
Virtainer: Graphical Simulation of a Container Storage Yard with Dynamic

Portal Rendering

Miguel Escrivá, Marcos Martí, José Manuel Sánchez,Emilio Camahort, Javier Lluch, Roberto Vivó

Polytechnical University of Valencia

Computer Graphics Group

Camino de Vera s/n Valencia, Spain

{mescriva|mmarti|josanchez|camahort|jlluch|rvivo}@dsic.upv.es

Abstract

The popularity of 3d graphics has grown exponentially in

the latest years, which has lead to an increase in the range

of applications where this kind of representations are used.

The monitoring of industrial processes is an area where this

type of simulation is rarely used, being much more common

to show the information in traditional 2d interfaces.

An application for data visualization in maritime con-

tainer terminals is introduced here. We have developed a

modular system adaptable to any stacked objects problem.

This paper describes the architecture of our system, its fea-

tures, and the graphics techniques applied to achieve a high

frame rate and keep it independent of the data size.

1. Introduction

Stacked objects are very common in the industry, es-

pecially in logistic enterprises. Maritime container termi-

nals are a particular case of these. The management of

this process information is usually done by systems with

poor alphabetical interfaces which lack the ability to adapt

to changes and represent the information in an excessively

abstract way. In contrast, advanced graphical simulations

model the real process with high fidelity and show changes

in a much more convenient manner.

This kind of applications require the access to the system

information, usually stored in a database, and the ability to

receive the changes occurred in that information through a

communications layer. We will show the problems found

in the non-graphical parts of these systems, and the ap-

proaches we have taken to solve them.

Large data-sets, characteristic of these industries, pose a

challenge to the development of graphical simulation sys-

tems. The techniques we describe here solve two main

problems: real-time visualization of very large data-sets and

the modification of this data with an event oriented model.

Although the processing power of graphics cards increases

at a very fast pace, it is not enough to deal with the expand-

ing complexity of new geometric models. In order to solve

this problem, visibility culling techniques [2], such as geo-

metric simplification, occlusion [5] or impostors, have been

developed to reduce the amount of data employed to render

the scene while maintaining the image quality.

Another necessary part in any Virtual Reality application

is the tracking of input devices. Without a good interac-

tion system, the most advanced graphical simulation is use-

less. We have implemented a tracking application, based on

OpenTracker [18], which can be configured using standard

XML files.

Existing commercial applications, such as those de-

scribed in [8], offer text or 2d graphics interfaces, and are

unable to respond to real time events. Our system offers a

richer interface in a virtual representation of the maritime

terminal. It is a multi-platform system with integrated data

services, XML configuration files, standard database ac-

cess, and a geometric layer based on an open source scene

graph engine. It integrates several graphic accelerations

which exploit the spatial coherence of stacked objects to

speed up the rendering system. Virtual reality is completely

supported, as our system works with any configuration of

computers, screens and devices. Frame synchronization is

done at swap buffers level, allowing the simulation to run

synchronized in any number of computers.

The structure of this paper is described now. First, we

begin explaining the antecedents and main goals of the

project. Then we give some details about the graphic ac-

celeration techniques we have used. A description of user

interaction follows. The next section details Virtainer’s ar-

chitecture, its building blocks and how they work. Finally

we present some conclusions and the main directions for

future work.

2 Antecedents

This project was conceived as an extension of a previous

2d monitoring application, Visual Gama [12], adopted by

the company Marítima Valenciana, one of the most impor-

tant container terminals of the Mediterranean sea. The 2d

interface of Visual Gama was not rich enough. So we add

real-time 3d graphics to create a more realistic representa-

tion of the terminal with smooth animations to offer higher

fidelity and more up-to-date information.

Virtainer is built on top of completely standard open

source projects which deliver compatibility and great per-

formance. OpenSceneGraph [1] is employed as our graph-

ics engine, providing Virtainer with object management,

standard device handling and other utilities. OpenPro-

ducer gives us a rendering context and camera control, and

OpenThreads [10] provides thread management. The com-

munication layer can employ any protocol, but we are cur-

rently using SCore [17, 16], because it is the system adopted

in the container terminal to send and receive event mes-

sages. Finally, OpenTracker encapsulates the device events

in messages which are received and parsed by TrackerMa-

nipulator. In Gama we have data access and communica-

tion layers, so Virtainer is on top of Gama and fully inte-

grated with it.

The objectives of our system are real-time navigation

with sustained frame-rate, realism and virtual reality sup-

port. An event oriented system is required to maintain the

real state of the yard, and multi-view and multimode in-

spection (fly, walkthrough, cab views, etc) are also desired.

The system should offer interaction options for selection

and camera control.

3 Architecture

Usually container terminals store their information sys-

tem in a centralized server, using different technologies like

ODBC, OLE/DB or web services based on SOAP or XML-

RPC. This database stores at any moment the state of the ter-

minal, so the only information needed by our system resides

here. Container, truck and crane information is stored in a

certain relational scheme that is accessed to represent these

elements graphically. It is generally possible to associate a

trigger to each interesting event of the database. When any

change in the information system occurs, this trigger can

broadcast the change to any application or software agent.

Virtainer is a system based on standard C++ libraries and

constructed over open source standard projects. This archi-

tecture simplifies the system, and allows the logical data to

be independent from implementation details. Virtainer con-

sists of a set of seven modules, implemented as dynamic

libraries, each one handling a different aspect of the simu-

lation. The modules are:

vrtUtil provides logging facilities and a connection to the

Xerces-XML library used to parse configuration files.

vrtDB encapsulates the code required to connect to a

database and load information from its relational schemes.

All the logical information of the terminal is stored in

vrtData. Up-to-date logical positions, destination, vendor

and other container data are maintained here. The same ap-

plies to trucks, cranes and other machinery.

vrtGeo manages the geometric aspect of the simulation.

It loads the machine models, handles its animations, and is

responsible of the creation, destruction and manipulation of

the containers’ geometry.

The communication layer resides in vrtComm, which is

the module employed to receive terminal events and to in-

terchange synchronization messages between the elements

of a cluster in a mutiple machine configuration.

Keyboard, mouse events and related aspects are managed

in vrtGUIHandler, including key bindings and object selec-

tion.

virtainer serves as an interface to the library set, provid-

ing methods to initiate and finish the execution of the library

modules, as well as a Viewer class to control the visualiza-

tion.

When the application begins, the data is loaded from the

server database using the vrtDB module. This information

flows to vrtData, and then to vrtGeo, where it is used to cre-

ate the graphic simulation. The changes in this information

are received via vrtComm, are passed to vrtData, and then

to vrtGeo, where the simulation is updated according to the

event occurred. Figure 1 shows this architecture.

Each module has one or more associated configuration

files in standard XML format where the relevant parameters

for that module can be specified. There is a large number of

configurable elements, which are detailed now. There is one

configuration file for database related parameters, such as

the method to access the database, the protocols employed,

user name and password. Other files define the communi-

cation mechanism employed: Score, UDP broadcast, Blue-

tooth. The parameters for vrtGeo specify the static topology

of the terminal: elements, buildings, factories, wharf, sea,

etc. Other simulation related parameters exist, such as types

of container blocks, levels of piles and types of containers.

It is also possible to change the geometric models associ-

ated to the different objects, including cranes, trucks and

ships. Other constants allow the modification of the max-

imum number of cranes, the average speed of the cranes,

etc. Finally, color coding policies, textures and other mate-

rial information are also configurable.

4 Graphic Acceleration Methods

The large data-sets that are managed in container ter-

minals require the use of graphic acceleration methods to

Figure 1. Virtainer modular structure

produce a real-time simulation. We describe now the tech-

niques used in Virtainer to achieve high sustained frame-

rates.

Frustum culling, explained in [9], is the most common

method of culling used in computer graphics. Objects out-

side the camera frustum are removed from the rendering

pipeline. The scene graph structure makes this technique

very efficient, as complete object groups can be removed

with a simple comparison between the frustum and the

bounding volume of the group. OpenSceneGraph employs

two object lists populated by the culling process. The first

list stores the opaque objects ordered by state (material, tex-

ture, vertex programs, etc) and the second list stores the

transparent objects, ordered by depth. Different bounding

volumes are used to improve performance: boxes for geom-

etry and spheres for object groups.

Multi-resolution objects are the next technique imple-

mented. Machines in Virtainer have static pre-computed

levels of detail, to reduce the number of polygons rendered

without reducing noticeably the quality of the resulting im-

ages.

Impostors, as explained in [19], consist of rendering to a

texture the objects which are far from the observer, and sub-

stituting the real objects with billboards containing that tex-

ture. As long as the camera does not move we can achieve

very high frame-rates. This technique is used for the lowest

level of detail of the machines.

We have also developed a specific method to create im-

postors for the container blocks, which uses the faces of the

bounding box of each individual block as pre-rendered im-

postors. This method is used when the container block is far

Figure 2. Non­visible geometry is never ren­

dered

from the observer, and the geometry of a whole container

block is reduced to only five quads.

Non-visible geometric culling is another method applied.

Container faces which are not visible from any view are

removed from the scene graph before visualization. This

technique, shown in Figure 2 consists of rendering only the

surface of each container block, which leads to a notewor-

thy reduction of the polygon number and an increase in the

frame-rate.

Using Back-face culling [13, 11] we can avoid rendering

the back parts of the containers. It is easy to see that of the

six faces of a container we can only see three at the same

time, so with this technique we can cut in half the number

of polygons to be rendered.

Vertex array lists are another acceleration technique used

in Virtainer. It consists of grouping the geometry of the con-

tainer blocks in a certain way that is better handled by the

graphics card. When a container has to be added or removed

from a block, the affected block must be completely rebuilt.

Due to the low speed at which cranes operate in the termi-

nal, this is not a problem: the reconstruction of the block is

not noticeable.

4.1. Dynamic Portal Rendering

We have implemented Portal support as another acceler-

ation technique. A terminal of containers is very similar to a

city. It is formed by streets and blocks of houses, but instead

of buildings we have stacks of containers. Our system can

use portal rendering [6, 7] to accelerate the visualization in

walkthrough mode. When the application starts, the infor-

mation about containers is loaded from the database, and it

is used to create cells and portals automatically, following

the Breaking the walls [14] algorithm.

Note, however, that containers are added and removed

from the terminal regularly, making certain parts of the

scene visible or occluding them. This means that when-

ever a change occurs in some of block of containers, the

visibility of that block has to be recalculated to reflect those

changes. Our method, based on [15], introduces portal re-

construction to adapt to the dynamic geometry of the con-

tainer terminal.

5 User Interaction

OpenSceneGraph offers tools to manage standard de-

vices (mouse and keyboard), but they have to be connected

to the host where the final application runs. We have devel-

oped a utility to manage input devices which offers support

for any controller supported by the operating system. Our

tracking program sends incremental changes in position and

orientation, and other interaction related data.

It is based on OpenTracker, benefiting of its advantages:

configuration based on XML files, device abstraction, trans-

parent network access, data flow of tracking data and an ex-

tensible C++ class library. Another feature is that it is inde-

pendent of Virtainer libraries. Our tracking system can be

launched in a different host that the main application, allow-

ing the device management to run in a dedicated host. We

use XML configuration files to map tracking data to move-

ments and to select the interaction type.

Back-face culling delivers an increment of around 30%

of our frame-rate by reducing the number of polygons sent

to the graphics card. This differs from enabling backface

culling in the graphics card, which brings no performance

improvement, as the polygons have already been processed.

6 Results

We present now the results obtained when applying the

acceleration methods described. Figure 3 shows the enor-

Figure 3. Number of polygons rendered with

and without Non­visible Geometry Culling.

Figure 4. Frame­rate results using the fixed
pipeline of the graphics card. In this case por­

tal rendering is slower than just drawing ev­

ery outside polygon of each container block.

mous reduction in the number of rendered polygons when

removing non-visible container faces. Figure 4 shows the

improvement in the frame rate achieved with array lists and

our dynamic portal rendering method. Array lists deliver

a great increase of the frame-rate, as modern graphic cards

manage a very large number of polygons.

Our last technique, Dynamic portal rendering, delivers

lower results in that figure, but if we use shaders to improve

the graphics quality the situation is reversed. This is illus-

trated in figure 5.

Multiple machines using Virtainer can be interconnected

to increase the computer power when rendering to more

than one display device. We have chosen a master-slave

architecture where the master computer controls the camera

and sends the model view matrix to all the slaves. Then the

camera can be modified to adapt the view to the physical

display configuration. Our election of this architecture does

Figure 5. This plot shows that if shaders are

applied to the containers, our portal render­
ing method delivers higher frame­rate than a

simple array list approach.

Figure 6. Virtainer running in a cockpit view
configuration.

not mean that we are limited to connecting the devices di-

rectly to the master: any machine can receive this kind of

events and send them to the master, which will then notify

the changes through the cluster.

We have used joysticks, game-pads and a wheel to con-

trol Virtainer, and we have also a tracker which follows the

user head movements, enabling the user to look around the

terminal. The screen configurations tested are jumbo-box, a

cockpit view with three monitors, and a head mounted dis-

play. An example can be seen in Figure 6. Finally, contain-

ers and machines can be selected with the mouse to show

information about them (see Figure 7).

Conclusions

We have presented here a multi-platform simulation sys-

tem capable of representing a maritime container terminal

Figure 7. This image shows what happens

when a container is selected. An informa­

tion window appears with relevant informa­
tion about the selection. The same applies to

any crane.

in 3d with a sustained frame-rate. It offers support for vir-

tual reality configurations, such as head mounted displays

and caves, using swap-buffers synchronization to avoid dis-

parity between the frames rendered in different screens.

Any device can be used to control the navigation, and it is

possible to select relevant elements of the terminal to show

related information. The camera can be easily attached to

any crane, as shown in Figure 8. We have created a web

site where we publish project related information, located

at http://www.virtainer.org.

We are currently developing an event generator to sim-

ulate the messages received through the communications

layer. This application will allow us to represent the ma-

chinery animations outside the maritime terminal environ-

ment.

Other interesting areas are the use of occluders [3] for

systems with lower specifications or even larger scenes.

There is also some room for improvement in the synchro-

nization method used; a peer-to-peer scheme may be better

suited for our system than the current master-slave configu-

ration. Finally, in the next months Virtainer will be ported

to a CAVE system [4].

Acknowledgements

The Virtainer project is being supported by grant

TIC2002-04166-C03-01 from the Spanish Ministry of Sci-

ence and Technology and a STREP project, IST-2-004363

of the European Union. We thank Virtainer, Gama teams

for their work and collaboration. We are also grateful to

Marítima Valenciana for their support of our research ef-

Figure 8. One of the interaction modes puts
the camera in the cab of the selected crane.

Figure 9. In this image a shader has been ap­
plied to the containers. It features per­pixel il­

lumination, bump mapping and displacement
mapping.

forts.

References

[1] D. Burns and R. Ostfield. Open scene graph - an open source

solution for real time image generation. IMAGE Society,

2003.

[2] D. Cohen-Or, Y. Chrysanthou, and C. Silva. A survey of

visibility for walkthrough applications. IEEE TVCG, 2001.

[3] S. Coorg and S. Teller. Real-time occlusion culling for mod-

els with large occluders. IEEE TVCG, 1997.

[4] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-

screen projection-based virtual reality: The design and im-

plementation of the cave. In J. T. Kajiya, editor, Computer

Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages

135–142, Aug. 1993.

[5] J. El-Sana. Integrating occlusion culling with view-

dependent rendering. IEEE TVCG, 1997.

[6] N. Elmqvist. Axis-aligned bounding box culling for portal

rendering, 1999.

[7] N. Elmqvist. Introduction to portal rendering. 1999.

[8] L. M. Gambardella and A. E. Rizzoli. The role of simulation

and optimisation in intermodal container terminals. Euro-

pean Simulation Symposium, 2000.

[9] M. Hadwiger and A. Varga. Visibility culling. The Institute

of Computer Graphics and Algorithms, Vienna University

of Technology, 1997.

[10] M. Haines and K. Lagendoen. Platform-independent run-

time optimizations using openthreads. In 11th International

Parallel Processing Symposium, April 1997.

[11] J. Hultquist. Backface culling. In Graphics Gems, pages

346–347, 1990.

[12] P. Jorquera, T. Barella, D. Llobregat, and R. Vivó. Visual

gama. EUROGRAPHICS, 2003.

[13] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierar-

chical back-face computation. In Eurographics Rendering

Workshop, pages 235–244, 1996.

[14] A. Lerner, Y. Chrysanthou, and D. Cohen-Or. Breaking the

walls: Scene partitioning and portal creation. In Pacific

Graphics 2003, 2003.

[15] D. P. Luebke and C. Georges. Portals and mirrors: Simple,

fast evaluation of potentially visible sets. In Proceedings

1995 Symposium on Interactive Computer Graphics, pages

105–106. Department of Computer Science, University of

North Carolina, 1995.

[16] J. Posadas, P. Pérez, J. Simó, G. Benet, and F. Blanes.

Communications structure for sensory data in mobile robots.

Engineering Applications of Artificial Intelligence, 15:341–

350, 2002.

[17] J. Poza, J. Posadas, J.E.Simó, and A.Crespo. Data and event

management in a maritime terminal of containers. New

Technologies For Computer Control, pages 269 – 274, 2002.

[18] G. Reitmayr and D. Schmalstieg. An open software archi-

tecture for virtual reality interaction. ACM, 2001.

[19] G. Schaufler. Dynamically generated impostors. In D.

W. Fellner, editor, Modeling Virtual Worlds - Distributed

Graphics, pages 129–136, 1995.

