitions
begin
-- parallel initialisation of local variables and channels
variable := 0 ||
channel :=0;
-- sequentially followed by forever loop
loop
-- code executed forever, waiting for inputs,
-- processing it, and sending result to outputs
end
end

a. Balsa description level

Pattern tree groups (PTG)
Pattern leaf group (PLG

. initialisations PLG

|
|
I
|
I
|
var/chan) functional I

initialisations ; module body |

\
, . var/chan
!, initialisations | .
| :

'"PTG: | PLGI '"PLG

inputs outputs
IPLG| |PLG|

b. Handshake circuit level

Figure 1. Circuit initialisation design pattern

application, the components part of the initialisation and
of the forever_loop sets are clustered and the wirefork
tree can be shown in the handshake circuit in a different
colour. The initialisation clusters and the wirefork tree
are clearly only used during the initialisation phase of
the circuit. The ability to make them invisible during the
rest of the simulation accounts for a better readability of
the graph.

Parallel composition clustering: Preparing for the
visualisation of concurrent threads at the handshake cir-
cuit level involves handling those handshake compo-
nents responsible for the creation of new threads: Fork,
Wirefork and Concur components. Their roles are iden-
tical: forking one thread into n new threads. Only their
implementations differ: Wirefork components do not
expect the newly created threads to ever finish, while
Fork and Concur components differ in the way they
interleave the return-to-zero (RTZ) phase present in
some asynchronous handshake protocols (Fork compo-
nents wait for every thread to acknowledge its comple-
tion before sending every RTZ request at once, while
Concur components send the RTZ request to each
thread individually directly after it acknowledged).

In practice, unfortunately, clustering threads by

starting from the components that created them results
in a degradation of the readability of the visualisation.
This is explained by the programming style of the
designers, who use parallel statement most of the time
in one of these two situations:

* cither the newly created block contains only a few
statements, in which case it is inlined between other
code statements,

 or the newly created block is larger than a few state-
ments, in which case it is described as a procedure.
Almost never a large block is kept inlined in a par-
allel composition statement. For this reason, clustering
these threads results either in clustering only a few com-
ponents, or in clustering an already clustered procedure.

Variables clustering: Two functional groupings pro-
viding a better graph readability concern variables.
The first situation is when a Balsa variable is com-
piled into one Variable handshake component. Variable
components have, by design, only a single write port.
When the Balsa code contains more than one writer to
the same variable, a tree of CallMux (data merges) com-
ponents is used to combine writers from all sources into
one. In the visualisation, this tree has no reason to
belong to the same group as one of the writers. It should

then appear next to the Variable component, hence the
grouping. The result of this grouping does not have any
significant consequence on the number of groups and
the number of components inside groups. However, the
components grouped together by this method have a
strong relationship, which highly improves the visuali-
sation, as such groups may transparently be reduced to
single elements representing variables with many write
ports.

Sometimes, Balsa variables are distributed into
more than one Variable component. This is for proc-
esses needing only a few bits of a variable to avoid read-
ing the whole variable (and therefore holding this
resource). When the whole variable is required, a tree of
Combine components is used to reconstitute the data
from its parts. In the same way as with the writers’ tree,
this tree of components may be clustered with the Vari-
able component for increased readability.

3.1.3. Simulation-based clustering. Simulation-based
clustering uses the simulation trace to determine a rela-
tionship score for each couple of components, based on
the amount of control and data sent between these com-
ponents during the simulation. This score, proportional
to the activity in the handshake channels, is used as a
weight for the corresponding handshake circuit graph’s
arcs. The more activity in a channel during simulation,
the shorter the associated arc and the closer the linked
components. By using graph layout algorithms able to
take weights into account, this technique groups the
communicating components together without any
explicit clustering. This results in a loose clustering
scheme where highly communicating components can
still be taken apart by other predominant clustering
techniques.

As with every trace-based technique, this technique
is dependent on the test data used during the simulation
(e.g. in the case of a Balsa-described processor being
simulated, the trace will be dependent on which appli-
cation is chosen to run on the simulated processor). The
designer has the choice of using this clustering tech-
nique or not. Sometimes, an unbiased visualisation may
be more appropriate than a clearer but biased visualisa-
tion.

3.1.4. Additional user specifications. Additional user
specifications are largely used in algorithm visualisa-
tion, where the original description often needs to be
instrumented with visualisation instructions. This
makes the process of representing the designer’s mental
image much easier, as the designer himself provides the
instructions. However, it also requires the designer to
understand the code before visualising it, making this

technique infeasible for large systems or tasks involving
program discovery.

This present research is aimed at automating as
many tasks as possible in order to relieve the designer
of some repetitive interactions. However, first experi-
ments concluded that, although graphs generated using
the above-mentioned techniques are appropriately
structured, designers would have chosen different sym-
bols to represent specific electronic components. For
example, the ALU (arithmetic logic unit) inside a proc-
essor is always represented by a well-known symbol,
which is of course impossible for a software to guess
without any prior knowledge.

An interface for designers to teach this knowledge
to the software is therefore needed. One possibility is to
let designers assign shapes to procedures. This is useful
but only manageable for small designs or small numbers
of shape-assigned procedures. This also becomes
quickly a tedious process when designers decide to
assign a shape to every type of buffers or multiplexers
they described as distinct procedures.

3.1.5. Multiscale structure. As stated above, clustering
techniques not only have the beneficial effect of separat-
ing a huge number of handshake elements into fewer
manageable groups. They also have the important con-
sequence of transferring the structure of each analysed
source of information onto the handshake circuit. The
resulting hierarchical structure exhibits the advantages
of each of the source structures.

One important implication comes from the fact that
different sources of information are usually used to vis-
ualise the structure and behaviour of a circuit at different
scales (or level of detail): the hierarchy of Balsa proce-
dures gives a high-level representation of the descrip-
tion, data and control flows can show an intermediate
level, while traced events happen on handshake chan-
nels at a low-level. Therefore, the structure obtained
after clustering can be visualised at any scale and always
shows useful information: from the global view of the
circuit to the lowest level, the main components of the
circuit can be distinguished, followed by the (some-
times recursive) high-level implementations of the mod-
ules, and on until the detailed implementation of the
modules, precise enough to visually understand their
behaviour.

3.2. Dynamic visualisation

The previous section introduced techniques to build
a static representation of the circuit structure by cluster-
ing the components of the circuit in an easily readable
way. Based on the simulation trace, the role of the ani-

time 10 time 11

time 12 time 13 time 14

procedure main (input inp:byte; output out:byte) is

variable X : byte

Figure 3. Step by step animation of a hypothetical parallel circuit

mation module is to add further information to the static
picture in order to represent data and control flows, and
the changing activity of the components during simula-
tion.

This is achieved by marking the handshake circuit
graph with colour annotations: each component or
channel state is represented by a colour, and the circuit
is animated as the simulation system updates the states
of the components and channels.

Figure 2 shows a step-by-step animation of the
activity present in a very small part of a processor: a 1-
place buffer used to store a value in a buffer and transmit
it to the next processing stage. The associations between
handshake channels and pseudo-source code are repre-
sented, thus indicating the meaning of each coloured
event. In this animation, a 2-phase protocol is used
where requests are represented by a thick red (light gray
on black&white prints) highlighting scheme and

acknowledgments by a thick blue (or dark gray) one.
Thin red channels represent channels which have been
activated at a previous timestep and have not been
acknowledged yet.

By following the same scheme, concurrent flows
and their interactions can be easily observed. For exam-
ple, Figure 3 shows the same circuit as above, but where
the Sequence component has been replaced by a Fork
component. It should be noted that the Balsa compiler
would not generate such a circuit unless forced (by the
designer) to do so: the concurrent read and write
accesses to the variable are non-deterministic.

The advantage of such an animation system is its
ability to show all the information available from the
Balsa description and from the execution of the simula-
tion of the system, and then let the user decide what he
wants to focus on. Debugging is made easier through the
visualisation of the parallel activity: every thread of exe-

cution of a simulation can be shown simultaneously, and
the observer can focus on one specific thread, observe
its activity, and can easily observe its merging with
another thread or its splitting into two threads.

This animation system also provides some interest-
ing debugging features for deadlocks and livelocks.
When a deadlock situation arises, the program stops,
leaving the guilty components in a specific colour and
the trace of the components before them in another col-
our, making it less difficult to debug. In a livelock situ-
ation, the colours can be observed circling in an endless
loop, but while this identifies the components involved
it hardly indicates the entry condition.

Another advantage with viewing synthesised elec-
tronic circuits rather than compiled software is the
absence of “shared memory”. In software programs, an
instruction at one particular memory address can be exe-
cuted by multiple concurrent threads. On the opposite,
in a hardware electronic circuit, the same transistor can-
not be controlled by two “threads” simultaneously. The
benefit of this situation is that concurrent threads never
overlap in a handshake circuit (or lower level) view.

Finally, the one-to-one correspondence between
the Balsa description and the visualised handshake com-
ponents makes it easy to link any error located on the
visualised circuit with its corresponding location in the
Balsa description.

4. Coordinated views

Until now, the visualisation system has been used to
visualise multiple sources of information together in a
single view. The benefits of such a view have been pre-
sented. However, in order to be useable and intuitive, a
visualisation system must also take into consideration
what the user wants to see. Most of the time, the user/
designer wants to continue to use the same style of
design he has always used. In the case of asynchronous
design with Balsa, the views usually consist of a text
editor containing the source code, and a waveform
viewer to analyse the results of the simulation. In order
to make these views even more useful, a collaboration
scheme is suggested in this section to track the visual-
ised elements and navigate efficiently from one view to
another.

The main view (Figure 4a) is accompanied by a
number of other views, representing the designed sys-
tem at other levels:

* Source code view (Figure 4b): This view is a text
viewer showing the Balsa source code. The design-
er’s preferred text editor can also be used. Although
this is the simplest of all the views when used indi-
vidually, this is the most difficult to link bi-direction-
ally to the rest, as simple text viewers are not
generally designed to display anything but text or to
forward keyboard/mouse events.

* Waveform view (Figure 4c): GTKWave [5] is an ex-

QAR S & Gt

e | oy

a. Structured Handshake Circuit . Source Code

c. Wave Form

. Verilog Netlist

Coordination

Figure 4. Coordinated views

ternal program used to display waveforms of the
handshake channels. It is directly and bi-directional-
ly linked to the handshake circuit visualisation sys-
tem, which provides the user with an interface to
select which channels are to be displayed in GTK-
Wave. In return, GTKWave can be used to select
some channels and periods of time of interest over
which some processing actions can be executed by
the visualisation system, such as calculating the pow-
er consumption of a sub-circuit over a certain period
of time.

* Verilog description (Figure 4d): Verilog code is
generated from the Balsa description and corre-
sponds to a direct translation from the handshake cir-
cuit netlist.

In each of these views, a subset of the whole infor-
mation set (source code, handshake circuit, simulation
trace) is represented. The challenge is to link together
the different representations of a same item in different
views. This link is used for synchronising views when a
component’s properties are changed in one of them.
More importantly, it also allows the user to track ele-
ments efficiently between one view and another, e.g. to
jump from a source code statement to the corresponding
channel in the handshake circuit view.

The visualised elements are categorised into three
groups:

* The simple elements originally contained in the
Breeze and simulation trace files: procedures, ports,
channels, components, time and events. They are vis-
ualised in most of the views.

* The compiled elements: data and control flows,
states. These are generated after analysis of the sim-
ple elements.

* The Balsa statements, present only in the original
Balsa source code and visualised only in the source
code view.

A subset of these elements is used as links between
views:
¢ Handshake channels: Handshake channels are first
generated in Breeze files. They are directly and fully
visualised in most of the views and are therefore the pre-
ferred means for going from one view to another. They
are the most fine-grained components of handshake cir-
cuits, and as such provide efficient ways of manipulat-
ing and associating the different views at a low level of
the design. In addition to themselves being the link
between different views, handshake channels contain
the source code position of the Balsa statement they
have been compiled from. This allows every view con-
taining channels to report references to the original

source code, necessary for correctly reporting errors to
aid the debugging process.

* Handshake components: Handshake components
are the base execution blocks of handshake circuits.
They can usually be logically associated with Balsa
operations. The link between a handshake component
and the corresponding source code is implemented by
the intermediate of handshake channels. Components
are connected to channels, among which one channel
can always be seen as ‘more special’ than the others:
Variable components have a unique write port, Binary-
Functions components have a unique output, most com-
ponents have a unique activation port, etc. The
association between a component and the source code is
made through this special channel.

* Procedures: Procedures are described in Balsa and
compiled as groups of handshake channels and compo-
nents. Their coarse grain allows the user to manipulate
large circuits at a high level before going into the details
of handshake channels and components.

* Simulation time: Simulation time is an easy param-
eter to deal with: a single number allows to specify the
current simulation time in a view and see the corre-
spondence in other views. The only slight difficulty is
due to the asynchronous nature of the circuits being
designed, which let events happen at any time instead of
at regular intervals of time as would be the case with
synchronous circuits.

¢ Source code elements: Source code elements (or
statements) constitute the special case of this section:
they are not represented directly but are “cross-refer-
enced” by other elements via their position in the source
code files. Balsa source code statements are first refer-
enced in Breeze files as channel positions. This work
extends this to any component that can be associated
with a channel, such as handshake components and sim-
ulation events. The source code position is the invisible
medium of the association between Balsa statements
and visualised elements.

Views communicate through a Coordinator proc-
ess, which gathers and broadcasts events happening to
the linking elements (e.g. element selection and modifi-
cation). This keeps all the views synchronised and
allows the user to navigate from one view to another by
selecting an element as the central piece.

5. Results

These techniques have been developed and inte-
grated in the Balsa framework. The visualisation system
has been used by designers optimising the design of
SPA, a Balsa-described ARM compatible processor

[10]. This processor is the largest circuit synthesised
with Balsa so far, and the SPA description is compiled
into a handshake circuit comprising around ten thou-
sand elements.

The clustering techniques are able to structure effi-
ciently this graph for visualisation. After clustering, the
static handshake circuit structure can be viewed at dif-
ferent levels of detail, with different information
appearing automatically at different scales.

The dynamic colour-based representation makes it
easy to visualise concurrent threads on the handshake
circuit, and the coordinated views enable the user/
designer to navigate rapidly between the different views
by selecting some elements detected during thread vis-
ualisation.

Our current problem lies in that no particular
method has been found for representing concurrent
threads in the source code view. This therefore limits
source code debugging to a single thread at a time, even
though multiple concurrent threads can be inspected
simultaneously in the handshake circuit graph view.

6. Conclusions

A visualisation system oriented towards program
comprehension has been presented. It is able to merge
and represent in a single view different sources of infor-
mation related to handshake circuits: the original Balsa
source code, the compiled static handshake circuit and
the dynamic simulation trace. This results in a very use-
ful graph structure, viewable at any level of detail and
showing the evolution of the control flows present in the
circuit during the simulation.

The visualisation system is also based on a struc-
ture of coordinated views. In order to provide a familiar
environment to the designer, the usual source code,
wave form and post-synthesis Verilog views are inte-
grated in the environment. Their usefulness is improved
by a collaboration scheme allowing the user to track ele-
ments from one view to another. The navigation
between the various sources of information is consider-
ably enhanced. This enables, in particular, an efficient
tracking of the control flows from the simulation trace
to the source code or to the post-synthesis Verilog struc-
ture, leading to an easy and precise comprehension of
the handshake circuit’s structure.

The current system is a result of regular evaluations
and feedback from the original designers of the SPA
processor and from the new team optimising it.

7. References

[1] Edwards, D.A., Bardsley, A., “Balsa: An Asynchronous
Hardware Synthesis Language”, The Computer Journal,
2002, Vol. 45(1), pp. 12-18.

[2] Everitt, B., Cluster Analysis, First edition, Heinemann
Educational Books Ltd, 1974, Fourth edition, ISBN
0340761199, 2001.

[3] Favre, J.-M., Cervantes, H., “Visualization of Compo-
nent-based Software”, Laboratoire LSR-IMAG, University of
Grenoble, France, 2002.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[5] GTKWave Electronic Waveform Viewer.

URL: http://www.cs.man.ac.uk/apt/tools/gtkwave/

[6] Herman, 1., Melangon, G., Marshall, M.S., “Graph Visu-
alization and Navigation in Information Visualization: A Sur-
vey”, IEEE Transactions on Visualization and Computer
Graphics, 2000, Vol. 6(1), pp. 24-43.

[7] Michaud, J., Storey, M.-A., Miiller, H., “Integrating Infor-
mation Sources for Visualizing Java Programs”, Proc. Inter-
national Conference on Software Maintenance, IEEE, 2001,
pp- 250-259.

[8] Mirkin, B., Mathematical Classification and Clustering,
Kluwer Academic Publishers, 1996.

[9] Mukherjea, S., Foley, J.D., Hudson, S., “Visualizing
Complex Hypermedia Networks through Multiple Hierarchi-
cal Views”, Human Factors in Computing Systems, CHI’95
Conference Proceedings, ACM Press, 1995, pp. 331-337.
[10] Plana, L.A., Riocreux, P.A., Bainbridge, W.J., Bardsley,
A., Garside, J.D., Temple, S., “SPA - A Synthesisable Amulet
Core for Smartcard Applications”, Proceedings of
Async2002, Manchester, April 2002, pp. 201-210.

[11] Risch, J.S., Rex, D.B., Dowson, S.T., Walters, T.B.,
May, R.A., Moon, B.D., “The STARLIGHT Information
Visualization System. Proceedings of the IEEE Conference
on Information Visualization”, IEEE CS Press, 1997, pp. 42-
49.

[12] Shimomura, T., Isoda, S., “VIPS: A Visual Debugger for
List Structures”, Proc. Computer Software and Applications
Software, 1990, pp. 530-537.

[13] Storey, M.-A., “A Cognitive Framework For Describing
and Evaluating Software Exploration Tools”, Ph.D. Thesis,
Computing Science, Simon Fraser University, Canada, 1998.
[14] Tuchman, A., Jablonowski, D., Cybenko, G., “Run-Time
Visualization of Program Data”, Proc. IEEE Conference on
Visualization, October 1991, pp. 255-261.

[15] Zeller, A., Lutkehaus, D., “DDD - A Free Graphical
Front-End for UNIX Debuggers”, SIGPLAN Notices, 1996,
Vol. 31(1), pp. 22-27.

